JPH1013349A - Plural-directional optical repeater - Google Patents

Plural-directional optical repeater

Info

Publication number
JPH1013349A
JPH1013349A JP19688696A JP19688696A JPH1013349A JP H1013349 A JPH1013349 A JP H1013349A JP 19688696 A JP19688696 A JP 19688696A JP 19688696 A JP19688696 A JP 19688696A JP H1013349 A JPH1013349 A JP H1013349A
Authority
JP
Japan
Prior art keywords
signal
receiving
slave
personal computer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19688696A
Other languages
Japanese (ja)
Inventor
Masatake Akagawa
雅健 赤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19688696A priority Critical patent/JPH1013349A/en
Publication of JPH1013349A publication Critical patent/JPH1013349A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extend a visual angle available for an infrared ray data link by placing device extending the luminous visual angle of an infrared ray in the data link. SOLUTION: A light receiving and emitting module 7 of a master personal computer 1 is placed oppositely to a light receiving reception module 2 and a light emitting transmission module 3 of a plural-directional optical repeater 14. A slave side of the repeater 14 is provided with a plurality of light receiving reception modules 12 and light emitting transmission modules 13. When a transmission signal from the master side personal computer 1 is converted into an infrared ray signal 6 and sent from a transmission section T of the light receiving and emitting element module 7 of the personal computer and received by a reception section R of the light receiving reception module 2 of the plural- directional optical repeater 14 and converted into an electric signal, distributed by a branch circuit 10 and given to a transmission section T of a slave side light emitting transmission modules 13a-13n and sent again as an infrared ray signal 6 to each slave side light receiving equipment and converted into the electric signal and decoded and then the transmission signal from the master side personal computer 1 is received.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[産業上の利用分野]本発明はパソコン及
びその関連機器間の通信用に使用されるところのIrD
A赤外線データリンク装置等に於ける有効視野角を拡大
する目的の複数方向を持つ赤外光線信号のレピータ装置
に関するものである。
[0001] The present invention relates to an IrD used for communication between a personal computer and related devices.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repeater device for an infrared ray signal having a plurality of directions for expanding an effective viewing angle in an infrared data link device or the like.

【0002】[従来の技術]従来の赤外線通信利用の技
術としてはテレビ、ビデオシステム、やカラオケ音響シ
ステム、エアコン、等のリモートコントロール用に広く
使用されていたが、パソコン(パーソナルコンピュー
タ)の個人への普及が進み、パソコンとパソコン間やパ
ソコンとその関連機器間のデータのやり取りのその機器
間接続を簡単にする為に赤外線データリンクの考えが起
き、最新の規格としてシリアル通信で行うIrDA物理
レイヤースペックが定まり最近のパソコンには標準装備
として備わっている事が多くなっている。その規格は到
達距離1cmから1m、有効視野角30度と言う規格で
ある。また他にIrDA規格外の高速赤外線通信も使用
され始めている。これらの通信方法は視野角が狭い為に
機器を1対1に対向させて通信を行う事が普通である。
[Prior Art] Conventional infrared communication technology has been widely used for remote control of televisions, video systems, karaoke sound systems, air conditioners, and the like. With the spread of the technology, the idea of an infrared data link has arisen to simplify the connection between PCs and the exchange of data between PCs and related equipment, and the IrDA physical layer that uses serial communication as the latest standard Specs have been settled, and recent PCs are increasingly equipped as standard equipment. The standard is that the reach distance is 1 cm to 1 m and the effective viewing angle is 30 degrees. In addition, high-speed infrared communication outside the IrDA standard has begun to be used. In these communication methods, since the viewing angle is narrow, communication is usually performed with the devices facing one to one.

