JPH10132740A - Non-contact measuring method for excited state of nitrogen molecule - Google Patents

Non-contact measuring method for excited state of nitrogen molecule

Info

Publication number
JPH10132740A
JPH10132740A JP28977796A JP28977796A JPH10132740A JP H10132740 A JPH10132740 A JP H10132740A JP 28977796 A JP28977796 A JP 28977796A JP 28977796 A JP28977796 A JP 28977796A JP H10132740 A JPH10132740 A JP H10132740A
Authority
JP
Japan
Prior art keywords
nitrogen
state
measured
laser
nitrogen molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28977796A
Other languages
Japanese (ja)
Inventor
Etsuro Hirai
悦郎 平井
Mitsuhiro Yoshida
光宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28977796A priority Critical patent/JPH10132740A/en
Publication of JPH10132740A publication Critical patent/JPH10132740A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact measuring method for the excited state of nitrogen molecules capable of easily and well obtaining information on the vibrational and rotational state of nitrogen molecules to be measured. SOLUTION: The movement of energy caused by the collision of inert gasses in a metastable state such as He and Ne whose life is long, that is, from 0.1 to few seconds for ionizing nitrogen molecules is used to generate the intermediate state of nitrogen molecular ions and to raise this intermediate state to a higher level by laser light. Then, the light emitted at the time of dropping to a lower level is measured with respect to the wavelength of incident laser to obtain information on the vibrational and rotational state of nitrogen molecules.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒素分子励起状態の
非接触計測法に関し、特にトレーサーガスによる計測で
は不正確又は不可能な真空機器内希薄流や、レーザー用
放電管内の流れ等の窒素流に関する診断,計測に適用し
て有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-contact measurement of excited states of nitrogen molecules, and more particularly to a nitrogen flow such as a dilute flow in vacuum equipment or a flow in a discharge tube for laser, which is inaccurate or impossible by measurement with a tracer gas. It is useful when applied to diagnosis and measurement related to

【0002】[0002]

【従来の技術】窒素流の計測においては(a)トレーサ
ーガスを利用する方法、(b)電子ビームによる発光を
利用する方法(c)二光子過程を利用する方法等が使用
されている。
2. Description of the Related Art In measuring a nitrogen flow, there are used (a) a method using a tracer gas, (b) a method using light emission by an electron beam, and (c) a method using a two-photon process.

【0003】上記(a)はヨウ素等、発光しやすいガス
をトレーサー用として窒素流に混入し、このガスの挙動
から窒素の状態を推定する方法である。
[0003] The above (a) is a method of estimating the state of nitrogen from the behavior of a gas in which a gas that easily emits light, such as iodine, is mixed in a nitrogen stream for a tracer.

【0004】(b)は計測したい部分に電子ビームを打
ち込み、この結果得られる窒素からの発光スペクトルか
ら、情報を得る方法である。
[0004] (b) shows a method in which an electron beam is injected into a portion to be measured, and information is obtained from an emission spectrum of nitrogen obtained as a result.

【0005】(c)は窒素分子を二光子衝突を利用して
窒素分子イオンの励起状態まで上げ、このイオンが下位
凖位へ落ちる時の発光を計測する方法である。
[0005] (c) is a method in which a nitrogen molecule is raised to an excited state of a nitrogen molecule ion by using two-photon collision, and emission is measured when the ion falls to a lower level.

【0006】[0006]

【発明が解決しようとする課題】上述の如き従来技術の
うち、(a)はトレーサーガスを利用するため、トレー
サーガスと窒素が十分な衝突を行い熱平衡状態であると
いう仮定の下に成立する方法である。従って希薄流,熱
平衡でない場合の窒素の振動,回転状態の正確な予測は
困難である。またトレーサーガスは反応性のものを用い
ることが多いため、化学反応に注意する必要がある。
Among the prior arts described above, the method (a) uses a tracer gas, and the method is established under the assumption that the tracer gas and nitrogen sufficiently collide and are in a thermal equilibrium state. It is. Therefore, it is difficult to accurately predict the vibration and the rotation state of the nitrogen in the case of the lean flow and thermal equilibrium. In addition, since a tracer gas is often used as a reactive gas, it is necessary to pay attention to the chemical reaction.

