JPH10132714A - Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain - Google Patents

Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain

Info

Publication number
JPH10132714A
JPH10132714A JP30737696A JP30737696A JPH10132714A JP H10132714 A JPH10132714 A JP H10132714A JP 30737696 A JP30737696 A JP 30737696A JP 30737696 A JP30737696 A JP 30737696A JP H10132714 A JPH10132714 A JP H10132714A
Authority
JP
Japan
Prior art keywords
thickness
wedge
strain
wafer
lattice strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30737696A
Other languages
Japanese (ja)
Inventor
Mitsuharu Yonemura
光治 米村
Kazuto Kamei
一人 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30737696A priority Critical patent/JPH10132714A/en
Publication of JPH10132714A publication Critical patent/JPH10132714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate lattice strain in a thin film sample while taking various crystallographic effect into account by provided a wedge-shaped part where the thickness in the direction vertical to the major surface of an Si water for evaluating lattice strain varies continuously in a rage lower than a specified value thereby controlling the thickness at a part to be measured sufficiently. SOLUTION: The Si wafer for evaluation is machined to have a wedge-shaped part using FIB. In the FIB method, sputtering is performed using a focused Ga ion beam while observing an SIM image. The thickness the direction vertical to the major surface of the Si wafer is varied continuously in the rage from 10nm to 10μm. When the thickness exceeds 10μm, an electron beam does not transmit through the wedge-shaped part and when the thickness is less than 10nm, strain is relaxed excessively to cause difficulties in the measurement. Lattice strain is analyzed by observing variation in the HOLZ pattern obtained by CBED method. According to the method, lattice strain due to variation of film thickness can be measured accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は格子歪み評価用Si
ウエファ、その製造方法及び格子歪みの評価方法に関
し、より詳細には格子歪み評価のための連続的に膜厚が
変化する部位を有するSiウエファ、その製造方法及び
前記部位を利用した格子歪みの評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Si for lattice strain evaluation.
The present invention relates to a wafer, a method for manufacturing the same, and a method for evaluating lattice distortion, and more particularly, to a Si wafer having a part where the film thickness changes continuously for evaluating lattice distortion, a method for manufacturing the same, and evaluation of lattice distortion using the part. About the method.

【0002】[0002]

【従来の技術】近年、電子顕微鏡技術の進歩に伴い、材
料の研究、開発に電子顕微鏡が多用されている。電子顕
微鏡を用いた観察では、膜厚や表面性状などの試料条件
が散乱、結像原理に深く関わってくるため、試料作製技
術は透過型電子顕微鏡(Transmitted Electron Microsc
ope:TEM)関連技術の1つとして注目されている。金
属材料、とりわけ鉄が観察対象であったころは試料薄片
化法として電解研磨法が利用されてきた。しかしながら
エレクトロニクス分野の進展に伴い、観察対象物質がエ
レクトロニクス関連材料、つまり半導体物質、多層膜そ
して電子セラミックスに及ぶと、観察対象、観察目的に
応じてそれぞれ観察手法が異なり、それに伴い試料に要
求される条件も異なってくる。そのため、これら新材料
に対応した新たな薄膜化技術が要求されてきている。例
えば、組織観察を行う場合は一般に低倍率の観察を行う
ため、広い領域で薄い試料を作製しなければらならい。
粒子像を観察する場合は、出来るだけ非弾性散乱の影響
を取り除くため、可能な限り薄い試料を作製しなければ
ならない。TEMによる観察の中でも、収束電子線回折
(Convergent Beam Electron Diffraction: CBED)
法では、鮮明なHOLZ(High Order Laue Zone)線を得
る必要があるため、通常の電子顕微鏡観察試料よりやや
厚めの試料が好ましい。このように観察手法によって好
ましい試料の厚みも異なってくる。また析出物、界面あ
るいは欠陥等を観察する場合は薄膜化領域にそれらが含
まれなければならない。特にエレクトロニクス材料の緻
密化に伴い、選択研磨(選択的薄膜化)の必要性がでて
きている。しかしながら従来の研磨法では局所的、選択
的な薄膜化は不可能であり、見たいところを見るという
よりは見えるところを見てきた。
2. Description of the Related Art In recent years, with the advance of electron microscope technology, electron microscopes are frequently used for research and development of materials. In observation using an electron microscope, sample conditions such as film thickness and surface properties are closely related to scattering and imaging principles. Therefore, the sample preparation technology is a transmission electron microscope (Transmitted Electron Microsc
ope: TEM) is attracting attention as one of related technologies. When a metal material, particularly iron, was observed, an electrolytic polishing method has been used as a sample slicing method. However, with the progress of the electronics field, if the observation target material covers electronics-related materials, that is, semiconductor materials, multilayer films, and electronic ceramics, the observation method differs depending on the observation target and observation purpose, and the sample is required accordingly. Conditions are different. Therefore, a new thin film forming technology corresponding to these new materials is required. For example, when observing a tissue, generally, a low-magnification observation is performed, so that a thin sample must be prepared in a wide area.
When observing a particle image, it is necessary to prepare a sample as thin as possible to remove the effect of inelastic scattering as much as possible. Among TEM observations, Convergent Beam Electron Diffraction (CBED)
In the method, since it is necessary to obtain a clear HOLZ (High Order Laue Zone) line, a sample slightly thicker than a normal electron microscope observation sample is preferable. As described above, the preferable thickness of the sample varies depending on the observation method. When observing precipitates, interfaces, defects, and the like, they must be included in the thinned region. In particular, with the densification of electronic materials, the necessity of selective polishing (selective thinning) has emerged. However, local and selective thinning is not possible with conventional polishing methods, and we have seen what we see rather than what we want to see.