【0003】[発明が解決しようとする課題]赤外線デ
ータリンクは通信性能が良く機器間の接続が不要で簡単
なのでこれから更に種々普及するものと思うが、赤外光
線の発光装置の性質上発光角度が狭く通常30度と規定
している事が殆どである。そこで例えば2台のパソコン
を対向させて通信をする場合は問題無いが1台のパソコ
ンと赤外線通信機能を備えたプリンターやキーボード、
マウス、ファクシミリや電子手帳や無論他のパソコンと
のデータのやり取り等に使う場合には予めパソコンと他
のそれぞれの機器とを対向させて置く必要が有り、先に
述べた機器の1から2台は対向させる事も可能であるが
規格の到達距離1mや視野角30度の制限内に入れられ
る機器は大きさや配置等からして少ない。従って通信に
使用しない機器を移動させて新たに通信する機器を対向
させる等の処置が必要となる訳である。
[Problems to be Solved by the Invention] Infrared data links are expected to be widely used because they have good communication performance and do not require connection between devices. In most cases, the angle is narrow and is usually set at 30 degrees. Therefore, for example, when two PCs face each other to communicate, there is no problem, but a printer or keyboard with infrared communication function with one PC,
When used for exchanging data with a mouse, facsimile, electronic organizer or, of course, other personal computers, it is necessary to place the personal computer and each other device in advance so that one or two of the devices mentioned above Can be opposed to each other, but there are few devices that can be placed within the limits of the standard reachable distance of 1 m and the viewing angle of 30 degrees due to their size and arrangement. Therefore, it is necessary to take measures such as moving a device that is not used for communication and facing a device that newly communicates.

【0004】[課題を解決する為の手段]そこでこの課
題を解決する目的の為に本発明は赤外線データーリンク
の有効視野角を機器を改造する事無しにデータリンク内
に赤外線の発光視野角を広くする装置を置き、予め複数
置いたの機器を移動する事無しに機器間の赤外線データ
リンクが使用できる視野角を拡大する付加装置である光
のレピータ装置の提供を目的としたものである。
[Means for solving the problem] In order to solve the problem, the present invention provides an infrared data link with a view angle of infrared rays within a data link without modifying the equipment. It is an object of the present invention to provide a light repeater device which is an additional device for expanding a viewing angle in which an infrared data link between devices can be used without moving a plurality of devices which have been previously placed, without moving a plurality of devices.

【0005】[作用]従来の技術で述べた一般的に用い
られ始めた所のIrDA赤外線データリンク方式の応用
は通信速度の最高が115.2KBdと目覚しいもので
あるが、操作機器間が視野角30度で動作範囲が1m以
内の規格では極手近な装置を対向させて使用するに限ら
れてしまう、しかしこれらの限定が少しでも拡大されれ
ば更に様々な応用拡大が考えられる。またIrDA以外
の規格の高速光通信でも同様で有るが遠距離光通信方式
でも送受信器間の光軸調整を確実に短時間で行う為に
は、本発明の視野角を拡大する光のレピータ装置を用い
る事により光軸調整が容易に出来る等の産業上の有効な
手段となる訳である。
[Operation] In the application of the IrDA infrared data link system, which has been generally started to be used as described in the prior art, the maximum communication speed is 115.2 KBd, which is remarkable, but the viewing angle between operating devices is large. In the case of a standard having an operation range of 30 degrees and an operating range of 1 m or less, it is limited to using a device as close as possible, but if these limitations are expanded even a little, various applications can be further expanded. In addition, the same applies to high-speed optical communication of a standard other than IrDA. However, in order to reliably perform optical axis adjustment between a transmitter and a receiver in a short time even in a long-distance optical communication system, a light repeater device for expanding a viewing angle according to the present invention is required. This is an industrially effective means that the optical axis can be easily adjusted by using.