【0007】(b)は電子ビームを窒素分子の相互作用
の断面積及び電子ビーム密度等を仮定するため、不正確
であると同時に放電内計測には使用できない。
(B) is inaccurate and cannot be used for in-discharge measurement because the electron beam assumes the cross-sectional area of the interaction between nitrogen molecules and the electron beam density.

【0008】(c)は2個のフォトンを同時に衝突させ
るプロセスであるため、大出力レーザーが必要であり、
コスト面で問題がある。
(C) is a process in which two photons collide at the same time, and therefore requires a high-power laser.
There is a problem in cost.

【0009】本発明は、上記従来技術に鑑み、計測した
い窒素分子の振動、回転状態に関する情報を容易且つ良
好に得ることができる窒素分子励起状態の非接触計測法
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above prior art, an object of the present invention is to provide a method for non-contact measurement of excited states of nitrogen molecules, which can easily and satisfactorily obtain information on vibration and rotation states of nitrogen molecules to be measured. .

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、計測したい窒素分子の振動、回転状態に電
子又は放電により生成した希ガスの準安定状態を衝突さ
せることで、窒素分子イオンの中間状態を生成するとと
もに、これと同時に窒素分子イオンの中間状態をレーザ
光で上位凖位に上げ、再び中間状態とは異なる下位凖位
に落ちる際に発する光を入射するレーザの波長に対して
計測し、この光の発光スペクトルからもとの窒素分子の
振動、回転状態に関する情報を得ることを特徴とする。
According to the structure of the present invention, which achieves the above object, the vibration or rotation of a nitrogen molecule to be measured is caused to collide with a metastable state of an electron or a rare gas generated by electric discharge. The intermediate state of the ion is generated, and at the same time, the intermediate state of the nitrogen molecule ion is raised to the upper level by laser light, and the light emitted when falling to the lower level different from the intermediate state is again adjusted to the wavelength of the incident laser. It is characterized by obtaining information on the vibration and rotation state of the original nitrogen molecule from the emission spectrum of this light.

【0011】[0011]

【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】本形態は次の様な原理に基づくものであ
る。 (1) 中出力以下のレーザーで計測するため、窒素分
子イオン化用として寿命が0.1〜数sec と長い希ガス
(He,Neなど)の準安定状態の衝突によるエネルギ
ー移動を利用する。 (2) 求める発光のみを得るため波長可変レーザーを
用いて窒素分子イオン(N2 + )の励起を行う。 (3) 直接N2 + からの発光を計測する(1st negati
ve 状態)。 (4) 上記(1),(2)を同時に行い、レーザー波
長を変えながらN2 +の上位準位からの発光を計測する。
この結果レーザー波長に対する発光分布から、窒素分子
(N2 )の振動、回転準位が非接触で正確に得られる。
This embodiment is based on the following principle. (1) In order to perform measurement using a laser having a medium output or less, energy transfer due to collision of a metastable state of a rare gas (He, Ne, or the like) having a long lifetime of 0.1 to several seconds is used for ionizing nitrogen molecules. (2) Excitation of nitrogen molecular ions (N 2 + ) is performed using a tunable laser to obtain only the desired emission. (3) Direct measurement of light emission from N 2 + (1st negati
ve state). (4) The above (1) and (2) are performed simultaneously, and the emission from the upper level of N 2 + is measured while changing the laser wavelength.
As a result, the vibration and rotation level of the nitrogen molecule (N 2 ) can be accurately obtained without contact from the emission distribution with respect to the laser wavelength.