【0003】また、材料の最適な研磨法は対象材料によ
りそれぞれ異なる。例えばバルクのSiのような材料は
化学研磨法で作製することが好ましい。またSiと同じ
く電気伝導性の低い材料でも劈開性のあるものは劈開法
で作製した方が良い。またこのほかにも材料が鉄鋼等で
ある場合は、抽出レプリカ法などで作製し、微細析出物
観察に利用することもある。しかしながら多層膜など多
種の原子により複雑に構成されている材料は、膜の構成
物質によりスパッタレートも異なり、均一的薄膜化が困
難である。
[0003] The optimum polishing method for a material differs depending on the target material. For example, a material such as bulk Si is preferably manufactured by a chemical polishing method. Even if the material has a low electrical conductivity like Si and has a cleavage, it is better to prepare the material by a cleavage method. In addition, when the material is steel or the like, it may be produced by an extraction replica method or the like and used for observation of fine precipitates. However, a material such as a multi-layered film, which is complicatedly composed of various types of atoms, has a different sputter rate depending on the constituent materials of the film, and it is difficult to achieve a uniform thin film.

【0004】その他、試料薄膜化技術としてはイオン研
磨法、ミクロトーム法などもあり、種々の作製技術が様
々な材料に適用されている。しかしながらこれらの試料
作製法では試料を任意の形状に加工することは、マイク
ロメータ領域の特定箇所を対象として薄膜化することが
できない点から不可能である。また従来の方法ではバル
ク状態の格子歪みを実験的に推測することも困難であっ
た。
Other techniques for thinning a sample include an ion polishing method and a microtome method, and various manufacturing techniques have been applied to various materials. However, it is impossible to process a sample into an arbitrary shape by using these sample manufacturing methods because a thin film cannot be formed at a specific portion in a micrometer region. In addition, it is difficult to experimentally estimate the lattice strain in the bulk state by the conventional method.

【0005】[0005]

【発明が解決しようとする課題】Siウエファ中の特定
箇所の局所歪みの測定にはTEM観察が適しており、例
えばチョクラルスキー法を用いて成長させて製造したS
iウエファ中の酸素析出物近傍における歪みの解析など
に、前記CBED法を利用し、定量解析を試みた例があ
る(Electron Microscopy. Volume 2. EUREM 92, Grana
da, Spain,(1992)Okuyama T. etc., p.157-158 )。し
かしながらその試料は従来のイオン研磨法を用いて作製
されており、被測定部分の厚みを十分に制御できていな
いため、薄膜化による歪みの解放、膜厚の影響など、薄
膜試料における種々の結晶学的効果を考慮することが困
難であった。
TEM observation is suitable for measuring local strain at a specific location in a Si wafer. For example, an S wafer grown by using the Czochralski method is manufactured.
The CBED method was used to analyze the strain near the oxygen precipitate in the i-wafer, and quantitative analysis was attempted (Electron Microscopy. Volume 2. EUREM 92, Grana
da, Spain, (1992) Okuyama T. etc., p.157-158). However, the sample is manufactured using the conventional ion polishing method, and the thickness of the portion to be measured cannot be sufficiently controlled. It was difficult to consider the biological effects.

【0006】本発明は上記課題に鑑みなされたものであ
って、被測定部分の厚みが十分制御され、薄膜化による
歪みの解放、膜厚の影響など、薄膜試料における種々の
結晶学的効果を考慮することができる格子歪み評価用S
iウエファ、その製造方法及び格子歪みの評価方法を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and the thickness of a portion to be measured is sufficiently controlled, and various crystallographic effects in a thin film sample such as the release of distortion due to thinning and the influence of the film thickness are eliminated. S for lattice distortion evaluation that can be considered
It is an object of the present invention to provide an i-wafer, a method for manufacturing the same, and a method for evaluating lattice distortion.

【0007】[0007]

【課題を解決するための手段及びその効果】上記目的を
達成するために本発明に係る格子歪み評価用Siウエフ
ァは、格子歪み評価用のSiウエファであって、ウエフ
ァ主面に対する垂直方向の厚みが10nm以上10μm
以下の範囲で連続的に変化するくさび形部位を有してい
ることを特徴としている。
In order to achieve the above object, a Si wafer for evaluating lattice strain according to the present invention is a Si wafer for evaluating lattice strain, and has a thickness in a direction perpendicular to a principal surface of the wafer. Is 10 nm or more and 10 μm
It is characterized by having a wedge-shaped portion that changes continuously in the following range.

