JPH10132511A - Monitoring device for remaining quantity of stock coal - Google Patents

Monitoring device for remaining quantity of stock coal

Info

Publication number
JPH10132511A
JPH10132511A JP28643696A JP28643696A JPH10132511A JP H10132511 A JPH10132511 A JP H10132511A JP 28643696 A JP28643696 A JP 28643696A JP 28643696 A JP28643696 A JP 28643696A JP H10132511 A JPH10132511 A JP H10132511A
Authority
JP
Japan
Prior art keywords
coal
electromagnetic wave
density
height
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28643696A
Other languages
Japanese (ja)
Inventor
Tsuyotoshi Yamaura
剛俊 山浦
Hirohisa Yoshida
博久 吉田
Tetsuo Shigemizu
哲郎 重水
Tomoyoshi Baba
智義 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28643696A priority Critical patent/JPH10132511A/en
Publication of JPH10132511A publication Critical patent/JPH10132511A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure the quantity of remaining coal in a coal preservatory at a mass-base. SOLUTION: An light wave sending-receiving apparatus 1 is arranged in a coal preservatory, and the height of a storing layer of a coal 3 is measured through the transmission of a light pulse 2 and the reception of a reflected light pulse, and in addition, an electromagnetic wave sending-receiving apparatus 5 which sends and receives an electromagnetic wave 6 being longer in wavelength than the light is arranged in the coal preservatory, and sends the electromagnetic wave 6 and receives the reflected electromagnetic wave to measure a density inside the stored coal 3 on the above sending and receiving. The height of the whole range of the storing layer of the coal 3 is measured through a volume computer 4 by longitudinally and laterally scanning the light wave sending-receiving apparatus 1, and the volume of the stored coal 3 is computed on a scanning direction and the above height. The density of the whole range of the storing layer of the coal 3 is measured through a density distribution computer 7 by longitudinally and laterally scanning the electromagnetic wave sending-receiving apparatus 5, and the quantity of storing layer at a mass base is obtained through a mass computer 8 by multiplying the volume by the density of coal at each position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は貯炭残量監視装置に
関し、石炭焚き火力発電所などでの貯炭場における質量
ベースの残炭監視に適用して有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for monitoring a remaining amount of coal storage, which is useful for mass-based monitoring of residual coal in a coal storage at a coal-fired thermal power plant or the like.

【0002】[0002]

【従来の技術】石炭焚き火力発電所では、石炭の使用量
を大変厳しく管理しており、船或いはトラックで石炭を
輸送してきた場合には必ず石炭貯層の質量を計測しなけ
ればならない。
2. Description of the Related Art In a coal-fired thermal power plant, the amount of coal used is very strictly controlled. When coal is transported by ship or truck, the mass of the coal reservoir must be measured.

【0003】図5を参照して、従来の残炭量計測技術を
説明する。図5において、1は光送受波器、2は光パル
ス、3は貯炭場の石炭、4は体積計算機をそれぞれ示し
ている。光送受波器1から光パルス2を発射すると、同
光パルス2は、貯炭場の石炭3で反射して、光送受波器
1に帰ってきて受波される。光送受波器1では、光パル
ス2の発射時刻から受波時刻までの時間差から、石炭3
までの距離を求める。体積計算機4では、光送受波器1
の位置、光パルス2の発射方向、及び、石炭3までの距
離から、光パルス2が当たった石炭3の位置P(x,
y,z)を求める。そして、光パルス2の発射方向を貯
炭層範囲の全体にスキャンすると、石炭3全体の形状が
分かるので、これを体積に換算し、予め測定しておいた
石炭の平均的な密度から、残炭量の質量を算出する。
With reference to FIG. 5, a conventional technique for measuring the remaining coal amount will be described. In FIG. 5, 1 denotes an optical transducer, 2 denotes an optical pulse, 3 denotes coal in a coal storage, and 4 denotes a volume calculator. When the optical pulse 2 is emitted from the optical transmitter / receiver 1, the optical pulse 2 is reflected by the coal 3 in the coal storage, returned to the optical transmitter / receiver 1, and received. In the optical transmitter / receiver 1, the time difference between the emission time of the optical pulse 2 and the reception time
Find the distance to In the volume calculator 4, the optical transducer 1
, The launch direction of the light pulse 2, and the distance to the coal 3, the position P (x,
y, z). Then, when the emission direction of the light pulse 2 is scanned over the entire area of the coal reservoir, the shape of the entire coal 3 can be determined. This is converted into a volume, and the residual coal is determined from the average density of the coal measured in advance. Calculate the mass of the quantity.

【0004】[0004]

【発明が解決しようとする課題】しかし、貯炭層内部の
密度は、高さ及び積み上げ状態によって、数倍に変化す
る。従って、従来の技術のように予め測定しておいた平
均的な密度を使用した場合には、残炭質量の測定誤差が
倍以上になっていまう。
However, the density inside the coal reservoir changes several times depending on the height and the piled state. Therefore, when the average density measured in advance is used as in the conventional technique, the measurement error of the residual carbon mass is more than doubled.