【0006】[実施例]図1に本発明の光通信のレピー
ターを主従パソコン間に用いたブロック図を示しまず実
施例を原理的に説明する。まずIrDA物理レイヤース
ペックを例としてに説明すると。これに準拠した装置の
赤外線データリンクは視野角30度、動作距離1m以内
に主従の装置を対向させて通信を行う事になっている。
では視野角30度以外、動作距離1m以上にしか主従の
装置が設置出来ない場合は通信を諦めるかの場合に本発
明の光レピーターが有効になる。即ち図1の例では7の
受発光モジュールが付いた1の主側機器のパソコンと通
信可能距離以上に離れた個所の5の従側機器のパソコン
間で通信を行う事を考えた場合に、そのパソコン間に本
発明の4の光レピーターを設置する訳である。そして4
の光レピーターの構成としては主側機器に対向させた2
の受光受信モジュールと3の発光送信モジュールと従側
機器に対向させた2の受光受信モジュールと3の発光送
信モジュールの光通信モジュールよりなり両者は光信号
送信部と光信号受信部が一つになった半導体集積回路
(以下ICと言う)で構成されたモジュールや送受信別
々のICとした物が一般に市販されている、そしてその
市販のICが使用出来る。そして図示しないが発光送信
モジュールICの中は入力する電気信号に比例した赤外
線信号を発光する発光ダイオードとこれを駆動するアン
プからなり、またICの受光受信モジュールはフォトダ
イオードで受信した赤外線信号を電気信号に変換し増幅
し検波し波形を成型してパルス輻に変換して出力するの
が一般的なICの中身の構成となっている。そして市販
品としては送受信モジュールとして日本ヒューレットパ
ッカード株式会社の型名HSDL−1000で市販され
ている、また送受単体としてシャープ株式会社の受信用
として型名IS1U20と送信用として型名GL1F2
0と言うものもある、当然これと同等品の他社の光通信
用の送受信モジュールも同様に使用することが出来る。
この4の光レピーターは主側の2の受光受信モジュール
の出力Rと従側の3の発光送信モジュールの入力Tを信
号レベルを合わせて電気的に接続し、主側の3の発光送
信モジュールの入力Tと従側の2の受光受信モジュール
の出力Rも信号レベルを合わせて電気的に接続して、主
側光通信モジュールと従側光通信モジュールはそれぞれ
180度の逆向きに設置する構成とする。そして使用す
るパソコンにも同様な光通信モジュールが付いている物
を本発明と対向させて使用する訳だが、1の主側パソコ
ンの7の受発光モジュールと4の光レピーターの主側の
光通信モジュールを対向させ、4の光レピーターの従側
の光通信モジュールと5の従側パソコンの7の受発光モ
ジュールとを対向させて使用する訳である。そして1の
主側パソコンからの送信信号はパソコンの7の受発光モ
ジュールの送信部T(図示T、以下Tで示す)から6の
赤外線信号に変換されて発せられると4の光レピーター
の主側の2の受光受信モジュールの受信部R(図示R、
以下Rで示す)で受信して電気信号に変換され、4の光
レピーターの従側の3の発光送信モジュールの送信部
(図示T、以下Tで示す)に入力されて再び6の赤外線
信号として5の従側パソコンの7の受発光モジュールの
受信部R(図示R、以下Rで示す)で受信されて電気信
号に変換されてパソコンで解読されて1の主側パソコン
からの送信信号を受領することを繰り返す事によって主
側のパソコンのデータ等を従側パソコンに送る事が出来
る。また5の従側パソコンからの送信は5の従側パソコ
ンの7の受発光モジュールの送信部Tから6の赤外線信
号に変換されて発せられると4の光レピーターの従側の
2の受光受信モジュールの受信部Rで受信して電気信号
に変換され、4の光レピーターの主側の3の発光送信モ
ジュールの送信部Tに入力されて再び6の赤外線信号と
して1の主側パソコンの7の受発光モジュールの受信部
Rで受信されて電気信号に変換されてパソコンで解読さ
れて5の従側パソコンからの送信信号を受領することを
繰り返す事になる。以上を構成したこの4の光レピータ
ーを用いる事によりレピーターの置く位置により仕様は
視野角30度が90度に動作距離は1mが2mに拡大す
ることが出来る訳である。更に4の光レピーターを複数
用いて光の到達範囲内毎にレピーターを置いてそれぞれ
をつないで行く事により大幅に到達距離を拡大する事も
出来る。以上の説明が本発明の基本原理である。
FIG. 1 is a block diagram in which a repeater for optical communication according to the present invention is used between a master and a slave personal computer. First, an IrDA physical layer specification will be described as an example. An infrared data link of a device conforming to this standard is designed to communicate with a master and slave device facing each other within a viewing angle of 30 degrees and an operating distance of 1 m.
In this case, the optical repeater according to the present invention is effective when communication is to be abandoned when the master and slave devices can be installed only at an operating distance of 1 m or more, except for a viewing angle of 30 degrees. That is, in the example of FIG. 1, when communication is performed between a personal computer of one main device having seven light receiving / emitting modules and a personal computer of five slave devices at a location separated by a distance more than the communicable distance, That is, the four optical repeaters of the present invention are installed between the personal computers. And 4
The structure of the optical repeater is as follows.
Optical receiving module, three light emitting and transmitting modules, and two optical receiving and receiving modules facing the slave device, and three optical transmitting and receiving modules, both of which have an optical signal transmitting unit and an optical signal receiving unit. Modules composed of the resulting semiconductor integrated circuits (hereinafter, referred to as ICs) and ICs for separate transmission and reception are generally commercially available, and the commercially available ICs can be used. Although not shown, the light-emitting and transmitting module IC includes a light-emitting diode that emits an infrared signal proportional to an input electric signal and an amplifier that drives the light-emitting diode. The light-receiving module of the IC converts the infrared signal received by the photodiode into an electric signal. The structure of a general IC is to convert it into a signal, amplify it, detect it, shape the waveform, convert it into pulse radiation, and output it. As a commercially available product, a transmission / reception module is marketed under the model name HSDL-1000 of Hewlett-Packard Japan Co., Ltd., and a transmission / reception unit is a model name IS1U20 for reception by Sharp Corporation and a model name GL1F2 for transmission.