【0008】上記格子歪み評価用Siウエファによれ
ば、厚みが連続的に変化する断面形状くさび形部位を有
しているので、膜厚の変化による歪みの変化の測定が可
能であり、薄膜化による歪みの解放、厚みの影響を考慮
し、バルク状態の歪みを推定することが可能となる。試
料の厚みが10μmを超えると、電子線が試料を透過し
にくくなり、歪みの測定が不可能になる一方、試料の厚
みが10nm未満になると、薄膜化による歪みの解放が
大きくなりすぎ、適正な歪みの測定が困難となる。
According to the above-mentioned lattice distortion evaluation Si wafer, since the cross-sectional wedge-shaped portion having a continuously changing thickness is provided, it is possible to measure the change in the strain due to the change in the film thickness. It is possible to estimate the strain in the bulk state in consideration of the release of the strain due to the influence of the thickness. If the thickness of the sample exceeds 10 μm, it becomes difficult for the electron beam to penetrate the sample, making it impossible to measure the strain. On the other hand, if the thickness of the sample is less than 10 nm, the release of the strain due to thinning becomes too large, and It becomes difficult to measure a large distortion.

【0009】また、本発明に係る格子歪み評価用Siウ
エファの製造方法は、上記格子歪み評価用Siウエファ
における前記くさび形部位の形成に集束イオンビームを
用いることを特徴としている。
Further, a method of manufacturing a lattice distortion evaluation Si wafer according to the present invention is characterized in that a focused ion beam is used for forming the wedge-shaped portion in the lattice distortion evaluation Si wafer.

【0010】試料の加工に集束イオンビーム(Focused
Ion Beam: FIB)を用いれば、前記くさび形部位をS
iウエファ中に容易に形成することができる。FIB法
ではイオンビームを数nmまで絞り込み、走査イオン顕
微鏡(Scanning Ion Microscope:SIM)像で加工状況
を観察しながらスパッタすることが可能であり、サブミ
クロンオーダーの特定領域に、狙い撃ち的にかつ迅速に
選択的薄膜加工処理を施すことができる。
[0010] Focused ion beam (Focused
If Ion Beam (FIB) is used, the wedge-shaped part
It can be easily formed in i-wafer. In the FIB method, the ion beam can be narrowed down to several nanometers, and sputtering can be performed while observing the processing status with a scanning ion microscope (SIM) image. Can be subjected to selective thin film processing.

【0011】また、本発明に係る格子歪みの評価方法は
上記格子歪み評価用Siウエファにおけるくさび形部位
に、収束電子線回析法を適用し、Siウエファにおける
格子歪みを検出することを特徴としている。
Further, the method for evaluating lattice distortion according to the present invention is characterized in that a focused electron beam diffraction method is applied to a wedge-shaped portion in the Si wafer for lattice distortion evaluation to detect lattice distortion in the Si wafer. I have.

【0012】TEM観察には試料を薄膜化する必要があ
り、薄膜試料中に存在する歪みは、バルク状態中に存在
する歪みと比較すると、薄膜化によってある程度解放さ
れてしまう。
[0012] For TEM observation, it is necessary to thin the sample, and the strain existing in the thin film sample is released to some extent by the thinning as compared with the strain existing in the bulk state.

【0013】従来の試料作製法では試料をほぼ均一に薄
膜化してしまい、したがって歪みの解放の影響などを考
慮することは困難であった。上記格子歪みの評価方法に
よれば連続的厚み変化を有するくさび形部位を試料中に
作製しておき、CBED法により観察することにより、
膜厚変化による歪みの変化を測定し、歪みの解放、厚み
の影響を考慮したバルク状態の歪みを推定することがで
きる。
In the conventional sample preparation method, the sample is thinned almost uniformly, so that it is difficult to consider the effect of releasing strain. According to the evaluation method of the lattice strain, a wedge-shaped portion having a continuous thickness change is prepared in a sample, and observed by a CBED method.
By measuring a change in strain due to a change in film thickness, it is possible to estimate strain in a bulk state in consideration of the release of strain and the effect of thickness.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る格子歪み評価
用Siウエファ、その製造方法及び格子歪みの評価方法
の実施の形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a lattice distortion evaluation Si wafer, a method for manufacturing the same, and a lattice distortion evaluation method according to the present invention will be described below with reference to the drawings.

【0015】実施の形態に係る歪み評価用Siウエファ
はFIBを用いてくさび形部位を有するように加工され
る。FIB法はSIM像で観察しながら集束させたGa
イオンビーム等を用いてスパッタリングする。またサン
プルステージを傾斜させることにより様々な形態に薄膜
加工することが可能であり、くさび形部位の傾斜角度は
サンプルステージの傾斜により設定する。
The strain evaluation Si wafer according to the embodiment is processed to have a wedge-shaped portion using FIB. In the FIB method, Ga focused while observing with a SIM image is used.
Sputtering is performed using an ion beam or the like. In addition, it is possible to process the thin film into various forms by inclining the sample stage, and the inclination angle of the wedge-shaped portion is set by the inclination of the sample stage.

