JPH10132155A - Steel coil reinforcing flexible tube and manufacture thereof - Google Patents

Steel coil reinforcing flexible tube and manufacture thereof

Info

Publication number
JPH10132155A
JPH10132155A JP8304117A JP30411796A JPH10132155A JP H10132155 A JPH10132155 A JP H10132155A JP 8304117 A JP8304117 A JP 8304117A JP 30411796 A JP30411796 A JP 30411796A JP H10132155 A JPH10132155 A JP H10132155A
Authority
JP
Japan
Prior art keywords
rubber
reinforcing wire
layer
steel
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8304117A
Other languages
Japanese (ja)
Other versions
JP3908309B2 (en
Inventor
Shizuo Yokobori
志津雄 横堀
Masami Tsujimoto
昌美 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP30411796A priority Critical patent/JP3908309B2/en
Publication of JPH10132155A publication Critical patent/JPH10132155A/en
Application granted granted Critical
Publication of JP3908309B2 publication Critical patent/JP3908309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a flexible tube at a low cost by layering fiber cords at a fixed forming angle to form a flexible tube formed body, reducing the pitch of a steel coil reinforcing wire gradually from the central part to both end parts by compression, and forming a bellows-shaped peak part on a cylindrical shell wall. SOLUTION: A steel coiled reinforcing wire 7 is disposed at the cross-section central part of a cylindrical shell wall consisting of inner and outer rubber layers 2, 3, and rubber coated fiber reinforcing layers 4, 5 are formed at the inside and the outside of the reinforcing wire 7. In a reinforcing wire 7, its pitch P is reduced gradually from the central part toward both end parts, its cylindrical shell wall between reinforcing wire 7 is formed in bellows-shaped peak part to serve as a flexible part, and a flange 10 is fixed to both the end parts. The rubber coated fiber reinforcing layers 4, 5 are formed by winding and layering fiber cords, for example, 2 plys each, 4 plys in total around the surface of the inner surface rubber layer 2, the surface of the reinforcing wire 7 and an intermediate rubber layer 6 so that fiber directions may cross alternately at a smaller forming angle than the balancing angle of the hose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、通水管路、特に
上下水道等の通水管路の地中埋設管として用いられる耐
震性可とう管、特に曲げ、伸縮および偏心特性に優れた
耐震性鋼製コイル補強可とう管およびその製造方法の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant flexible pipe used as an underground pipe for a water pipe, particularly a water pipe for water supply and sewerage, and more particularly to an earthquake-resistant steel excellent in bending, expansion and contraction and eccentricity. The present invention relates to an improvement in a coil-reinforced flexible tube and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から上下水道等の地中埋設管路に使
用される耐震性可とう管としては、図10(a)〜13
(a)に示すようなものが知られている。これらのう
ち、図10(a)に代表されるのものは、内層2と外層
3とからなるゴム層の内部に一定ピッチに配置された鋼
製リング7’および第1、第2補強層4、5が設けら
れ、これらからなる円筒状胴壁が外側に膨らんだ蛇腹状
山部を形成し、その両端部が端部リング8を介してフラ
ンジ10に固定されたものである。図11(a)は、蛇
腹状山部を形成しないで、外周面が平坦に形成されたも
のおよび図12(a)は、鋼製リング7’を胴壁の谷部
のみならず、山部にも配置して剛性を増したものであ
る。他方のタイプは図13(a)に示すもので、一定ピ
ッチを有する鋼製コイルばね7を内外ゴム層2、3の内
部に配置して、図10(a)と同じ構成に形成させ、管
軸方向の伸長、圧縮および管軸直角方向の曲げ強度を向
上させたものである。
2. Description of the Related Art Conventionally, seismic flexible pipes used for underground pipes for water and sewage systems are shown in FIGS.
The one shown in (a) is known. Of these, the one represented by FIG. 10A is a steel ring 7 ′ and a first and second reinforcing layer 4 arranged at a constant pitch inside a rubber layer composed of an inner layer 2 and an outer layer 3. 5 are provided, and a cylindrical body wall made of these forms a bellows-shaped bulge bulging outward, and both ends thereof are fixed to a flange 10 via an end ring 8. FIG. 11 (a) shows a case where the outer peripheral surface is formed flat without forming a bellows-shaped peak portion, and FIG. 12 (a) shows a case where the steel ring 7 'is formed not only at the valley portion of the trunk wall but also at the peak portion. And increased rigidity. The other type is shown in FIG. 13 (a), in which a steel coil spring 7 having a constant pitch is arranged inside the inner and outer rubber layers 2, 3 to form the same structure as in FIG. 10 (a). It has improved axial elongation, compression and bending strength in the direction perpendicular to the tube axis.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
従来の、可とう部全長にわたって一定の変形反力を有す
る可とう管が、埋立地や埋立地と地山との境界部、また
は丘陵宅地の切土・盛土の境界部、あるいは、地盤急変
部、液状化地域などの地中に埋設されているとき、大き
な地震力を受けて、地盤の不等沈下、地盤の段差、縦ず
れ、陥没などの発生により、図14および図15に示す
ように、曲げ、または偏心を起こした場合には、地震力
により最大応力の発生する固定端部胴壁において、この
最大応力によって胴壁内の繊維補強層繊維コードが破断
し、胴壁に亀裂または引裂きを発生したり、あるいは胴
壁が破壊するといったような問題があった。
However, these conventional flexible pipes having a constant deformation reaction force over the entire length of the flexible part are used to fill landfills, the boundary between the landfills and the ground, or the cutting of hilly residential land. When buried in the ground at the boundary between soil and embankment, or in suddenly changing ground, liquefied area, etc., it may receive uneven sedimentation of the ground, uneven settling of the ground, unevenness of the ground, vertical displacement, depression, etc. When bending or eccentricity occurs as shown in FIGS. 14 and 15 due to the occurrence, at the fixed end body wall where the maximum stress occurs due to the seismic force, the fiber reinforced layer in the body wall is generated by the maximum stress. There have been problems such as breakage of the fiber cord, cracking or tearing of the trunk wall, or breakage of the trunk wall.