There is also a transmission module for optical communication of another company, which is equivalent to this.
The optical repeater 4 electrically connects the output R of the two light receiving and receiving modules on the main side and the input T of the three light emitting and transmitting modules on the slave side so as to match the signal level. The input T and the output R of the two receiving and receiving modules on the slave side are also electrically connected to each other at the same signal level, and the main optical communication module and the slave optical communication module are installed in opposite directions of 180 degrees, respectively. I do. The personal computer used also has a similar optical communication module and is used in opposition to the present invention. However, the optical communication module 7 of the main personal computer 7 and the optical communication of the optical repeater 4 are also used. The optical communication module on the slave side of the optical repeater 4 and the light emitting / receiving module 7 on the slave personal computer 5 are used with the modules facing each other. When a transmission signal from the main personal computer 1 is converted from a transmitting unit T (shown by T in the drawing, hereinafter referred to as T) 7 of the personal computer to the infrared signal 6 and emitted, the main side of the optical repeater 4 is transmitted. The receiving unit R (shown as R,
(Hereinafter, indicated by R), converted into an electric signal, input to a transmission unit (T in the drawing, hereinafter referred to as T) of the three light emitting transmission modules on the slave side of the four optical repeaters, and again converted into six infrared signals. The receiving unit R (illustrated R, hereinafter, indicated by R) of the light emitting / receiving module 7 of the slave personal computer 5 is converted into an electric signal, decoded by the personal computer, and receives a transmission signal from the main personal computer 5. By repeating the above, the data of the main PC can be transmitted to the sub PC. Also, the transmission from the slave PC of 5 is converted into an infrared signal of 6 from the transmission unit T of the light emitting and receiving module of 7 of the slave PC, and the two light receiving and receiving modules of the slave of the optical repeater of 4 are transmitted. Is received by the receiving unit R, converted into an electric signal, input to the transmitting unit T of the light emitting transmitting module 3 on the main side of the optical repeater 4, and again received as an infrared signal 6 by the receiving unit 7 of the main personal computer 7. The signal is received by the receiver R of the light emitting module, converted into an electric signal, decoded by the personal computer, and repeatedly receiving the transmission signal from the subordinate personal computer. By using the four optical repeaters configured as described above, depending on the position where the repeaters are placed, the specifications can be expanded such that a viewing angle of 30 degrees is 90 degrees and an operating distance is 1 m to 2 m. Further, by using a plurality of four optical repeaters and placing repeaters in each of the light reachable areas and connecting them, the reach can be greatly increased. The above description is the basic principle of the present invention.