【0016】通常FIB加工は粗削り、中処理、仕上げ
処理の3段階で行う。各段階における好ましいビーム電
流値、スパッタ面積、ビーム径の範囲を下記の表1にま
とめておく。
Normally, FIB processing is performed in three stages: rough cutting, intermediate processing, and finishing processing. Table 1 below summarizes the preferable beam current value, sputtering area, and beam diameter range in each stage.

【0017】[0017]

【表1】 [Table 1]

【0018】また、長時間に及びFIBによる加工は振
動に起因した加工位置のずれ、ビームの不安定性に起因
したフォーカスのずれ等を引き起こすことがあり、仕上
げ処理は30分以内におさめることが望ましい。また、
損傷し易い試料、または0.2nm程度の分解能を必要
とする試料においては、FIBによる加工の後、イオン
ミリング装置を用いた低エネルギーArイオンによるス
パッタ(クリーニング)を行うことが望ましい。
Further, the processing by FIB for a long time may cause a shift of a processing position due to vibration, a shift of a focus due to instability of a beam, and the like, and it is desirable to finish the finishing processing within 30 minutes. . Also,
For a sample that is easily damaged or a sample that requires a resolution of about 0.2 nm, it is desirable to perform sputtering (cleaning) with low-energy Ar ions using an ion milling device after processing by FIB.

【0019】また、Siウエファ主面に対する垂直方向
の厚みの変化の範囲が10μmを超えると、電子線が前
記くさび形部位を透過しなくなり、他方、前記変化の範
囲が10nm未満では、薄膜化による影響が大きく、歪
みの解放が大きくなりすぎ、歪みの測定が困難になる。
If the range of the change in the thickness in the direction perpendicular to the main surface of the Si wafer exceeds 10 μm, the electron beam will not pass through the wedge-shaped portion, while if the range of the change is less than 10 nm, the thickness will be reduced. The effect is so great that the strain release becomes too large, making the strain measurement difficult.

【0020】形成されたくさび形部位における格子歪み
の解析はCBED法によりCBED図形中に存在するH
OLZ(Higher Order Laue Zone)パターンの変化を観察
することにより行う。
The analysis of the lattice distortion in the formed wedge-shaped portion is performed by the CBED method using H existing in the CBED figure.
This is performed by observing a change in an OLZ (Higher Order Laue Zone) pattern.

【0021】CBED法による歪み分布解析法を以下に
示す。
A method of analyzing the strain distribution by the CBED method will be described below.

【0022】局所領域を定量的に解析可能なCBED法
を用い図1に示したフローチャートで歪みを定量化す
る。実際は運動学近似されたHOLZパターンシミュレ
ーションを利用し、観察像と計算パターンとの比較から
歪みを定量化する。HOLZパターンシミュレーション
に必要なパラメータは図1(a)に示したように格子定
数、実効加速電圧、結晶系、格子型、入射方位である。
Using the CBED method capable of quantitatively analyzing the local region, the distortion is quantified according to the flowchart shown in FIG. Actually, the distortion is quantified by comparing the observed image and the calculated pattern by using a holographically approximated HOLZ pattern simulation. The parameters necessary for the HOLZ pattern simulation are a lattice constant, an effective acceleration voltage, a crystal system, a lattice type, and an incident direction, as shown in FIG.

【0023】(i)実効加速電圧の決定 HOLZパターンシミュレーションを利用し、図1
(b)のフローチャートに示したように観察する加速電
圧近傍で電圧を微小に変化させ、敏感なHOLZパター
ンの変化をプロファイルし、図2に示したような加速電
圧の検定曲線を作成する(ステップ1)。次に歪みのな
い部分でHOLZパターンの観察を行う(ステップ
2)。次にステップ1で作成した検定曲線(計算値)
と、ステップ2で観察されたHOLZパターンとを比較
し(ステップ3)、実効加速電圧を決定する(ステップ
4)。
(I) Determination of Effective Acceleration Voltage Using the HOLZ pattern simulation, FIG.
As shown in the flowchart of (b), the voltage is minutely changed in the vicinity of the acceleration voltage to be observed, the change in the sensitive HOLZ pattern is profiled, and a calibration curve of the acceleration voltage as shown in FIG. 2 is created (step). 1). Next, the HOLZ pattern is observed in a portion having no distortion (step 2). Next, the test curve (calculated value) created in step 1
Is compared with the HOLZ pattern observed in Step 2 (Step 3), and the effective acceleration voltage is determined (Step 4).

【0024】(ii)歪みの検出 図1(c)のフローチャートに示したように前記実効加
速電圧値を用い、HOLZパターンシミュレーションを
利用し、目的の方位の格子定数を変化させる。次にHO
LZパターンのずれをプロファイルし、図3に示したよ
うな歪みの検定曲線を作成する(ステップ6、図1
(c))。作成した歪みの検定曲線を用い、実際に酸素
析出物近傍で観察したHOLZパターンとのずれから対
応する格子歪み量を得る(ステップ7、ステップ8)。
それらをプロットして歪み曲線を作図し(ステップ
9)、歪みを検出する(ステップ10)。
(Ii) Distortion detection As shown in the flowchart of FIG. 1C, the lattice constant of the target orientation is changed using the effective acceleration voltage value and the HOLZ pattern simulation. Next, HO
The displacement of the LZ pattern is profiled to create a distortion test curve as shown in FIG. 3 (step 6, FIG. 1).
(C)). Using the created strain test curve, the corresponding lattice strain is obtained from the deviation from the HOLZ pattern actually observed near the oxygen precipitate (steps 7 and 8).
These are plotted to draw a distortion curve (step 9), and distortion is detected (step 10).