【0004】すなわち、図14に示すように、地震力W
による軟弱地盤の陥没に伴って、地中に埋設された可と
う管端部Bが下方移動して、可とう管が曲げ(変位角度
θ)を生じ、安定地盤中の固定端部Aの引張側胴壁部a
および軟弱地盤中の固定端部Bの引張側胴壁fに亀裂、
または引裂きを生じたり、あるいは胴壁が破壊した。
That is, as shown in FIG.
The flexible pipe end B buried in the ground moves downward due to the collapse of the soft ground due to, and the flexible pipe bends (displacement angle θ), and the fixed end A in the stable ground is pulled. Side trunk wall a
And a crack in the tension side wall f of the fixed end B in the soft ground,
Or tearing or torso rupture.

【0005】また、図15に示すように、上記可とう管
が偏心(変位量δ)を生じた場合も、固定端部Aおよび
Bの引張側胴壁部aおよびf´のそれぞれに曲げの場合
と同じく亀裂、または引裂きを生じたり、あるいは胴壁
が破壊した。
Further, as shown in FIG. 15, even when the flexible pipe is eccentric (displacement amount δ), the bending ends are respectively applied to the tension-side body walls a and f ′ of the fixed ends A and B. As before, cracks or tears occurred, or the torso wall was destroyed.