【0007】今まで主側光通信モジュールと従側光通信
モジュールをそれぞれ180度の逆向きに設置する構成
として説明してきたが更に使用方向(視野角)を増やす
事がより有効である。そこで次に本発明の有効視野角の
拡大の実施例のブロックを図2に示し説明する。先の図
1の説明の4の光レピーター部分を図2の14の複数方
向光レピーターの様にする訳だがこれについて説明す
る。1の主側パソコンの7の受発光モジュールと14の
複数方向光レピーターの2の受光受信モジュールと3の
発光送信モジュールを対向させる様に設ける、また14
の複数方向光レピーターの従側には複数の12の従側受
光受信モジュールと13の発光送信モジュールを設け
る。そして12の従側受光受信モジュールと13の発光
送信モジュールを一組として発光送信モジュールの送信
範囲(視野角)が30度なので理論的には全方向に送信
したければ360度÷30度=12で12組の12の従
側受光受信モジュールと13の発光送信モジュールを配
置すれば良いことになる。しかし現実的には従側機器の
配置から見た必要数として2組以上の受発光モジュール
を主側から見て直交した点を境に60度位から180度
の角度の開きで従側用として図3の様に配置するとした
使い方が実用的である。図2の14の複数方向光レピー
ターの説明に戻って、2の受光受信モジュールの出力は
10の分岐回路で必要数分岐して各13の従側発光送信
モジュールの入力に信号のレベルを合わせて入力する。
一方の12の従側受光受信モジュールの出力は11の合
成回路で出力を合成して3の発光送信モジュールの入力
に信号のレベルを合わせて入力する。尚回路を論理的に
言うと10の分岐回路はバッファーとしての複数のイン
バーター等で良く、11の合成回路はNANDゲート等
が使用出来、いずれも市販のICで構成出来る。そして
実際の使い方の例としては図4に示す様な主側パソコン
と複数の従側パソコンとの中間に図3の外観構成の複数
方向光レピーターを配置して各従側のパソコンと主側パ
ソコンとでのシリアル通信が考えられる。即ち1の主側
パソコンからの送信信号はパソコンの7の受発光モジュ
ールの送信部Tから6の赤外線信号に変換されて発せら
れると14の複数方向光レピーターの2の受光受信モジ
ュールの受信部Rで受光して電気信号に変換され、10
の分岐回路で複数に分岐して13aからnの従側発光送
信モジュールの送信部Tに入力されて再び6の赤外線信
号として各従側機器の受発光モジュールへ送られて受光
され電気信号に変換されて解読されて1の主側パソコン
からの送信信号を受領することを繰り返えす。また従側
機器からの送信は従側機器の受発光モジュールの送信部
から6の赤外線信号に変換されて発せられると14の複
数方向光レピーターの12aからnのの受光受信モジュ
ールの受信部Rで受光され電気信号に変換しこの出力
は、11の合成回路で出力合成して3の発光送信モジュ
ールの送信部Tに入力して再び6の赤外線信号として1
の主側パソコンに送信し7の受発光モジュールの受信部
Rで受光されて電気信号に変換されて1のパソコンで解
読されて従側機器からの送信信号を受領することを繰り
返す事になる。以上の構成によりIrDAの規格の視野
角を大幅に拡大することが出来る。又IrDA以外の規
格の通信でも例えば遠距離通信が出来るシステムであっ
ても離れれば離れる程、送信光線と受光する光軸を一致
させることが困難となるが、本発明の複数方向光レピー
ター装置を使用すれば広い視野角が可能なので調整が容
易に出来る事になる。また12の従側受光受信モジュー
ルと13の発光送信モジュールの一組を図3に示した外
観構成例の様に水平方向に複数配置する説明をしてきた
が当然の事ながら上下方向にも複数配置する事により更
に多くの従側機器に対応可能となる。但し主側と従側と
の通信は予め従側機器に自分の認識番号を定め、主側の
指定した認識番号の従側機器のみと通信をする決まりを
持つ事が必要である。
Although the main optical communication module and the slave optical communication module have been described so far as being installed in opposite directions of 180 degrees, it is more effective to further increase the use direction (viewing angle). Therefore, a block diagram of an embodiment of the present invention for expanding the effective viewing angle will be described with reference to FIG. Although the optical repeater portion 4 described in FIG. 1 is changed to the multi-directional optical repeater 14 in FIG. 2, this will be described. The light receiving / emitting module 7 of the main personal computer 1, the light receiving / receiving module 2 of the multi-directional optical repeater 14 and the light emitting / transmitting module 3 are provided so as to face each other.
On the slave side of the multi-directional optical repeater, a plurality of twelve slave-side light receiving / receiving modules and thirteen light emitting / transmitting modules are provided. Since the transmission range (viewing angle) of the light emitting and transmitting module is 30 degrees as a set of the 12 slave light receiving and receiving modules and the 13 light emitting and transmitting modules, 360 degrees ÷ 30 degrees = 12 degrees theoretically when transmitting in all directions. In this case, it is sufficient to dispose 12 sets of 12 slave light receiving modules and 13 light emitting modules. However, in reality, the required number of the light receiving and emitting modules as viewed from the arrangement of the slave device is set at an angle of about 60 degrees to 180 degrees with respect to a point orthogonal to the boundary when viewed from the main side. It is practical to use the arrangement shown in FIG. Returning to the description of the multi-directional optical repeater 14 shown in FIG. 2, the output of the light receiving and receiving module 2 is branched as necessary by 10 branch circuits, and the signal level is adjusted to the input of each of the 13 slave light emitting and transmitting modules. input.
The outputs of one of the twelve slave-side light receiving modules are combined by the combining circuit of the eleven, and are input to the input of the third light emitting transmission module with the signal level adjusted. Logically speaking, the ten branch circuits may be a plurality of inverters or the like as buffers, and the eleventh synthesis circuit can use a NAND gate or the like, and all of them can be constituted by commercially available ICs. As an example of actual usage, a multi-directional optical repeater having the external configuration of FIG. 3 is arranged between a main personal computer and a plurality of sub personal computers as shown in FIG. And serial communication with. That is, a transmission signal from the main personal computer is converted from the transmission unit T of the light emitting / receiving module 7 of the personal computer to an infrared signal of the light source 6 and emitted. The light is received by and converted into an electric signal.
, And is input to the transmitters T of the slave-side light-emitting and transmitting modules 13a to 13n, sent again as 6 infrared signals to the light-receiving and emitting modules of each slave-side device, received and converted into electric signals. It repeats receiving and transmitting the signal transmitted from one main personal computer. The transmission from the slave device is converted into an infrared signal of 6 from the transmission unit of the light emitting and receiving module of the slave device and is emitted. The received light is converted into an electric signal, and this output is combined by an combining circuit 11 and input to the transmitting section T of the light emitting transmitting module 3 to be converted again into an infrared signal of 6 to 1
, And is received by the receiving unit R of the light receiving / emitting module 7, converted into an electric signal, decoded by the single personal computer, and received by the slave device. With the above configuration, the viewing angle of the IrDA standard can be greatly expanded. Further, even in a communication system of a standard other than IrDA, for example, even in a system capable of long-distance communication, it becomes more difficult to match the transmitted light beam and the received optical axis as the distance increases, but the multi-directional optical repeater device of the present invention If used, a wide viewing angle is possible, so that adjustment can be made easily. Also, a description has been given in which a plurality of sets of the twelve slave-side light receiving / receiving modules and the thirteen light emitting / transmitting modules are arranged in the horizontal direction as in the example of the external configuration shown in FIG. By doing so, it becomes possible to support more slave devices. However, the communication between the master side and the slave side needs to determine its own identification number for the slave side device in advance, and have a rule of communicating only with the slave side device having the identification number designated by the master side.