【0013】上記原理に基づく本実施の形態を説明す
る。図1は窒素流内にNeを混入し、Neの準安定を生
成する場合の例である。この場合、Neを数%〜数十%
程度混ぜ、数十V以上のエネルギーをもつ粒子ビームを
計測したい点にDC、又はパルスで照射することで希ガ
スの準安定状態を作り、N2との衝突でN2 + の中間状態
2 +(X2 ,Σ+)を生成させる。
This embodiment based on the above principle will be described. FIG. 1 shows an example in which Ne is mixed in a nitrogen stream to generate metastable Ne. In this case, Ne is several% to several tens%.
The degree mixed, DC to the point to be measured the particle beam with a higher energy tens V, or make a metastable state of the rare gas by irradiating a pulse, N in collision with N 2 2 + intermediate state N 2 + (X 2 , Σ + ).

【0014】この中間状態生成と同時に、N2 +(X2
Σ+ ) から上位準位N2 +(B2 ,Σ + )への遷移エネル
ギー付近の波長を持つレーザー光をレーザー波長を一定
の波長幅きざみ(本形態の場合は1pmきざみ)で変化さ
せながら入射する。
At the same time as this intermediate state generation, NTwo +(XTwo,
Σ+) To higher level NTwo +(BTwo, Σ +Transition energy to)
Laser light with a wavelength near the energy
Of the wavelength width (in this embodiment, 1pm)
Incident.

【0015】上記中間状態のエネルギーレベルはN2
基底状態における回転準位レベルに応じて変わるため、
レーザー光による中間状態から上位準位への共鳴遷移
は、回転準位に応じて飛び飛びの波長で生じる。共鳴遷
移が生じれば中間状態とは異なる下位準位N2 +(X2
Σ+)への遷移も生じN2 + から発光が見られる。この場
合の発光スペクトル分布は共鳴遷移条件で強く、もとも
とのN2 分子の回転準位の分布を示しているため、この
光の発光スペクトルに基づきN2 分子の状態を把握す
る。
Since the energy level of the intermediate state changes according to the rotational level in the ground state of N 2 ,
The resonance transition from the intermediate state to the higher level by the laser beam occurs at discrete wavelengths according to the rotational level. If a resonance transition occurs, the lower level N 2 + (X 2 ,
Σ + ) also occurs, and light emission is observed from N 2 + . The emission spectrum distribution in the case is strong at the resonance transition condition, because it represents the rotation level of the distribution of the original N 2 molecule, to grasp the state of the N 2 molecules on the basis of the emission spectrum of the light.

【0016】入射レーザー光の波長を数nm以上ずらすこ
とでN2 の異なる振動状態の計測を行う。この場合の入
射レーザー光は、パルス波、連続波の何れでも良い。
By shifting the wavelength of the incident laser beam by several nm or more, the vibration states of different N 2 are measured. In this case, the incident laser light may be either a pulse wave or a continuous wave.

【0017】粒子ビームによるN2 +の余分な発光の波長
が、計測したい光の波長に近い場合には、粒子ビームを
パルス的に入射して希ガスの準安定状態の寿命が0.1
〜1sec であることを利用し、N2 +の余分な発光がなく
なった後(数十nsec)にレーザー光を照射することで上
記方法を実現する。Neの代わりにHeを用いても同様
の結果が得られる。
When the wavelength of the extra light emission of N 2 + due to the particle beam is close to the wavelength of the light to be measured, the particle beam is pulsated and the life of the metastable state of the rare gas is 0.1.
The above method is realized by irradiating a laser beam after the excess light emission of N 2 + has been eliminated (several tens of nanoseconds), utilizing the fact that it is で あ 1 sec. Similar results can be obtained by using He instead of Ne.