【0006】他方、図16に示すように、断面形状が一
定のはりの左端部Aを固定し、自由端部Bに荷重Wを負
荷した場合には、(1)はりの各断面に作用する曲げモ
ーメントMによってはりの各断面に曲げ応力σが発生
し、各断面の最上部および最下部にそれぞれ引張りおよ
び圧縮ひずみ(伸びおよび縮み)を惹起してはりが曲が
ること、(2)曲げモーメントMは固定端部A断面(危
険断面)で最大となり、最大曲げ応力を発生すること、
(3)この最大曲げ応力、すなわち最大引張応力および
最大圧縮応力、特に引張側の最大引張応力が固定端部は
りAの許容引張応力と釣合うまではりの曲げが進行する
ことおよび(4)この最大引張応力が固定端部はりAの
許容引張応力を超えたとき、固定端部はりAは破壊する
ことが知られている。
On the other hand, as shown in FIG. 16, when a left end portion A of a beam having a fixed cross-sectional shape is fixed and a load W is applied to a free end portion B, (1) acts on each cross section of the beam. A bending stress σ is generated at each section of the beam due to the bending moment M, causing tensile and compressive strains (elongation and contraction) at the top and bottom of each section, respectively, causing the beam to bend. (2) The bending moment M Is maximum at the fixed end A cross section (dangerous cross section) and generates the maximum bending stress.
(3) the bending of the beam proceeds until the maximum bending stress, that is, the maximum tensile stress and the maximum compressive stress, particularly the maximum tensile stress on the tensile side, is balanced with the allowable tensile stress of the fixed end beam A; When the maximum tensile stress exceeds the allowable tensile stress of the fixed end beam A, the fixed end beam A is known to break.

【0007】このことは、図17に示す上記片持はりの
たわみ曲線 y=W/6EI(x3 −3l2 x+2l3 ) (式中、yはたわみ、Wは荷重、Eは縦弾性係数、Iは
断面二次モーメント、xは荷重の作用点からの距離、l
は長さを示す。)からも明らかである。すなわち、はり
は荷重Wによる曲げモーメントMの作用によって、スパ
ンの全長lにわたることなく、主として固定端部Aの近
傍、つまり、たわみ曲線の微分係数が著しく変化してい
る領域において最も大きく曲げられ、その他の領域では
殆んど曲げられず、緩い曲線、あるいは直線状を呈して
曲げを生じていることが観察される。
This is because the deflection curve y of the cantilever shown in FIG. 17 is y = W / 6EI (x 3 -3l 2 x + 2l 3 ) (where y is the deflection, W is the load, E is the longitudinal elastic modulus, I is the moment of inertia of area, x is the distance from the point of application of the load, l
Indicates a length. ). That is, the beam is bent the most by the action of the bending moment M due to the load W without extending over the entire length l of the span, mainly in the vicinity of the fixed end A, that is, in a region where the differential coefficient of the deflection curve is significantly changed, In other regions, it is observed that the film is hardly bent and has a gentle curve or a straight line and is bent.

【0008】以上の知見から、従来の耐震性可とう管が
地中に埋設されて他端部Bに大きな地震力Wを受け、図
14、または図15に示すような曲げ(変位角度θ)、
または偏心(変位量δ)を生じた場合には、次のような
プロセスを経て損傷、または破壊するものと推測され
る。上記地震力Wによる曲げモーメントにより、可とう
管各断面の最上部および最下部にそれぞれ引張応力およ
び圧縮応力が発生し、それぞれ伸びおよび縮みを生じ
て、可とう管は曲がり始める。そして、最大曲げモーメ
ントが作用する固定端部Aの引張側胴壁部aにおいて最
大引張応力が発生し、この最も大きい引張応力によっ
て、胴壁部a内のゴム被覆繊維補強層の繊維コードがそ
の許容伸び率を超えて引き伸ばされて破断する。その結
果、胴壁部aに亀裂、または引裂きが生じたり、あるい
は胴壁自体が破壊したりする。
From the above findings, a conventional earthquake-resistant flexible pipe is buried in the ground and receives a large seismic force W at the other end B, thereby bending (displacement angle θ) as shown in FIG. 14 or FIG. ,
Or, when eccentricity (displacement amount δ) occurs, it is presumed that damage or breakage occurs through the following process. Due to the bending moment due to the seismic force W, a tensile stress and a compressive stress are generated at the uppermost portion and the lowermost portion of each section of the flexible pipe, respectively, and the flexible pipe starts to bend by causing elongation and contraction, respectively. Then, a maximum tensile stress is generated in the tension side body wall portion a of the fixed end portion A where the maximum bending moment acts, and the fiber cord of the rubber-coated fiber reinforcement layer in the body wall portion a is caused by the largest tensile stress. It is stretched beyond the allowable elongation and breaks. As a result, cracks or tears occur in the body wall portion a, or the body wall itself is broken.