【0025】上記したCBED法を用い、CBED図形
中に存在するHOLZパターンの変化を解析することに
より、高精度に厚みの変化、局所領域における微小格子
歪みを測定することが可能である。
By analyzing the change of the HOLZ pattern existing in the CBED figure using the CBED method described above, it is possible to measure the change in thickness and the minute lattice distortion in a local region with high accuracy.

【0026】(iii) 膜厚と歪み量との関係の評価 次にくさび形部位における厚みの異なる多数の場所それ
ぞれで、上記した方法により微小格子歪みを検出し、歪
み量と膜厚との関係を求める。
(Iii) Evaluation of Relationship between Film Thickness and Strain Amount Next, at each of a large number of locations having different thicknesses in the wedge-shaped portion, fine lattice strain is detected by the above-described method, and the relationship between the strain amount and the film thickness is determined. Ask for.

【0027】このように厚み変化に伴う格子歪みの変化
を測定することにより、歪み解放の効果を考慮すること
ができる。
By measuring the change in lattice strain due to the change in thickness, the effect of strain relief can be considered.

【0028】実施の形態に係る格子歪み評価用Siウエ
ファの製造方法によれば、SIM像で観察しながら集束
させたGaイオンビーム等を用いてスパッタリングする
ため、サブミクロンオーダーの特定領域に、高精度に、
かつ迅速に薄膜加工処理を施すことができる。また、前
記くさび形部位を形成することも、サンプルステージを
傾斜させることにより、任意のくさび角で容易に行うこ
とができる。
According to the method for manufacturing a lattice distortion evaluation Si wafer according to the embodiment, sputtering is performed using a Ga ion beam or the like focused while observing with a SIM image. For accuracy,
In addition, thin film processing can be performed quickly. Further, the formation of the wedge-shaped portion can be easily performed at an arbitrary wedge angle by inclining the sample stage.

【0029】そして、連続的に膜厚が変化する前記くさ
び形部位にCBED法を適用することにより、膜厚変化
に伴う格子歪みの測定を精度良く実施することができ、
歪みの解放に対する膜厚の影響を考慮し、バルク状態に
おける格子歪みを推定することができる。
Then, by applying the CBED method to the wedge-shaped portion where the film thickness changes continuously, it is possible to accurately measure the lattice distortion accompanying the film thickness change,
Taking into account the effect of the film thickness on the release of the strain, the lattice strain in the bulk state can be estimated.

【0030】[0030]

【実施例および比較例】以下、本発明に係る格子歪み評
価用Siウエファ、その製造方法及び格子歪みの評価方
法の実施例としてCZ−Siウエファにおける酸素析出
物近傍の歪みの評価について説明する。
EXAMPLES AND COMPARATIVE EXAMPLES The evaluation of strain near oxygen precipitates in a CZ-Si wafer will be described below as an example of a Si strain for evaluating lattice strain, a method for manufacturing the same, and a method for evaluating lattice strain according to the present invention.

【0031】(1)連続的に膜厚が変化するくさび形部
位を有する試料の作製 試料は焼鈍条件800℃×700hで作製された酸素析
出物を含むSiウエファである。この焼鈍条件で生成す
る酸素析出物の大きさは約0.5μmである。また前記
酸素析出物を含むくさび形部位の作製はFIBを用いて
行った。
(1) Preparation of a sample having a wedge-shaped part whose film thickness changes continuously The sample is a Si wafer containing oxygen precipitates prepared at 800 ° C. for 700 hours under annealing conditions. The size of the oxygen precipitate generated under these annealing conditions is about 0.5 μm. The wedge-shaped portion containing the oxygen precipitate was produced using FIB.

【0032】まず、CZ−Siウエファを平行研磨機に
かけて膜厚を約20μm以下にする。つぎにFIBを用
いてくさび形部位を作製する。くさびの最適角度は観察
対象によって異なる。本実施例では約15度とした。図
4にくさび形部位近傍の模式的斜視図を示す。図5にく
さび形部位近傍のSIM像を示す。
First, the CZ-Si wafer is polished with a parallel polishing machine to reduce the film thickness to about 20 μm or less. Next, a wedge-shaped portion is formed using FIB. The optimum angle of the wedge differs depending on the observation target. In this embodiment, the angle is set to about 15 degrees. FIG. 4 shows a schematic perspective view near the wedge-shaped portion. FIG. 5 shows a SIM image near the wedge-shaped portion.

【0033】図4における辺Aの長さ(FIB加工で奥
行きにあたる)を約5μmとし、辺Bの長さを約3μ
m、傾斜角θを上記したように約15度とした。
In FIG. 4, the length of side A (which corresponds to the depth in FIB processing) is about 5 μm, and the length of side B is about 3 μm.
m and the inclination angle θ were set to about 15 degrees as described above.