【0005】本発明は上記従来の技術に鑑みてなされた
ものであり、その目的は貯炭層内部の密度を実測して、
正確な残炭質量を計測することができる貯炭残量監視装
置を提供することである。
[0005] The present invention has been made in view of the above-mentioned conventional technology, and its purpose is to measure the density inside a coal storage layer,
An object of the present invention is to provide a coal storage remaining amount monitoring device capable of accurately measuring the remaining coal mass.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、 (1)請求項1の貯炭残量監視装置は、貯炭場の石炭に
向けて光パルスを発射すると共に反射した光パルスを受
波する光送受波器と、前記光パルスの発射時刻と受波時
刻の時間差に基づいて貯炭層の高さを計測する手段と、
光よりも波長の長い電磁波を前記貯炭場の石炭に向けて
発射すると共に反射した電磁波を受波する電磁波送受波
器と、前記電磁波の反射強度及び発射時刻と受波時刻の
時間差に基づいて貯炭層内部の密度を計測する手段と、
前記光パルスと電磁波の発射方向を貯炭層全体に走査す
ることにより貯炭層全体について高さ及び密度を計測
し、発射方向、高さ及び密度から質量ベースの貯炭残量
を求める手段を具備することを特徴とする。 (2)また、請求項2の貯炭残量監視装置は、貯炭場の
石炭に向けて光よりも波長の長い電磁波を発射すると共
に反射した電磁波を受波する電磁波送受波器と、前記電
磁波の反射強度及び発射時刻と受波時刻の時間差に基づ
いて貯炭層の高さ及び内部の密度を計測する手段と、前
記電磁波の発射方向を貯炭層全体走査することにより貯
炭層全体について高さ及び密度を計測し、発射方向、高
さ及び密度から質量ベースの貯炭残量を求め手段を具備
することを特徴とする。
In order to achieve the above object, (1) a coal storage remaining amount monitoring device according to claim 1 emits an optical pulse toward coal in a coal storage yard and receives a reflected optical pulse. Optical transmitter and receiver, means for measuring the height of the coal storage layer based on the time difference between the emission time and the reception time of the light pulse,
An electromagnetic wave transmitter / receiver that emits an electromagnetic wave having a wavelength longer than light toward the coal in the coal storage and receives the reflected electromagnetic wave, and stores the coal based on the reflection intensity of the electromagnetic wave and the time difference between the emission time and the reception time. Means for measuring the density inside the layer;
Means for measuring the height and density of the entire coal storage layer by scanning the emission direction of the light pulse and the electromagnetic wave over the entire coal storage layer, and obtaining a mass-based remaining coal storage based on the emission direction, height, and density. It is characterized by. (2) An apparatus for monitoring the remaining amount of coal storage according to claim 2, comprising: an electromagnetic wave transmitter / receiver that emits an electromagnetic wave having a wavelength longer than light toward the coal in the coal storage and receives the reflected electromagnetic wave; Means for measuring the height and internal density of the coal storage layer based on the reflection intensity and the time difference between the launch time and the reception time, and the height and density of the entire coal storage layer by scanning the emission direction of the electromagnetic wave over the entire coal storage layer. , And a means for calculating the mass-based remaining coal storage from the firing direction, height and density.

【0007】[0007]

【発明の実施の形態】本発明の原理を説明する。 (a)或る種の電磁波を貯炭層に当てると、貯炭層の表
面及び内部で、石炭の密度に応じて異なる反射強度で、
一部反射しながら内部へ伝搬していく。 (b)そこで、例えば光よりも波長が長い電磁波を電磁
波送受波器から発射して貯炭層に当てると、この電磁波
は、貯炭層の表面及び内部で一部反射しながら、内部へ
伝搬していく。反射した電磁波は電磁波送受波器に戻
り、受波される。この場合、石炭の種々の密度と電磁波
の反射強度との関係を予め測定しておくことにより、こ
の関係を基に、任意の反射点での密度を反射強度から求
めることができる。各反射点は、電磁波送受波器の位置
と、電磁波の発射方向と、電磁波送受波器から反射点ま
での距離とで求めることができ、距離は電磁波の送波か
ら受波までの時間(発射時刻と受波時刻の時間差)から
算出することができる。従って、電磁波の発射方向を縦
横2方向にスキャンすることにより、貯炭層範囲の全体
について石炭の密度分布を計測することができる。 (c)石炭の密度分布が判れば、密度分布と貯炭層の体
積とから貯炭層全体の質量が計算により求まる。 (d)貯炭層の体積は、従来と同様、光送受波器から光
パルスを発射して貯炭層に当てると発射から受波までの
時間差から距離が求まることを利用し、光パルスの発射
方向を貯炭層範囲の全体にスキャンすることにより求ま
る。 (e)また、光パルスの代わりに、前記例示の光よりも
波長が長い電磁波を用いても貯炭層体積を求めることが
できる。つまり、空気の密度と石炭の密度は異なり両者
の区別が可能であり、また、貯炭場底部の密度と石炭の
密度も異なり両者の区別が可能なので、電磁波の反射を
利用して石炭の密度を計測する際に、密度の違いから貯
炭層表面の位置即ち高さを測定することができる。そこ
で、電磁波の発射方向を貯炭層範囲の全体にスキャンす
ることにより、貯炭層の体積を求めることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the present invention will be described. (A) When a certain type of electromagnetic wave is applied to the coal reservoir, the surface and inside of the coal reservoir have different reflection intensities depending on the density of coal,
The light propagates inside while being partially reflected. (B) Then, for example, when an electromagnetic wave having a wavelength longer than light is emitted from an electromagnetic wave transmitter / receiver and applied to the coal storage layer, the electromagnetic wave propagates to the inside while partially reflecting on the surface and inside of the storage layer. Go. The reflected electromagnetic wave returns to the electromagnetic wave transmitter / receiver and is received. In this case, by measuring the relationship between the various densities of coal and the reflection intensity of the electromagnetic wave in advance, the density at an arbitrary reflection point can be obtained from the reflection intensity based on this relationship. Each reflection point can be obtained from the position of the electromagnetic wave transmitter / receiver, the emission direction of the electromagnetic wave, and the distance from the electromagnetic wave transmitter / receiver to the reflection point. (Time difference between time and reception time). Therefore, by scanning the emission direction of the electromagnetic wave in two directions, it is possible to measure the density distribution of coal in the entire coal storage area. (C) If the density distribution of the coal is known, the mass of the entire coal reservoir can be obtained by calculation from the density distribution and the volume of the coal reservoir. (D) As in the past, the volume of the coal reservoir is determined by using the fact that when an optical pulse is emitted from the optical transmitter / receiver and applied to the coal reservoir, the distance is determined from the time difference from emission to reception, and the emission direction of the optical pulse By scanning over the entire reservoir area. (E) Also, the volume of the coal storage layer can be determined by using an electromagnetic wave having a longer wavelength than the above-described light, instead of the light pulse. In other words, the density of air and the density of coal are different and can be distinguished from each other.The density of coal at the bottom of the coal yard and the density of coal are also different and can be distinguished from each other. When measuring, the position, that is, the height of the surface of the coal storage layer can be measured from the difference in density. Therefore, by scanning the emission direction of the electromagnetic wave over the entire area of the coal storage layer, the volume of the coal storage layer can be obtained.