【0018】図2は炭酸ガスレーザー放電管内における
窒素分子の計測方法を示す。同図に示すように、炭酸ガ
スレーザーでは放電調節用としてあらかじめHeが混入
してあり、放電により準安定状態が存在する。そのため
このHe準安定状態でイオン化される窒素分子にレーザ
ー光を照射することで、上記のプロセスと同様に炭酸ガ
スへエネルギーを移す状態にある窒素分子を直接計測す
ることができる。
FIG. 2 shows a method for measuring nitrogen molecules in a carbon dioxide laser discharge tube. As shown in the figure, in a carbon dioxide gas laser, He is mixed in advance for adjusting the discharge, and a metastable state exists due to the discharge. Therefore, by irradiating the laser beam to the nitrogen molecule ionized in the He metastable state, the nitrogen molecule in the state of transferring energy to carbon dioxide gas can be directly measured as in the above-described process.

【0019】かくして従来レーザー発振に重要とされて
いたが、計測できなかった窒素から炭酸ガスへのエネル
ギー遷移状態を直接かつ、流れ等を乱すことなく計測可
能となる。
Thus, the energy transition state from nitrogen to carbon dioxide, which has conventionally been considered important for laser oscillation, but cannot be measured, can be measured directly and without disturbing the flow and the like.

【0020】[0020]

【発明の効果】以上実施の形態とともに詳細に説明した
ように本発明によれば、窒素希薄流,放電管内の流れを
ヨウ素等の反応性物質を用いることなく、希ガスの準安
定状態とレーザー光により直接、窒素流、分子の振動及
び回転状態をモニターできる。
As described in detail with the above embodiments, according to the present invention, the flow of nitrogen in a rare gas and the flow in a discharge tube can be controlled by using a metastable state of a rare gas and a laser without using a reactive substance such as iodine. Light can directly monitor the nitrogen flow, molecular vibrations and rotation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すエネルギー遷移図で
ある。
FIG. 1 is an energy transition diagram showing an embodiment of the present invention.

【図2】炭酸ガスレーザーに応用するときの態様を示す
エネルギー遷移図である。
FIG. 2 is an energy transition diagram showing an embodiment when applied to a carbon dioxide laser.

【符号の説明】[Explanation of symbols]

2 + 窒素分子イオン N2 窒素分子 N2 +(B2 ,Σ+ ) 上位準位 N2 +(X2 ,Σ+) 中間状態 N2 +(X2 ,Σ+) 下位準位N 2 + nitrogen molecular ion N 2 nitrogen molecule N 2 + (B 2 , Σ + ) Upper level N 2 + (X 2 , Σ + ) Intermediate state N 2 + (X 2 , Σ + ) Lower level

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測したい窒素分子の振動、回転状態に
電子又は放電により生成した希ガスの準安定状態を衝突
させることで、窒素分子イオンの中間状態を生成すると
ともに、これと同時に窒素分子イオンの中間状態をレー
ザ光で上位凖位に上げ、再び中間状態とは異なる下位凖
位に落ちる際に発する光を入射するレーザの波長に対し
て計測し、この光の発光スペクトルからもとの窒素分子
の振動、回転状態に関する情報を得ることを特徴とする
窒素分子励起状態の非接触計測方法。
1. An intermediate state of nitrogen molecular ions is generated by colliding a vibration or rotation state of nitrogen molecules to be measured with a metastable state of electrons or a rare gas generated by electric discharge, and simultaneously with the nitrogen molecular ions The intermediate state is raised to a higher level by laser light, and the light emitted when falling again to a lower level different from the intermediate state is measured with respect to the wavelength of the incident laser. From the emission spectrum of this light, the original nitrogen A non-contact measurement method for excited states of nitrogen molecules, wherein information on vibration and rotation states of molecules is obtained.
JP28977796A 1996-10-31 1996-10-31 Non-contact measuring method for excited state of nitrogen molecule Withdrawn JPH10132740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28977796A JPH10132740A (en) 1996-10-31 1996-10-31 Non-contact measuring method for excited state of nitrogen molecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28977796A JPH10132740A (en) 1996-10-31 1996-10-31 Non-contact measuring method for excited state of nitrogen molecule