【0034】下記の表2に示した条件で、粗削り、中処
理、仕上げ処理を行った。
Under the conditions shown in Table 2 below, rough cutting, intermediate treatment, and finish treatment were performed.

【0035】[0035]

【表2】 [Table 2]

【0036】仕上げ処理におけるラインスキャンは、試
料を±3度傾斜させて行った。その後、イオンミリング
装置を用いてArイオンによるスパッタ(クリーニン
グ)を施した。
The line scan in the finishing process was performed by inclining the sample by ± 3 degrees. Thereafter, sputtering (cleaning) using Ar ions was performed using an ion milling device.

【0037】(2)歪みおよび膜厚の評価 前述のCBED法により[001]近傍において2波条
件で現れるコントラストの間隔から膜厚を決定し、膜厚
の連続性を評価した。また同方法により微小歪みを検出
した。使用したTEMはLaB6 フィラメントを搭載し
た分析電子顕微鏡JEM−3010(日本電子製)であ
り、TEM観察時の電子線加速電圧を200kVとし、
CBED法における収束電子線のスポットサイズを15
nmとした。
(2) Evaluation of Distortion and Film Thickness The film thickness was determined from the contrast interval appearing in the vicinity of [001] under the two-wave condition by the CBED method, and the continuity of the film thickness was evaluated. Micro-strain was also detected by the same method. TEM used was analytical electron microscope JEM-3010 equipped with a LaB 6 filament (manufactured by JEOL), the electron beam acceleration voltage at the time of TEM observation and 200 kV,
The spot size of the focused electron beam in the CBED method is set to 15
nm.

【0038】(a)HOLZパターン作図のパラメータ ・格子定数 :0.54305nm ・加速電圧 :200kV ・結晶系 :Diamond ・格子系 :Cubic ・入射方位 :[012] (b)実効加速電圧の決定 図2に示した加速電圧の検定曲線を作成し、図1(b)
に示したフローチャートに基づいて実効加速電圧を19
9.98kVと決定した。
(A) Parameters for HOLZ pattern drawing Lattice constant: 0.54305 nm Acceleration voltage: 200 kV Crystal system: Diamond Bonding system: Cubic Incident direction: [012] (b) Determination of effective acceleration voltage A calibration curve of the acceleration voltage shown in FIG.
Based on the flowchart shown in FIG.
It was determined to be 9.98 kV.

【0039】(c)実効加速電圧199.98kVで格
子定数を変化させ、図3に示した歪みの検定曲線を作図
した。そしてくさび形部位における厚みの異なる測定点
でそれぞれHOLZパターンを観察し、それぞれの測定
点における歪みを図1(c)に示したフローチャートに
基づいて検出した。
(C) The lattice constant was changed at an effective acceleration voltage of 199.98 kV, and a strain test curve shown in FIG. 3 was drawn. Then, the HOLZ patterns were observed at measurement points having different thicknesses in the wedge-shaped portion, and distortion at each measurement point was detected based on the flowchart shown in FIG.

【0040】(3)測定結果 図6に膜厚変化の測定結果を示す。(3) Measurement Results FIG. 6 shows the measurement results of the film thickness change.

【0041】縦軸に膜厚をとり、横軸に測定間隔をとっ
ている。近似直線を引くと、各測定点はほぼ直線にの
り、非常に膜の連続性が良いことを確認できた。図7は
くさび形部位の先端部を示すTEM像であるが、等厚干
渉縞が等間隔に現れ、視覚的にも膜厚の連続性の良好さ
を確認することができた。
The vertical axis indicates the film thickness, and the horizontal axis indicates the measurement interval. When an approximate straight line was drawn, each measurement point was almost a straight line, confirming that the continuity of the film was very good. FIG. 7 is a TEM image showing the tip of the wedge-shaped portion. Equal-thickness interference fringes appeared at equal intervals, and good continuity of the film thickness could be visually confirmed.

【0042】今回測定したCZ−Siウエファ中の酸素
析出物近傍の明視野像を図8に示す。酸素析出物の大き
さは約0.5μmであった。酸素析出物周辺にBend Con
tourが現れている。板状の酸素析出物に対し、垂直な方
向[100]に4点測定した結果を示す。図中a〜gは
それぞれ酸素析出物から垂直方向に200nm、300
nm、380nm、560nm、平行方向に150n
m、200nm、400nmの距離の点を示している。
これらの点の記録は多重露光を利用した。
FIG. 8 shows a bright field image near the oxygen precipitate in the CZ-Si wafer measured this time. The size of the oxygen precipitate was about 0.5 μm. Bend Con around the oxygen precipitate
tour is appearing. The result of measuring four points in the direction [100] perpendicular to the plate-like oxygen precipitate is shown. In the figure, a to g are respectively 200 nm and 300 nm in the vertical direction from the oxygen precipitate.
nm, 380 nm, 560 nm, 150 n in parallel direction
Points at distances of m, 200 nm, and 400 nm are shown.
The recording of these points utilized multiple exposures.