【0008】次に、本発明の一の実施の形態に係る貯炭
残量監視装置では、貯炭場に光送受波器を配し、光パル
スを送波すると共に反射した光パルスの受信に基づいて
石炭の貯層高さを計測する手段と、同貯炭場に光よりも
波長の長い電磁波を送受波する電磁波送受波器を配し、
電磁波を送波すると共に反射した電磁波の受信に基づい
て貯層してある石炭の内部の密度を計測する手段とを具
備し、これら光送受波器と電磁波送受波器を縦方向及び
横方向に走査することで石炭の貯層範囲全体について高
さ及び密度を計測し、走査方向と高さから体積を計算
し、体積に各位置での密度を掛け合わせることで石炭の
質量ベースの貯層量を求める。
Next, in the coal storage remaining amount monitoring apparatus according to one embodiment of the present invention, an optical transmitter / receiver is arranged in a coal storage, and transmits an optical pulse and receives a reflected optical pulse. A means for measuring the height of the coal reservoir and an electromagnetic wave transmitter / receiver for transmitting / receiving electromagnetic waves longer in wavelength than light are arranged in the coal storage yard,
Means for transmitting the electromagnetic waves and measuring the density inside the stored coal based on the reception of the reflected electromagnetic waves, and the optical transmitter / receiver and the electromagnetic transmitter / receiver in the vertical and horizontal directions. The height and density of the entire coal storage area are measured by scanning, the volume is calculated from the scanning direction and the height, and the volume is multiplied by the density at each position to obtain the mass-based storage amount of coal. Ask for.

【0009】また、本発明の他の実施の形態に係る貯炭
残量監視装置では、光よりも波長の長い電磁波を送受波
する電磁波送受波器を配し、電磁波を送波すると共に反
射した電磁波の受信に基づいて石炭の貯層高さ及び内部
の密度を計測する手段とを具備し、電磁波送受波器を縦
方向及び横方向に走査することで石炭の貯層範囲全体に
ついて高さ及び密度を計測し、走査方向と高さから体積
を計算し、体積に各位置での密度を掛け合わせることで
石炭の質量ベースの貯層量を求める。
According to another embodiment of the present invention, there is provided an apparatus for monitoring the remaining amount of coal stored, comprising an electromagnetic wave transmitter / receiver for transmitting / receiving an electromagnetic wave having a wavelength longer than that of light, and transmitting and reflecting the electromagnetic wave. Means for measuring the height and the internal density of the coal reservoir based on the reception of the electromagnetic wave, by scanning the electromagnetic transducer vertically and horizontally, the height and density of the entire coal reservoir area Is measured, the volume is calculated from the scanning direction and the height, and the volume is multiplied by the density at each position to obtain the mass-based storage amount of coal.

【0010】以下、本発明の実施例を説明する。図1は
本発明の第1実施例に係る貯炭残量監視装置の構成を示
し、図2は同第1実施例装置中の光送受波器の構成例を
示し、図3は同光送受波器の動作を示し、図4は同第1
実施例装置中の電磁波送受波器の構成例を示す。また、
図6は本発明の第2実施例に係る貯炭残量監視装置の構
成を示す。
Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a configuration of a coal storage remaining amount monitoring apparatus according to a first embodiment of the present invention, FIG. 2 shows an example of a configuration of an optical transducer in the apparatus of the first embodiment, and FIG. FIG. 4 shows the operation of the first device.
4 shows a configuration example of an electromagnetic wave transmitter / receiver in the apparatus of the embodiment. Also,
FIG. 6 shows a configuration of a coal storage remaining amount monitoring apparatus according to a second embodiment of the present invention.

【0011】まず、本発明の第1実施例の概略を説明す
る。図1において、1は光送受波器、2は光パルス、3
は貯炭場の石炭、4は体積計算機、5は電磁波送受波
器、6は電磁波、7は密度分布計算機、8は質量計算機
をそれぞれ示している。
First, an outline of a first embodiment of the present invention will be described. In FIG. 1, 1 is an optical transducer, 2 is an optical pulse, 3
Represents coal in a coal yard, 4 represents a volume calculator, 5 represents an electromagnetic wave transmitter / receiver, 6 represents an electromagnetic wave, 7 represents a density distribution calculator, and 8 represents a mass calculator.

【0012】光送受波器1から発射された光パルス2
は、貯炭場の石炭3で反射して、光送受波器1に帰って
きて受波される。光送受波器1では、光パルス2が発射
してから帰ってくるまでの時間(戻り時間:発射時刻と
受波時刻の時間差)から、石炭3までの距離を求める。
体積計算機4では、光送受波器1の位置、光パルス2の
発射方向、及び、石炭3までの距離から、光パルス2が
当たった石炭3の位置を求める。更に、光パルス2を貯
炭場全体にスキャンすると、石炭3全体の形状が分かる
ので、体積計算機4では光送受波器1に指令を与えて光
パルス2の発射方向を縦方向及び横方向に走査し、石炭
3全体の形状を求めて体積に換算する。
Optical pulse 2 emitted from optical transducer 1
Is reflected by the coal 3 in the coal storage, returned to the optical transmitter / receiver 1, and received. The optical transmitter / receiver 1 determines the distance to the coal 3 from the time from when the optical pulse 2 is emitted until it returns (return time: the time difference between the emission time and the reception time).
The volume calculator 4 obtains the position of the coal 3 hit by the light pulse 2 from the position of the light transmitter / receiver 1, the emission direction of the light pulse 2, and the distance to the coal 3. Further, when the light pulse 2 is scanned over the entire coal yard, the shape of the entire coal 3 can be known. Therefore, the volume calculator 4 gives a command to the optical transducer 1 to scan the emission direction of the light pulse 2 in the vertical and horizontal directions. Then, the shape of the entire coal 3 is obtained and converted into a volume.