【0009】このことは、軟弱地盤側の可とう管固定端
部Bについても、相対的に全く同様であって、固定端部
Bの引張側胴壁部f、またはf’に亀裂、または引裂き
を生じ、あるいは破壊を起こすものと考えられる。
The same is true for the flexible pipe fixed end portion B on the soft ground side, and the same applies to the flexible pipe fixed end portion B. The crack or tear is generated at the tension side body wall portion f or f 'of the fixed end portion B. Or destruction.

【0010】以上、述べてきたように、図10(a)〜
13(a)に示す、従来の可とう管は、地震力により曲
げ、または偏心を生じて、図10(b)〜図13(b)
に示すように、固定端部AおよびBの引張側胴壁部にお
いて、亀裂、または引裂きを生じるか、あるいは胴壁部
が破壊したりして使用不能となる場合が多かった。その
ため、さらに目標とする大きい地震力から想定されるよ
り大きい曲げ(変位角度θが大きいか、曲率半径ρが小
さいこと)、または偏心(変位量δが大きいこと)を実
現することは困難であった。
As described above, as shown in FIGS.
The conventional flexible pipe shown in FIG. 13 (a) is bent or eccentric due to seismic force, resulting in FIGS. 10 (b) to 13 (b).
As shown in FIG. 6, cracks or tears were generated at the tension side trunk wall portions of the fixed ends A and B, or the trunk wall portion was broken, so that it became unusable in many cases. Therefore, it is difficult to realize a larger bending (a large displacement angle θ or a small radius of curvature ρ) or an eccentricity (a large displacement amount δ), which is assumed from a target large seismic force. Was.

【0011】また、製造面からみても、図13(a)に
示すものは、鋼製コイル状補強線材間の円筒状胴壁を外
周方向に膨らませて蛇腹状胴壁を形成するとき、円筒状
胴壁とマンドレルとの間に適度に制御した空気圧、また
は水圧を加えながら、圧縮装置により軸方向に圧縮しな
ければならないので、多くの設備、工程および時間を要
するという不具合があった。
Also, from the manufacturing point of view, the one shown in FIG. 13 (a) shows that when the cylindrical body wall between the coiled reinforcing wires made of steel is expanded in the outer peripheral direction to form a bellows-shaped body wall, Since compression must be performed in the axial direction by a compression device while appropriately controlling air pressure or water pressure between the body wall and the mandrel, there is a problem that many facilities, processes and time are required.

【0012】[0012]

【課題を解決するための手段】この発明は、上述した点
に鑑みてなされたものであって、大きな地震力による地
盤ひずみ、すなわち地盤の縦ずれおよび横ずれに自在に
追随して、きわめて短い可とう部間で大きな曲げ(変位
角度が大きいか曲率半径が小さいこと)および偏心(変
位量が大きいこと)をすることができる可とう管および
鋼製コイル状補強線材を順次ピッチを漸減させるという
簡略にして、精度高く、かつ経済的に、安定した性能を
有する可とう管を製造する方法を提供しようとするもの
である。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and has an extremely short length, which can freely follow ground distortion caused by a large seismic force, that is, vertical displacement and lateral displacement of the ground. Flexible tube and steel coiled reinforcing wire capable of large bending (large displacement angle or small radius of curvature) and eccentricity (large displacement) between flexible sections. Accordingly, it is an object of the present invention to provide a method of manufacturing a flexible tube having stable performance with high accuracy and economically.