【0008】[発明の効果]本発明の光レピーターを用
いる事によって、IrDAの通信規格の視野角30度の
制約を越える事が出来るので、例えば複数の通信する従
側機器の置く位置を通信可能な位置に変えたりする必要
が無くなる。又IrDA規格以外の赤外線通信でも本発
明の複数方向光レピータ装置を使用することにより、光
軸調整が容易となり、且つ外乱光の影響の無い場所に移
動して通信する事も広い視野角を持たせる事が出来るの
で可能となり、通信の信頼性を上げる事が出来る。従っ
て一般にも又産業上にも共に有効な手段の提供と考えら
れます。
[Effect of the Invention] By using the optical repeater of the present invention, it is possible to exceed the restriction of the viewing angle of 30 degrees of the IrDA communication standard. For example, it is possible to communicate the positions of a plurality of slave devices to communicate. There is no need to change the position. Also, by using the multi-directional optical repeater of the present invention in infrared communication other than the IrDA standard, the optical axis can be easily adjusted, and a wide viewing angle can be obtained even when moving to a place where there is no influence of disturbance light. Can be made possible, and the reliability of communication can be improved. Therefore, it is considered to be an effective means for both general and industrial use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1対1の光レピーターを主従パソコン
間に用いたブロック図の一例を示す。
FIG. 1 shows an example of a block diagram in which a one-to-one optical repeater of the present invention is used between a master and a slave personal computer.