【0013】電磁波送受波器5は光よりも波長の長い電
磁波6を発射する。この種の電磁波の一例として、地中
探査の数十NHzから数GHzのもの等を使用する。電
磁波送受波器5から発射された電磁波6は、石炭3の表
面、及び、内部で一部反射しながら、石炭内部へ伝搬し
ていく。電磁波送受波器5では、石炭3の表面及び内部
で反射した電磁波6を受波し、戻ってくるまでの時間
(戻り時間:発射時刻と受波時刻の時間差)、電磁波送
受波器5の位置、方位、及び、反射強度から、電磁波6
の経路上の石炭3の密度を求める。密度分布計算機7で
は、電磁波送受波器5に指令を与えて電磁波6の発射方
向を縦方向及び横方向に走査し、石炭3全体の密度分布
を計測する。
The electromagnetic wave transmitter / receiver 5 emits an electromagnetic wave 6 having a longer wavelength than light. As an example of this kind of electromagnetic wave, one of several tens NHz to several GHz of underground exploration is used. The electromagnetic wave 6 emitted from the electromagnetic wave transmitter / receiver 5 propagates inside the coal while partially reflecting on the surface and inside of the coal 3. The electromagnetic wave transmitter / receiver 5 receives the electromagnetic wave 6 reflected on the surface and inside of the coal 3 and returns until the electromagnetic wave 6 returns (return time: the time difference between the emission time and the reception time), and the position of the electromagnetic wave transmitter / receiver 5. From the direction, direction, and reflection intensity, the electromagnetic wave 6
The density of the coal 3 on the route of is calculated. The density distribution calculator 7 gives a command to the electromagnetic wave transmitter / receiver 5 to scan the emission direction of the electromagnetic wave 6 in the vertical direction and the horizontal direction, and measures the density distribution of the entire coal 3.

【0014】質量計算機8は、体積計算機4の計測結果
(体積)及び密度分布計算機7の計測結果(密度分布)
から、体積に各位置での密度を掛け合わせることで貯炭
場全体の石炭3の質量を計算する。
The mass calculator 8 calculates the measurement result (volume) of the volume calculator 4 and the measurement result (density distribution) of the density distribution calculator 7.
Then, the mass of the coal 3 in the entire coal storage is calculated by multiplying the volume by the density at each position.

【0015】次に、図2及び図3により、体積計算の詳
細を説明する。図2に示す例では、光送受波器1を、光
送波器9と、光受波器10と、ハーフミラー11と、ミ
ラーコントローラ12と、ミラー13と、距離計算機1
4より構成してある。光送波器9が光パルス2を発射す
ると、その光パルス2はハーフミラー11を通過し、ミ
ラー13で反射して石炭3表面に当たり、そこで反射し
た光パルスはミラー13、ハーフミラー11でそれぞれ
反射して光受波器10に入る。距離計算機14は、光パ
ルス2が光送波器9を出てから光受波器10に戻るまで
の時間差から、光送受波器1と石炭3との距離Lを下記
数1から求める。例えば図3(a)に示すように、光パ
ルス2の発射時刻から受波時刻までの時間差をtとする
と、距離Lは次式数1となる。
Next, the details of the volume calculation will be described with reference to FIGS. In the example shown in FIG. 2, the optical transmitter / receiver 1 is an optical transmitter 9, an optical receiver 10, a half mirror 11, a mirror controller 12, a mirror 13, and a distance calculator 1
4. When the optical transmitter 9 emits the light pulse 2, the light pulse 2 passes through the half mirror 11, is reflected by the mirror 13 and hits the surface of the coal 3, and the reflected light pulse is reflected by the mirror 13 and the half mirror 11, respectively. The light enters the optical receiver 10 after being reflected. The distance calculator 14 calculates the distance L between the optical transmitter / receiver 1 and the coal 3 from the following equation 1 based on the time difference between when the optical pulse 2 exits the optical transmitter 9 and returns to the optical receiver 10. For example, as shown in FIG. 3A, assuming that a time difference from the emission time of the optical pulse 2 to the reception time is t, the distance L is expressed by the following equation (1).

【0016】[0016]

【数1】L=ct/2 ただし、cは光の速度L = ct / 2 where c is the speed of light

【0017】なお、厳密には、光パルス2が光送受波器
1の内部を飛行している時間を差し引く等の処理を行
う。
Strictly, processing such as subtracting the time during which the optical pulse 2 is flying inside the optical transducer 1 is performed.

【0018】本実施例では、体積計算機4が光パルス2
の発射方向を決定し制御するものとしており、ミラーコ
ントローラ12に指令を与えてミラー13の方向(角
度)を変えることによって、光パルス2の発射方向を貯
炭場全体に走査する。発射方向は、例えば、水平面内で
の角度θと、垂直面内の角度ψで規定され、これらの角
度θとψを変える。
In this embodiment, the volume calculator 4 generates the light pulse 2
The emission direction of the light pulse 2 is scanned over the entire coal storage yard by giving a command to the mirror controller 12 to change the direction (angle) of the mirror 13. The firing direction is defined by, for example, an angle θ in a horizontal plane and an angle ψ in a vertical plane, and changes these angles θ and ψ.

【0019】体積計算機4では、光パルス2の発射方向
(θ、ψ)と、距離計算機14で求めた距離Lと、予め
記憶しておいた光送受波器1の位置(x0 、y0
0 )から貯炭層の高さを求める。例えば、図3(b)
に示すように、光パルス2が石炭3の表面P(x、y、
z)に当たり、その時の光パルス2の発射方向が水平方
向がθ、垂直方向がψであり、距離計算機14で算出し
た距離がLだったとすると、石炭3表面Pのx、y、z
座標は次式数2、数3、数4として求まる。
In the volume calculator 4, the emission direction (θ, ψ) of the light pulse 2, the distance L obtained by the distance calculator 14, and the position (x 0 , y 0 ) of the optical transducer 1 stored in advance. ,
The height of the coal reservoir is determined from z 0 ). For example, FIG.
As shown in FIG. 2, the light pulse 2 is applied to the surface P (x, y,
z), the emission direction of the light pulse 2 at that time is θ in the horizontal direction, ψ in the vertical direction, and the distance calculated by the distance calculator 14 is L, x, y, z of the surface P of the coal 3
The coordinates are obtained as the following equations (2), (3) and (4).