【0013】[0013]

【発明の実施の形態】この発明の可とう管によれば、繊
維コードをホースの釣合角度より小さい一定の成形角度
で積層して可とう管成形体を作り、可とう管の円筒状胴
壁の断面中央部に配置された鋼製コイル状補強線材のピ
ッチを圧縮により中央部から両端部にかけて漸減させる
とともに、その鋼製コイル状補強線材のピッチ間の円筒
状胴壁を外周方向に円弧状に膨らませた蛇腹状山部を形
成した構造にすることにより、可とう管の両端部へかけ
て断面二次モーメントIならびに断面係数Zを増加し
て、その変形反力、すなわち曲げ剛性EIおよび抵抗モ
ーメントσZを増大させることができる。その結果、可
とう管が、地震力による地盤の縦ずれ、横ずれなどによ
り管軸直角方向の曲げ、または管軸直角方向への変位
(偏心)を起こしてその固定両端部に最大曲げ応力が発
生しても、両端部にかけてピッチが漸減した鋼製コイル
状補強線材およびそれと一体化された伸縮自在な蛇腹状
胴壁とがこの応力に追随して管軸直角方向に自在に変形
して曲がり、あるいは自在に管軸直角方向への変位(偏
心)をすることができる。
According to the flexible pipe of the present invention, the fiber cords are laminated at a fixed forming angle smaller than the equilibrium angle of the hose to form a flexible pipe formed body, and the cylindrical body of the flexible pipe is formed. The pitch of the steel coiled reinforcing wire placed at the center of the cross section of the wall is gradually reduced from the center to both ends by compression, and the cylindrical body wall between the pitches of the steel coiled reinforcing wire is made circular in the outer circumferential direction. By having a structure in which a bellows-shaped peak portion bulged in an arc shape is formed, the sectional moment of inertia I and the section modulus Z are increased toward both ends of the flexible tube, and the deformation reaction force, that is, the bending rigidity EI and The resistance moment σZ can be increased. As a result, the flexible pipe bends in the direction perpendicular to the pipe axis due to vertical displacement or lateral displacement of the ground due to seismic force, or causes displacement (eccentricity) in the direction perpendicular to the pipe axis, causing maximum bending stress at both fixed ends. Even so, the steel coil-shaped reinforcing wire rod whose pitch is gradually reduced to both ends and the elastic bellows-like body wall integrated with it are freely deformed and bent in the direction perpendicular to the pipe axis following this stress, Alternatively, displacement (eccentricity) in the direction perpendicular to the tube axis can be freely performed.

【0014】このように、大きな地震力を受けても、中
央部から両端部にかけてピッチが漸減した鋼製コイル状
補強線材およびこれと一体化された蛇腹状胴壁とが、大
きな曲げおよび偏心の作用を奏することがこの発明の特
徴である。
As described above, even if a large seismic force is applied, the steel coil-shaped reinforcing wire having a gradually reduced pitch from the center to both ends and the bellows-shaped body wall integrated with the steel coil-shaped reinforcing wire have large bending and eccentricity. It is a feature of the present invention that it works.

【0015】また、この発明の製造方法によれば、鋼製
コイル状補強線材間の円筒状胴壁を外周方向に膨らませ
て蛇腹状山部を形成するとき、円筒状胴壁内面を加圧し
ながら軸方向に圧縮すれば、コイル状補強線材のピッチ
を中央部から端部にかけて漸減させるとともに、これと
一体的にコイル状補強線材間の円筒状胴壁を外側に膨ら
ませて蛇腹状山部を形成することができる。
Further, according to the manufacturing method of the present invention, when the cylindrical body wall between the steel coiled reinforcing wires is expanded in the outer peripheral direction to form a bellows-like crest portion, the inner surface of the cylindrical body wall is pressurized. If compressed in the axial direction, the pitch of the coiled reinforcing wire is gradually reduced from the center to the end, and the cylindrical body wall between the coiled reinforcing wires is expanded outward integrally with this to form a bellows-like mountain can do.