【図2】本発明の1対nの複数方向光レピーター装置を
主従パソコン間に用いたブロック図の一例を示す。
FIG. 2 shows an example of a block diagram in which a 1: n multi-directional optical repeater device of the present invention is used between a master and a slave personal computer.

【図3】本発明の複数方向光レピーター装置の外観構成
の例を示した図を示す。
FIG. 3 is a diagram showing an example of an external configuration of a multidirectional optical repeater device of the present invention.

【図4】本発明での複数方向光レピーター装置による複
数のパソコンとの光通信の例を示す。
FIG. 4 shows an example of optical communication with a plurality of personal computers by the multi-directional optical repeater device according to the present invention.

【符合の説明】[Description of sign]

1 主側パソコン 12n 従側受光受信
モジュール 2 受光受信モジュール 13n 従側発光送信
モジュール 3 発光送信モジュール 14 複数方向光レ
ピーター 4 光レピーター 5n 従側パソコン 6 赤外線信号 20 支柱 7 受発光モジュール 21 台箱 10 分岐回路 11 合成回路
DESCRIPTION OF SYMBOLS 1 Main-side personal computer 12n Slave-side light receiving / receiving module 2 Light-receiving / receiving module 13n Slave-side light emitting / transmitting module 3 Light emitting / transmitting module 14 Multi-directional optical repeater 4 Optical repeater 5n Slave-side personal computer 6 Infrared signal 20 Post 7 Light receiving / emitting module 21 Box 10 Branch Circuit 11 Synthesis circuit

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/16 H04L 12/28 Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H04B 10/16 H04L 12/28