【0020】[0020]

【数2】x=x0 +Lcosθ・sinψX = x 0 + Lcos θ · sinψ

【数3】y=y0 +Lsinθ・sinψ[Equation 3] y = y 0 + L sin θ · sinψ

【数4】z=z0 −Lcosψ## EQU4 ## z = z 0 −Lcosψ

【0021】なお、貯炭層の高さ測定としては、図3
(b)に示すように貯炭場の周囲に高さ高さzb を持つ
高さ基準を設置し、同基準の高さzb と石炭表面Pの高
さzとの差を求めても良い。
As for the height measurement of the coal reservoir, FIG.
As shown in (b), a height standard having a height z b may be set around the coal storage yard, and the difference between the standard height z b and the height z of the coal surface P may be obtained. .

【0022】このようにして、光パルス2を例えば10
cm四方の間隔で貯炭場全体にスキャンさせ、スキャン毎
の各座標Pi (xi ,yi ,zi )から、石炭3各部の
高さhi を求めることにより、貯炭場残炭の体積Vを次
式数5で求めることができる。
In this way, the light pulse 2 is changed to, for example, 10
total coal storage in cm square interval is scanned, each coordinate of each scan P i (x i, y i , z i) from by determining the height h i of coal 3 each part volume of the coal storage residual carbon V can be obtained by the following equation (5).

【0023】[0023]

【数5】V=Σ0.1×0.1×hi [m3 [Number 5] V = Σ0.1 × 0.1 × h i [m 3]

【0024】なお、光送受波器1では石炭3の山の裏側
の形状を測定することができないため、なるべく貯炭場
の真上から光パルス2を発射して高さを測定すると良
い。
Since the optical transmitter / receiver 1 cannot measure the shape of the coal 3 on the back side of the mountain, it is preferable to emit the optical pulse 2 from above the coal storage and measure the height as much as possible.

【0025】次に、図4を参照して、密度分布計算の詳
細を説明する。図4に示す例では、電磁波送受波器5
を、アンテナ15と、電磁波送波器16と、電磁波受波
器17と、アンテナコントローラ18と、距離密度計算
機19より構成している。これらの基本動作は光送受波
器1と同様であり、電磁波送波器16からアンテナ15
を経由して発射された電磁波6は、石炭3の表面及び内
部で反射して、アンテナ15に戻り、電磁波受波器17
で受波される。距離密度計算機19では、数1と同様、
電磁波6の発射時刻から受波時刻までの時間差から、電
磁波送受波器5から各反射点までの距離を算出する。更
に、距離密度計算機19では、各距離での電磁波の反射
強度を用い、予め測定しておいた石炭の密度と反射強度
との関係から、各距離での石炭3の密度を求める。
Next, details of the density distribution calculation will be described with reference to FIG. In the example shown in FIG.
Is composed of an antenna 15, an electromagnetic wave transmitter 16, an electromagnetic wave receiver 17, an antenna controller 18, and a distance density calculator 19. These basic operations are the same as those of the optical transmitter / receiver 1, and the electromagnetic transmitter 16 transmits the antenna 15
Is reflected on the surface and inside of the coal 3, returns to the antenna 15, and receives the electromagnetic wave receiver 17.
Is received by In the distance density calculator 19, as in Equation 1,
The distance from the electromagnetic wave transmitter / receiver 5 to each reflection point is calculated from the time difference between the emission time and the reception time of the electromagnetic wave 6. Further, the distance density calculator 19 obtains the density of the coal 3 at each distance from the relationship between the density of the coal and the reflection intensity measured in advance using the reflection intensity of the electromagnetic wave at each distance.

【0026】なお、厳密には、電磁波送受波器5内での
時間遅れ等の補正処理を行う。
Strictly, a correction process such as a time delay in the electromagnetic wave transmitter / receiver 5 is performed.

【0027】本実施例では、密度分布計算機7が電磁波
6の発射方向を決定し制御するものとしており、アンテ
ナコントローラ18に指令を与えてアンテナ15の電磁
波発射方向(角度)を変えることによって、電磁波6の
発射方向を貯炭場全体に走査する。発射方向は、例え
ば、水平面内での角度θと、垂直面内の角度ψで規定さ
れ、これらの角度θとψを変える。このようにアンテナ
コントローラ18により電磁波6の発射方向を2方向に
走査することにより、密度分布計算機7では、距離密度
計算機19が求めた各発射方向での距離と密度との関係
から、貯炭場全体での密度分布を計算する。
In the present embodiment, the density distribution calculator 7 determines and controls the emission direction of the electromagnetic wave 6. By giving a command to the antenna controller 18 to change the emission direction (angle) of the antenna 15, the electromagnetic wave 6 is emitted. The launch direction of 6 is scanned across the coal yard. The firing direction is defined by, for example, an angle θ in a horizontal plane and an angle ψ in a vertical plane, and changes these angles θ and ψ. By scanning the emission direction of the electromagnetic wave 6 in two directions by the antenna controller 18 in this way, the density distribution computer 7 obtains the entire coal storage yard from the relationship between the distance and the density in each emission direction obtained by the distance density calculator 19. Calculate the density distribution at.

【0028】なお、石炭の密度分布の測定解像度を高く
する方法として、アンテナ15を移動させたり、アンテ
ナ15を複数設置したりして、石炭の密度分布を複数の
方向から測定し、それぞれの密度分布の相関を取ること
によって、密度の解像度を高めることができる。
As a method for increasing the measurement resolution of the density distribution of coal, the density distribution of coal is measured from a plurality of directions by moving the antenna 15 or installing a plurality of antennas 15 to measure the density of each coal. By correlating the distribution, the resolution of the density can be increased.