【0043】酸素析出物に対する垂直方向を評価した。
図9(a)〜(d)は図8における測定点a〜dに対応
している。
The direction perpendicular to the oxygen precipitate was evaluated.
9A to 9D correspond to the measurement points a to d in FIG.

【0044】図9中のHOLZパターンの変化に注目す
ると、酸素析出物に対する垂直方向では(a)から
(d)にいくにしたがって(酸素析出物から垂直方向に
遠ざかるにしたがって){1113}ラインの交点(矢
印)が下方に移動している。
Looking at the change in the HOLZ pattern in FIG. 9, in the vertical direction with respect to the oxygen precipitates, as (a) goes from (a) to (d) (as it moves away from the oxygen precipitates in the vertical direction), the {1113} line The intersection (arrow) has moved downward.

【0045】図1(c)に示したフローチャートに従
い、歪みを定量化した結果を図10に示す。曲線はガウ
ス関数による近似曲線である。ここで酸素析出物に対し
て垂直方向に発生する圧縮場に注目した。くさび形部位
における厚みの異なる場所でそれぞれ格子歪みを得、酸
素析出物とSiマトリックスの界面との距離に関する歪
み量と、測定点における膜厚との関係を図11に示し
た。測定位置の膜厚は先程と同様にCBED法の2波条
件パターンで決定した。この図11から明らかなよう
に、厚みの変化に伴い、歪みは微妙に変化している。通
常、CBED法による測定に適した厚みは0.3μm程
度で、従来のTEM観察による場合よりもやや厚めの部
位である。その点を考慮し、0.3μmの膜厚でみる
と、本実施例で使用した試料について格子歪みは100
×(5.4478−5.4468)/5.43051≒
1.8≒2となり、(5.4305はSiの格子定数、
5.4478はSiの格子定数×1.0032(グラフ
より歪みが解放していない場合のSiの格子定数)、
5.4468はSiの格子定数×1.0030(グラフ
より通常の観察する膜厚0.3μmの場合のSiの格子
定数))2%程度解放されていることが判明した。
FIG. 10 shows the result of quantifying the distortion in accordance with the flowchart shown in FIG. 1 (c). The curve is an approximate curve by a Gaussian function. Here, attention was paid to a compression field generated in a direction perpendicular to the oxygen precipitate. Lattice strains were obtained at different places in the wedge-shaped portion at different thicknesses, and the relationship between the amount of strain related to the distance between the oxygen precipitate and the interface of the Si matrix and the film thickness at the measurement point is shown in FIG. The film thickness at the measurement position was determined by the two-wave condition pattern of the CBED method in the same manner as described above. As is apparent from FIG. 11, the distortion is slightly changed with the change in the thickness. Usually, the thickness suitable for the measurement by the CBED method is about 0.3 μm, which is a slightly thicker portion than that in the conventional TEM observation. Considering that point, when the film thickness is 0.3 μm, the lattice strain of the sample used in this example is 100 μm.
× (5.4478-5.4468) /5.43051≒
1.8 ≒ 2, where (5.4305 is the lattice constant of Si,
5.4478 is the lattice constant of Si x 1.0032 (Si lattice constant when strain is not released from the graph),
It was found that 5.4468 was released by about 2% of the lattice constant of Si × 1.030 (the lattice constant of Si in the case of a film thickness of 0.3 μm that is normally observed from the graph)).

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はHOLZパターン作図に用いられるパ
ラメータを示したブロック図、(b)は実効加速電圧決
定のためのフローチャート、(c)は歪み検出のための
フローチャートである。
1A is a block diagram showing parameters used for drawing a HOLZ pattern, FIG. 1B is a flowchart for determining an effective acceleration voltage, and FIG. 1C is a flowchart for detecting distortion.

【図2】加速電圧の検定曲線を示すグラフである。FIG. 2 is a graph showing a test curve of an acceleration voltage.

【図3】歪みの検定曲線を示すグラフである。FIG. 3 is a graph showing a distortion test curve.

【図4】試料のくさび形部位近傍を示す部分拡大斜視図
である。
FIG. 4 is a partially enlarged perspective view showing the vicinity of a wedge-shaped portion of a sample.

【図5】試料のくさび形部位近傍を示す走査イオン顕微
鏡写真である。
FIG. 5 is a scanning ion micrograph showing the vicinity of a wedge-shaped portion of a sample.

【図6】くさび形部位における測定間隔と膜厚との関係
を示すグラフである。
FIG. 6 is a graph showing a relationship between a measurement interval and a film thickness in a wedge-shaped portion.

【図7】くさび形部位を示す電子顕微鏡写真である。FIG. 7 is an electron micrograph showing a wedge-shaped portion.

【図8】酸素析出物近傍を示す電子顕微鏡写真である。FIG. 8 is an electron micrograph showing the vicinity of an oxygen precipitate.

【図9】(a)〜(d)は酸素析出物に対して垂直方向
に変化させた場合のHOLZパターンを示す図である。
FIGS. 9A to 9D are diagrams showing HOLZ patterns when changed in a direction perpendicular to oxygen precipitates.