【0016】[0016]

【実施例】以下、図面を参照し、この発明の一実施例を
具体的に説明する。図1は本発明の可とう管1の構成を
示す部分破断側面図である。すなわち、この可とう管1
は、内外ゴム層2、3からなる円筒状胴壁の断面中央部
に鋼製コイル状補強線材7が配置され、このコイル状補
強線材7の内側および外側にゴム被覆繊維補強層4、5
が設けられ、前記コイル状補強線材7のピッチPが中央
部から両端部にかけて漸減するとともに、このコイル状
補強線材7間の円筒状胴壁が外周方向へ膨らんだ蛇腹状
山部に形成されて可とう部が構成され、その両端部がフ
ランジ10に固定されたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a partially cutaway side view showing a configuration of a flexible tube 1 of the present invention. That is, this flexible tube 1
The steel coiled reinforcing wire 7 is disposed at the center of the cross section of the cylindrical body wall composed of the inner and outer rubber layers 2 and 3, and the rubber-coated fiber reinforcing layers 4 and 5 are provided inside and outside the coiled reinforcing wire 7.
The pitch P of the coil-shaped reinforcing wire 7 is gradually reduced from the center to both ends, and the cylindrical body wall between the coil-shaped reinforcing wires 7 is formed in a bellows-shaped mountain bulging outward. A flexible portion is formed, and both ends thereof are fixed to the flange 10.

【0017】内外面ゴム層2、3は、天然ゴム、または
合成ゴムからなる公知の、ゴム管に準じたゴム配合物を
予めシートに成形し、これを積層して形成される。
The inner and outer rubber layers 2 and 3 are formed by forming a known rubber compound made of natural rubber or synthetic rubber according to a rubber tube into a sheet in advance and laminating the sheet.

【0018】ゴム被覆繊維補強層4、5は、繊維からな
るすだれ織布に未加硫ゴム組成物をトッピング処理した
繊維コードを、内面ゴム層2の表面およびコイル状補強
線材7ならびに中間ゴム層6の表面に、可とう管の軸線
に対し、ホースの釣合角度より小さい成形角度45°〜
50°で繊維方向が交差するように交互に2プライ、合
計4プライ巻付け、積層して形成される。このゴム被覆
繊維補強層4、5に使用する繊維としては、ナイロン、
ポリエステル、アラミド、カーボンなどの有機繊維およ
びガラス、スチールなどの無機、金属繊維などがあげら
れる。なお、ホースの釣合角度とは、管軸に対し、所定
の角度で巻付けられた繊維コードが、それにより形成さ
れた未加硫積層成形管体が軸方向に圧縮されたり、また
は管体内周面が外周方向に加圧されたとき、径方向およ
び軸方向に変位して、力学的に釣合って静止する角度を
いい、通常、軸線に対し54°44′である。
The rubber-coated fiber reinforcing layers 4 and 5 are made of a fiber cord obtained by topping an unvulcanized rubber composition on a braided woven fabric made of fibers, the surface of the inner rubber layer 2, the coiled reinforcing wire 7 and the intermediate rubber layer. Forming angle 45 °, smaller than the equilibrium angle of the hose, with respect to the axis of the flexible tube on the surface of No. 6
Two plies are alternately wound so that the fiber directions intersect at 50 °, for a total of four plies, and are laminated and formed. The fibers used for the rubber-coated fiber reinforcing layers 4 and 5 include nylon,
Examples include organic fibers such as polyester, aramid, and carbon, and inorganic and metal fibers such as glass and steel. In addition, the equilibrium angle of the hose means that the fiber cord wound at a predetermined angle with respect to the pipe axis is used to compress the unvulcanized laminated molded pipe body formed in the axial direction, or When the peripheral surface is pressed in the outer peripheral direction, it is displaced in the radial direction and the axial direction and mechanically balanced to stand still, and is usually 54 ° 44 ′ with respect to the axis.

【0019】中間ゴム層6は、公知のゴム配合物からな
るものであって、コイル状補強線材7ならびに内、外側
ゴム被覆繊維補強層4,5を一体化するとともに外周方
向に膨らんだ蛇腹状胴壁の伸縮・湾曲作用を容易にす
る。
The intermediate rubber layer 6 is made of a known rubber compound. The intermediate rubber layer 6 integrates the coil-shaped reinforcing wire 7 and the inner and outer rubber-coated fiber reinforcing layers 4 and 5 and has a bellows shape bulging in the outer peripheral direction. Facilitates the expansion / contraction / bending action of the torso wall.