【0029】次に、本発明の第2実施例を、図6を参照
して説明する。図6に示すように、本実施例の貯炭残量
監視装置は電磁波送受波器5と、密度分布計算機7と、
質量計算機8と、体積計算機20により構成されてい
る。また、電磁波送受波器5は、アンテナ15と、電磁
波送波器16と、電磁波受波器17と、アンテナコント
ローラ18と、距離密度計算機19より構成される。
Next, a second embodiment of the present invention will be described with reference to FIG. As shown in FIG. 6, the apparatus for monitoring the remaining amount of coal stored in the present embodiment includes an electromagnetic wave transmitter / receiver 5, a density distribution calculator 7,
It comprises a mass calculator 8 and a volume calculator 20. The electromagnetic wave transmitter / receiver 5 includes an antenna 15, an electromagnetic wave transmitter 16, an electromagnetic wave receiver 17, an antenna controller 18, and a distance density calculator 19.

【0030】電磁波送受波器5の基本動作は第1実施例
と同様であり、電磁波送波器16からアンテナ15を経
由して発射された電磁波6は、石炭3の表面及び内部で
反射して、アンテナ15に戻り、電磁波受波器17で受
波される。距離密度計算機19では、電磁波6の発射か
ら受波までの時間差から、電磁波送受波器5から各反射
点までの距離を算出する。また、距離密度計算機19で
は、各距離での電磁波の反射強度を用い、予め測定して
おいた石炭の密度と反射強度との関係から、各距離での
石炭3の密度を求める。
The basic operation of the electromagnetic wave transmitter / receiver 5 is the same as that of the first embodiment. The electromagnetic wave 6 emitted from the electromagnetic wave transmitter 16 via the antenna 15 is reflected on the surface and inside of the coal 3. , And returns to the antenna 15 to be received by the electromagnetic wave receiver 17. The distance density calculator 19 calculates the distance from the electromagnetic wave transmitter / receiver 5 to each reflection point from the time difference between the emission and reception of the electromagnetic wave 6. In addition, the distance density calculator 19 obtains the density of the coal 3 at each distance from the relationship between the density of the coal and the reflection intensity measured in advance using the reflection intensity of the electromagnetic wave at each distance.

【0031】本実施例でも、密度分布計算機7が電磁波
6の発射方向を決定し制御するものとし、アンテナコン
トローラ18に指令を与えてアンテナ15の電磁波発射
方向(角度)を変えることによって、電磁波6の発射方
向を2方向に走査する。発射方向は、例えば、水平面内
での角度θと、垂直面内の角度ψで規定される。この電
磁波発射方向の走査により、密度分布計算機7では、距
離密度計算機19が求めた各発射方向での距離と密度と
の関係から、貯炭場全体での密度分布を計算する。
Also in this embodiment, it is assumed that the density distribution computer 7 determines and controls the emission direction of the electromagnetic wave 6. By giving a command to the antenna controller 18 to change the emission direction (angle) of the antenna 15, the electromagnetic wave 6 is emitted. Scan in two directions. The launch direction is defined, for example, by an angle θ in a horizontal plane and an angle ψ in a vertical plane. By scanning in the electromagnetic wave emission direction, the density distribution calculator 7 calculates the density distribution in the entire coal storage yard from the relationship between the distance and the density in each emission direction obtained by the distance density calculator 19.

【0032】電磁波送受波器5による密度測定では、空
気の密度と石炭の密度の区別ができ、また、貯炭場の底
部がコンクリート等で作られていて、その密度が予め分
かる場合には、底部と石炭の区別もできる。つまり、電
磁波送受波器5を用いて貯炭層の高さを求めることも可
能である。
In the density measurement by the electromagnetic wave transmitter / receiver 5, the density of air and the density of coal can be distinguished. If the bottom of the coal storage yard is made of concrete or the like and the density is known in advance, the bottom And coal can also be distinguished. That is, the height of the coal storage layer can be obtained using the electromagnetic wave transmitter / receiver 5.

【0033】そこで、体積計算機20では、密度分布計
算機7で求めた貯炭場全体の密度分布から、貯炭層の高
さ、従って、体積を求める。
Therefore, the volume calculator 20 determines the height, and thus the volume, of the coal storage layer from the density distribution of the entire coal storage yard determined by the density distribution computer 7.

【0034】質量計算機8では、体積計算機20の計測
結果(体積)及び密度分布計算機7の計測結果(密度分
布)から、体積に各位置での密度を掛け合わせることで
貯炭場全体の石炭3の質量を計算する。
The mass calculator 8 multiplies the volume by the density at each position based on the measurement result (volume) of the volume calculator 20 and the measurement result (density distribution) of the density distribution computer 7 to obtain the coal 3 in the entire coal yard. Calculate the mass.

【0035】前述のように、光送受波器1では石炭3の
山の裏側の形状を測定することができないため、できる
だけ貯炭場の真上から高さを測定する必要があった。し
かし、電磁波送受波器5では空気の密度と石炭の密度の
区別ができるので、山の裏側の形状も測定可能であり、
本実施例の貯炭残量監視装置はそれの設置場所を選ぶ必
要がないという利点がある。
As described above, since the optical transmitter / receiver 1 cannot measure the shape of the backside of the pile of coal 3, it was necessary to measure the height from just above the coal storage as much as possible. However, since the electromagnetic wave transmitter / receiver 5 can distinguish between the density of air and the density of coal, the shape of the backside of the mountain can also be measured.
The coal storage remaining amount monitoring apparatus of the present embodiment has an advantage that it is not necessary to select an installation place.