Publications (1)

Publication Number Publication Date
JPH10132740A true JPH10132740A (en) 1998-05-22

Family

ID=17747633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28977796A Withdrawn JPH10132740A (en) 1996-10-31 1996-10-31 Non-contact measuring method for excited state of nitrogen molecule

Country Status (1)

Country Link
JP (1) JPH10132740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309849A (en) * 2006-05-19 2007-11-29 Japan Science & Technology Agency Detection of oxygen molecule, and quantitation device and method thereof
JPWO2006006628A1 (en) * 2004-07-14 2008-07-31 本田技研工業株式会社 Laser analysis apparatus, laser analysis method, and gas leak inspection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006006628A1 (en) * 2004-07-14 2008-07-31 本田技研工業株式会社 Laser analysis apparatus, laser analysis method, and gas leak inspection apparatus
US7663122B2 (en) 2004-07-14 2010-02-16 Ryugo Hayano Laser analytical instrument, laser analytical method, and gas leak inspection instrument
JP4718468B2 (en) * 2004-07-14 2011-07-06 本田技研工業株式会社 LASER ANALYZER, LASER ANALYSIS METHOD, AND GAS LEAK INSPECTION DEVICE
JP2007309849A (en) * 2006-05-19 2007-11-29 Japan Science & Technology Agency Detection of oxygen molecule, and quantitation device and method thereof

Similar Documents

Publication Publication Date Title
Feldhaus et al. X-ray free-electron lasers
Eikema et al. Lamb shift measurement in the 1 t 1 S ground state of helium
Ben-Kish et al. Plasma dynamics in capillary discharge soft X-ray lasers
Lee et al. Optical pumping studies of vibrational energy transfer in high-pressure diatomic gases
Snyder et al. Determination of gas-temperature and velocity profiles in an argon thermal-plasma jet by laser-light scattering
Hippler et al. Detection and probing of nitric oxide (NO) by two-colour laser photoionisation (REMPI) spectroscopy on the A← X transition
Saleem et al. Laser isotope separation of lithium by two-step photoionization
Webster et al. Infrared laser optogalvanic spectroscopy of molecules
Balling et al. High-resolution VUV spectroscopy of H− in the region near the H (n= 2) threshold
JPH10132740A (en) Non-contact measuring method for excited state of nitrogen molecule
Madsen et al. Measurement of absolute photo-ionization cross sections using magnesium magneto-optical traps
Hanabusa et al. Pulsewidth dependence of ozone interference in the laser fluorescence measurement of OH in the atmosphere
US20080121814A1 (en) Laser Analytical Instrument, Laser Analytical Method, and Gas Leak Inspection Instrument
Levinton et al. Visualization of plasma turbulence with laser-induced fluorescence
Hasegawa et al. Resonance ionization spectroscopy and analysis on even-parity states of Pb I
Schlager et al. A novel experimental method for in situ diagnostics of electrode workfunctions in high-pressure gas discharge lamps during operation
Kishimoto et al. Population dynamics of a CO2 laser studied by coherent anti‐Stokes Raman scattering
DeRose et al. Degenerate four-wave mixing spectroscopy of the (glyoxal) 2 van der Waals complex
Campbell et al. Probing electronic radial wave packets using impulsive momentum retrieval
Campbell et al. Recombination lasing in a magnetoplasmadynamic arcjet
US6472889B1 (en) Apparatus and method for producing an ion channel microprobe
Geng et al. High Rydberg states of the NO molecule studied by two-color four-wave mixing spectroscopy
JP3349258B2 (en) Hydrogen isotope ratio analysis
Tho et al. Fine-structure measurements for negative ions: Studies of Se− and Te−
Gustavsson et al. An efficient method for measuring atomic and molecular lifetimes using a modulated or deflected CW dye laser beam

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106