【図10】酸素析出物とSiマトリクスとの距離と、格
子歪みとの関係を示したグラフである。
FIG. 10 is a graph showing a relationship between a distance between an oxygen precipitate and a Si matrix and lattice distortion.

【図11】膜厚と格子歪み量との関係を示したグラフで
ある。
FIG. 11 is a graph showing the relationship between the film thickness and the amount of lattice distortion.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 格子歪み評価用のSiウエファであっ
て、ウエファ主面に対する垂直方向の厚みが10nm以
上10μm以下の範囲で連続的に変化するくさび形部位
を有していることを特徴とする格子歪み評価用Siウエ
ファ。
1. A Si wafer for evaluating lattice distortion, wherein the Si wafer has a wedge-shaped portion whose thickness in a direction perpendicular to a main surface of the wafer continuously changes in a range of 10 nm or more and 10 μm or less. Si wafer for lattice distortion evaluation.
【請求項2】 前記くさび形部位の形成に集束イオンビ
ームを用いることを特徴とする請求項1記載の格子歪み
評価用Siウエファの製造方法。
2. The method according to claim 1, wherein a focused ion beam is used for forming the wedge-shaped portion.
【請求項3】 請求項1記載の格子歪み評価用Siウエ
ファのくさび形部位に、収束電子線回析法を適用し、S
iウエファにおける格子歪みを検出することを特徴とす
る格子歪みの評価方法。
3. A convergent electron beam diffraction method is applied to the wedge-shaped portion of the Si wafer for lattice strain evaluation according to claim 1,
A lattice distortion evaluation method characterized by detecting lattice distortion in an i-wafer.
JP30737696A 1996-10-31 1996-10-31 Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain Pending JPH10132714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30737696A JPH10132714A (en) 1996-10-31 1996-10-31 Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30737696A JPH10132714A (en) 1996-10-31 1996-10-31 Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain

Publications (1)

Publication Number Publication Date
JPH10132714A true JPH10132714A (en) 1998-05-22

Family

ID=17968322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30737696A Pending JPH10132714A (en) 1996-10-31 1996-10-31 Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain

Country Status (1)

Country Link
JP (1) JPH10132714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042461A (en) * 2010-07-30 2012-03-01 Universitaet Ulm Tem-lamella, process for manufacturing the same, and apparatus executing the process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042461A (en) * 2010-07-30 2012-03-01 Universitaet Ulm Tem-lamella, process for manufacturing the same, and apparatus executing the process
US9103753B2 (en) 2010-07-30 2015-08-11 Carl Zeiss Microscopy Gmbh TEM-lamella, process for its manufacture, and apparatus for executing the process

Similar Documents

Publication Publication Date Title
Sneddon et al. Transmission Kikuchi diffraction in a scanning electron microscope: A review
JP3485707B2 (en) Method for preparing flat sample for transmission electron microscope and method for measuring defects by transmission electron microscope
EP2351063B1 (en) Method and device for high throughput crystal structure analysis by electron diffraction
CN111289546B (en) Preparation and characterization method of precious metal superfine wire EBSD test sample
EP1144989B1 (en) Nanotomography
Castle et al. Characterization of surface topography by SEM and SFM: problems and solutions
Scipioni et al. Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope
Vermeij et al. Preventing damage and redeposition during focused ion beam milling: the “umbrella” method
Krueger Dual-column (FIB–SEM) wafer applications
Li Advanced techniques in TEM specimen preparation
JPH10132714A (en) Silicon wafer for evaluating lattice strain, production method thereof, and evaluation method for lattice strain
JP2003007241A (en) Common sample holder for scanning electron microscope and focused-ion beam device, and sample-preparation method for transmission electron microscope
Ahmed et al. Study of dislocation structures near fatigue cracks using electron channelling contrast imaging technique (ECCI)
Tuggle et al. Electron backscatter diffraction of Nb3Sn coated niobium: Revealing structure as a function of depth
LEE et al. Post‐thinning using Ar ion‐milling system for transmission electron microscopy specimens prepared by focused ion beam system
US3447366A (en) Process of determining dimensions and properties of cutting edges of molecular dimensions
KR20180096527A (en) A method and apparatus for transmission electron microscopy
Yabusaki et al. Specimen preparation technique for microstructure analysis using focused ion beam process
Sitzman Introduction to EBSD analysis of micro-to nanoscale microstructures in metals and ceramics
JP3104640B2 (en) Method for detecting defect in semiconductor substrate, method for preparing sample and method for observing defect
Reyntjens et al. Scanning/transmission electron microscopy and dual-beam sample preparation for the analysis of crystalline materials
JP2000310585A (en) Formation for thin film sample for transmission type electron microscopic observation
TWI752679B (en) Test specimen for electron microscope and manufacturing method thereof
Berger et al. A novel method for specimen preparation and analysis of CVD diamond coated tools using focussed ion beams (FIB) and scanning electron microscopy (SEM)
Gauzzi et al. Electron backscatter diffraction (EBSD) sample preparation revisited: integrating traditional methods and new techniques in the last three decades