【0036】なお、上記第1、第2実施例とも電磁波送
受波器5が発射する電磁波の一例として、数十NHzか
ら数GHzのものを挙げているが、これに限定されるも
のではない。石炭の密度に応じて異なる強度で反射する
電磁波であれば、光あるいは光より波長の短いものも使
用することができる。従って、(1)貯炭場の石炭に向
けて光パルスを発射すると共に反射した光パルスを受波
する光送受波器と、前記光パルスの発射時刻と受波時刻
の時間差に基づいて貯炭層の高さを計測する手段と、石
炭の密度に応じて異なる強度で反射する電磁波を前記貯
炭場の石炭に向けて発射すると共に反射した電磁波を受
波する電磁波送受波器と、前記電磁波の反射強度及び発
射時刻と受波時刻の時間差に基づいて貯炭層内部の密度
を計測する手段と、前記光パルスと電磁波の発射方向を
貯炭層全体に走査することにより貯炭層全体について高
さ及び密度を計測し、発射方向、高さ及び密度から質量
ベースの貯炭残量を求める手段で貯炭残量監視装置を構
成しても良く、また、(2)貯炭場の石炭に向けて石炭
の密度に応じて異なる強度で反射する電磁波を発射する
と共に反射した電磁波を受波する電磁波送受波器と、前
記電磁波の反射強度及び発射時刻と受波時刻の時間差に
基づいて貯炭層の高さ及び内部の密度を計測する手段
と、前記電磁波の発射方向を貯炭層全体走査することに
より貯炭層全体について高さ及び密度を計測し、発射方
向、高さ及び密度から質量ベースの貯炭残量を求め手段
で貯炭残量監視装置を構成するしても良い。
In the first and second embodiments, an example of an electromagnetic wave emitted from the electromagnetic wave transmitter / receiver 5 is from several tens of NHz to several GHz, but the present invention is not limited to this. As long as the electromagnetic waves are reflected at different intensities according to the density of the coal, light or light having a shorter wavelength than light can be used. Therefore, (1) an optical transmitter / receiver that emits an optical pulse toward the coal in the coal storage and receives the reflected optical pulse, and based on the time difference between the emission time and the reception time of the light pulse, Means for measuring the height, an electromagnetic wave transmitter / receiver that emits electromagnetic waves reflected at different intensities according to the density of the coal toward the coal in the coal storage and receives the reflected electromagnetic waves, and a reflection intensity of the electromagnetic waves Means for measuring the density inside the coal seam based on the time difference between the launch time and the reception time, and measuring the height and density of the entire coal seam by scanning the emission direction of the light pulse and the electromagnetic wave over the entire coal seam. In addition, the coal storage remaining amount monitoring device may be constituted by means for obtaining the mass storage remaining amount based on the launch direction, the height and the density, and (2) the coal stored in the coal storage yard according to the density of the coal. Light reflected at different intensities An electromagnetic wave transmitter / receiver that emits a wave and receives the reflected electromagnetic wave, and a unit that measures the height and internal density of the coal storage layer based on the reflection intensity of the electromagnetic wave and the time difference between the emission time and the reception time, The height and density of the entire coal storage layer are measured by scanning the direction of emission of the electromagnetic wave over the entire coal storage layer, and a coal storage remaining amount monitoring device is configured by means for obtaining a mass-based coal storage remaining amount from the launch direction, height and density. You may do it.

【0037】[0037]

【発明の効果】以上説明したように、本発明の貯炭残量
監視装置によると、貯炭場全体の体積の測定に加えて、
電磁波を用いた実測による石炭の密度分布が分かるの
で、貯炭場の正確な残炭質量を計測することができる。
As described above, according to the coal storage remaining amount monitoring apparatus of the present invention, in addition to the measurement of the volume of the entire coal storage,
Since the density distribution of coal can be determined by actual measurement using electromagnetic waves, it is possible to accurately measure the mass of residual coal in the coal storage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る貯炭残量監視装置の
構成を示す図。
FIG. 1 is a diagram showing a configuration of a coal storage remaining amount monitoring device according to a first embodiment of the present invention.

【図2】光送受波器の構成例を示す図。FIG. 2 is a diagram illustrating a configuration example of an optical transducer.

【図3】体積計算の説明図。FIG. 3 is an explanatory diagram of volume calculation.

【図4】電磁波送受波器の構成例を示す図。FIG. 4 is a diagram showing a configuration example of an electromagnetic wave transmitter / receiver.

【図5】従来の貯炭場での体積監視技術の説明図。FIG. 5 is an explanatory diagram of a conventional volume monitoring technique in a coal storage yard.

【図6】本発明の第2実施例に係る貯炭残量監視装置の
構成を示す図。
FIG. 6 is a diagram showing a configuration of a coal storage remaining amount monitoring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光送受波器 2 光パルス 3 石炭 4 体積計算機 5 電磁波送受波器 6 電磁波 7 密度分布計算機 8 質量計算機 9 光送波器 10 光受波器 11 ハーフミラー 12 ミラーコントローラ 13 ミラー 14 距離計算機 15 アンテナ 16 電磁波送波器 17 電磁波受波器 18 アンテナコントローラ 19 距離密度計算機 20 体積計算機 DESCRIPTION OF SYMBOLS 1 Optical transmitter / receiver 2 Optical pulse 3 Coal 4 Volume calculator 5 Electromagnetic wave transmitter / receiver 6 Electromagnetic wave 7 Density distribution calculator 8 Mass calculator 9 Optical transmitter 10 Optical receiver 11 Half mirror 12 Mirror controller 13 Mirror 14 Distance calculator 15 Antenna Reference Signs List 16 electromagnetic wave transmitter 17 electromagnetic wave receiver 18 antenna controller 19 distance density calculator 20 volume calculator