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】赤外線による主側機器、従側機器間データ
リンク装置において、赤外線データリンクの主側機器に
対向して赤外線信号を受光受信する手段と該受信した赤
外線信号を電気信号に変換し復調する手段と該復調信号
を一つ以上に分岐する手段と該それぞれの分岐信号を受
けて変調し赤外線信号を再発光する一つ以上の手段を設
けそれぞれの該赤外線信号を通信先の一つ以上の従側機
器の受光部に対向させる手段と、一方の一つ以上の従側
機器のそれぞれに対向して赤外線信号を受光受信する一
つ以上の手段と該受光した赤外線信号を電気信号に変換
し復調する手段とそれぞれの該復調信号を集合し出力を
合成する手段と該合成信号で変調して赤外線信号を再発
光する手段と該赤外線信号を主側機器の受光部に対向さ
せる手段を設け、主側機器と従側機器に受発光信号の解
読制御する手段を具備してなる赤外線データーリンクの
赤外線信号の視野角を拡大する複数方向光レピーター装
置。
1. A data link device between a main device and a slave device using infrared light, means for receiving and receiving an infrared signal facing the main device of the infrared data link, and converting the received infrared signal into an electric signal. A means for demodulating, a means for branching the demodulated signal into one or more, and one or more means for receiving and modulating the respective branched signals and re-emitting the infrared signal are provided. Means for facing the light receiving section of the slave device, one or more means for receiving and receiving an infrared signal facing each of the one or more slave devices, and converting the received infrared signal into an electric signal Means for converting and demodulating, means for collecting the respective demodulated signals and synthesizing the output, means for modulating the synthesized signal to re-emit an infrared signal, and means for causing the infrared signal to face the light receiving portion of the main device. Provided, Multiple directional light repeater device for enlarging the viewing angle of the infrared signal of the infrared data link formed by comprising means for decrypting the control of the light emitting and receiving signals on the side equipment and detail side equipment.
JP19688696A 1996-06-21 1996-06-21 Plural-directional optical repeater Pending JPH1013349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19688696A JPH1013349A (en) 1996-06-21 1996-06-21 Plural-directional optical repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19688696A JPH1013349A (en) 1996-06-21 1996-06-21 Plural-directional optical repeater

Publications (1)

Publication Number Publication Date
JPH1013349A true JPH1013349A (en) 1998-01-16

Family

ID=16365298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19688696A Pending JPH1013349A (en) 1996-06-21 1996-06-21 Plural-directional optical repeater

Country Status (1)

Country Link
JP (1) JPH1013349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010058873A (en) * 1999-12-30 2001-07-06 박종섭 Multidirectional infrared transmitting and receiving apparatus using spherical structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010058873A (en) * 1999-12-30 2001-07-06 박종섭 Multidirectional infrared transmitting and receiving apparatus using spherical structure

Similar Documents

Publication Publication Date Title
US4977618A (en) Infrared data communications
KR20130110192A (en) Rack to rack optical communication
JPS63114333A (en) Radio bus system
HU224588B1 (en) System and method for bi-directional data transfer
JPH1013349A (en) Plural-directional optical repeater
US7079778B1 (en) Rugged shock-resistant backplane for embedded systems
US5468921A (en) Extended communication cable for a light pen or the like
US5383535A (en) Signal transmitting apparatus of elevator
JPH09312616A (en) Optical communication repeater device
JP3779796B2 (en) LVDS signal distributor
JPS5995746A (en) Optical space propagating type network
JPS58202633A (en) Optical space propagation network system
CN114488433B (en) Single-optical-fiber high-speed full-duplex data transmission device
JPH0287836A (en) Data transmission system
JPS58200644A (en) Optical bus system
JP4175048B2 (en) Optical transmission equipment
JPH02128882A (en) Printer system
JPH0797762B2 (en) Relay method in space propagating optical communication
JPH11145902A (en) Infrared ray receiver capable of wide range reception
JPH0936805A (en) Infrared ray communication equipment
Jahnke et al. Demo Abstract: SatelLight--Using LiFi for Intra-Satellite Communication
JP2001119440A (en) Usb signal transmission system
JPH0837496A (en) Optical space transmission system
CN117406001A (en) Electromagnetic compatibility testing device and method for display screen
JPS63176033A (en) Optical spatial data transmission system