フロントページの続き (72)発明者 馬場 智義 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内Continued on the front page (72) Inventor Tomoyoshi Baba 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanishi Heavy Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 貯炭場の石炭に向けて光パルスを発射す
ると共に反射した光パルスを受波する光送受波器と、前
記光パルスの発射時刻と受波時刻の時間差に基づいて貯
炭層の高さを計測する手段と、光よりも波長の長い電磁
波を前記貯炭場の石炭に向けて発射すると共に反射した
電磁波を受波する電磁波送受波器と、前記電磁波の反射
強度及び発射時刻と受波時刻の時間差に基づいて貯炭層
内部の密度を計測する手段と、前記光パルスと電磁波の
発射方向を貯炭層全体に走査することにより貯炭層全体
について高さ及び密度を計測し、発射方向、高さ及び密
度から質量ベースの貯炭残量を求める手段を具備するこ
とを特徴とする貯炭残量監視装置。
1. An optical transmitter / receiver that emits an optical pulse toward coal in a coal storage and receives a reflected optical pulse, and a coal storage layer based on a time difference between the emission time and the reception time of the optical pulse. A means for measuring the height, an electromagnetic wave transmitter / receiver for emitting an electromagnetic wave having a wavelength longer than light toward the coal in the coal yard and receiving the reflected electromagnetic wave, a reflection intensity of the electromagnetic wave, an emission time, and a reception time. Means for measuring the density inside the coal bed based on the time difference of the wave time, and measuring the height and density of the entire coal bed by scanning the emission direction of the light pulse and the electromagnetic wave over the entire coal bed, the launch direction, An apparatus for monitoring the remaining amount of coal stored, comprising means for obtaining a remaining amount of coal based on mass from height and density.
【請求項2】 貯炭場の石炭に向けて光よりも波長の長
い電磁波を発射すると共に反射した電磁波を受波する電
磁波送受波器と、前記電磁波の反射強度及び発射時刻と
受波時刻の時間差に基づいて貯炭層の高さ及び内部の密
度を計測する手段と、前記電磁波の発射方向を貯炭層全
体に走査することにより貯炭層全体について高さ及び密
度を計測し、発射方向、高さ及び密度から質量ベースの
貯炭残量を求める手段を具備することを特徴とする貯炭
残量監視装置。
2. An electromagnetic wave transmitter / receiver for emitting an electromagnetic wave having a wavelength longer than light toward coal in a coal storage and receiving a reflected electromagnetic wave, a reflection intensity of the electromagnetic wave, and a time difference between the emission time and the reception time. Means for measuring the height and internal density of the coal storage layer based on, and the height and density of the entire coal storage layer is measured by scanning the emission direction of the electromagnetic wave over the entire coal storage layer, and the emission direction, height and An apparatus for monitoring the remaining amount of coal storage, comprising means for obtaining a remaining amount of coal based on mass from a density.
JP28643696A 1996-10-29 1996-10-29 Monitoring device for remaining quantity of stock coal Withdrawn JPH10132511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28643696A JPH10132511A (en) 1996-10-29 1996-10-29 Monitoring device for remaining quantity of stock coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28643696A JPH10132511A (en) 1996-10-29 1996-10-29 Monitoring device for remaining quantity of stock coal

Publications (1)

Publication Number Publication Date
JPH10132511A true JPH10132511A (en) 1998-05-22

Family

ID=17704371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28643696A Withdrawn JPH10132511A (en) 1996-10-29 1996-10-29 Monitoring device for remaining quantity of stock coal

Country Status (1)

Country Link
JP (1) JPH10132511A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241609A (en) * 2004-02-27 2005-09-08 Chuden Gijutsu Consultant Kk Volume calculation system
JP2007178367A (en) * 2005-12-28 2007-07-12 Shibaura Mechatronics Corp Paste application amount measuring device and paste application device
CN105352438A (en) * 2015-11-18 2016-02-24 长沙开元仪器股份有限公司 Coal inventory system and data collection apparatus
JP2016109827A (en) * 2014-12-04 2016-06-20 キヤノン株式会社 Measurement device, image formation device, measurement method, and program
CN109911642A (en) * 2019-03-14 2019-06-21 重庆优威森测控技术有限公司 Mobile vehicle-mounted inventory coal measures system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241609A (en) * 2004-02-27 2005-09-08 Chuden Gijutsu Consultant Kk Volume calculation system
JP2007178367A (en) * 2005-12-28 2007-07-12 Shibaura Mechatronics Corp Paste application amount measuring device and paste application device
JP2016109827A (en) * 2014-12-04 2016-06-20 キヤノン株式会社 Measurement device, image formation device, measurement method, and program
CN105352438A (en) * 2015-11-18 2016-02-24 长沙开元仪器股份有限公司 Coal inventory system and data collection apparatus
CN109911642A (en) * 2019-03-14 2019-06-21 重庆优威森测控技术有限公司 Mobile vehicle-mounted inventory coal measures system
CN109911642B (en) * 2019-03-14 2020-12-08 重庆优威森测控技术有限公司 Movable vehicle-mounted automatic coal inventory system

Similar Documents

Publication Publication Date Title
US4532617A (en) System for locating a towed marine object
US6438071B1 (en) Method for producing a 3D image
KR101294493B1 (en) Method and device for measuring a contour of the ground
CN1959432A (en) Multi-dimensional imaging method and apparatus
US4669067A (en) Method and apparatus for locating a submerged marine streamer
KR930701726A (en) Spatial positioning system
US3585578A (en) Side looking sonar apparatus
JPS5916233B2 (en) Method and device for determining the position of a reflector using a fan beam
RU2444760C1 (en) Method for removing lower surface of ice cover
US5280719A (en) Measurement of road roughness
JPH10132511A (en) Monitoring device for remaining quantity of stock coal
US8223065B1 (en) Methods and systems for partitioning a radar acquisition volume
US3389372A (en) Echo-ranging apparatus
JPS6236527B2 (en)
US11513197B2 (en) Multiple-pulses-in-air laser scanning system with ambiguity resolution based on range probing and 3D point analysis
US4557145A (en) Ultrasonic echography process and device
US20220236437A1 (en) Method and system for determining top and bottom depth of an under water mud layer
US4870628A (en) Multipulse acoustic mapping system
JPH02159591A (en) Displaying apparatus of seabed configuration
RU2050559C1 (en) Active sonar for detection of objects near bottom, on bottom and in near-surface layer of bottom
JP4252923B2 (en) Speed analysis radar exploration method and apparatus
SU1516958A1 (en) Method of determining configuration of defect in articles
JP2998692B2 (en) Laser radar measurement method and device
JPH07151540A (en) Method for measuring position
GB2083219A (en) Sonar system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106