【0020】鋼製コイル状補強線材7は、単線材が所定
ピッチで連続的に螺旋状に巻かれた円筒コイルばねであ
って、小さいばね定数を有していて、可とう管円筒状胴
壁の蛇腹状山部の伸び、縮みに追随して管軸方向ならび
に管軸直角方向に容易に変位するものである。このコイ
ル状補強線材7は、地震時の地盤ひずみから可とう管の
変位角度ならびに変位量を予測し、埋設管径に応じて、
好ましい横弾性係数その他の機械的特性を有する線材を
適宜に選択し、線径、巻数などを決定し、所定のばね定
数が得られるように設計し、製作される。そして、この
鋼製コイル状補強線材7を形成する線材としては、弾性
限界が高い金属線材料、たとえば、ばね鋼線、ピアノ線
などのばね用炭素鋼線、ステンレス鋼線などのばね用合
金鋼線、またはりん青銅線などのばね用銅合金線などの
単線を用いることができる。このコイル状補強線材7
は、製造時には形成された内側ゴム被覆繊維補強層4の
外周面上にその端部から軸方向に嵌め通されて長手方向
全体にわたって配置される。なお、コイル状補強線材7
は、上記のように単独に使用するほか、予めその両端部
にフランジ10をニップル9を介して溶接などにより固
定し、一体構造部品として使用することもできる。
The steel coiled reinforcing wire 7 is a cylindrical coil spring in which a single wire is continuously spirally wound at a predetermined pitch, has a small spring constant, and has a flexible tubular cylindrical body wall. In accordance with the extension and shrinkage of the bellows-shaped ridge, it is easily displaced in the tube axis direction and the direction perpendicular to the tube axis. The coiled reinforcing wire 7 predicts the displacement angle and displacement of the flexible pipe from the ground strain at the time of the earthquake, and according to the buried pipe diameter,
A wire having a preferable transverse elastic modulus and other mechanical properties is appropriately selected, the wire diameter, the number of turns, and the like are determined, and the wire is designed and manufactured so as to obtain a predetermined spring constant. The wire forming the steel coiled reinforcing wire 7 is a metal wire material having a high elasticity limit, for example, a spring steel wire, a carbon steel wire for a spring such as a piano wire, and a spring alloy steel such as a stainless steel wire. A single wire such as a wire or a copper alloy wire for a spring such as a phosphor bronze wire can be used. This coiled reinforcing wire 7
Is axially fitted from the end on the outer peripheral surface of the inner rubber-coated fiber reinforcing layer 4 formed at the time of manufacture, and is disposed over the entire longitudinal direction. In addition, the coil-shaped reinforcing wire 7
Can be used alone as described above, or flanges 10 can be fixed to both ends thereof in advance by welding or the like via nipples 9 and used as an integral structural component.

【0021】端部リング8は、図6に示すように、フラ
ンジ10の締結面上の開口周縁部に設けられ、内側ゴム
被覆繊維補強層4の端縁部4aを巻き上げ、折り返して
フランジ10の締結面との間に挟み込んで固定するとと
もに、内面ゴム層2の端縁部2aも巻き上げてフランジ
10の締結面に固定させることにより、可とう部を強固
にフランジ10に結合させる役割を担うものである。こ
の端部リング8としては機械的強度を有する、断面矩形
の環状鋼製部材が望ましい。
As shown in FIG. 6, the end ring 8 is provided at the periphery of the opening on the fastening surface of the flange 10 and winds up the end 4a of the inner rubber-coated fiber reinforcing layer 4 and turns it back to form the flange 10. It has a role of firmly connecting the flexible portion to the flange 10 by sandwiching and fixing the flexible portion to the flange 10 by sandwiching and fixing the edge portion 2a of the inner surface rubber layer 2 to the fastening surface of the flange 10 as well. It is. The end ring 8 is desirably an annular steel member having a mechanical strength and a rectangular cross section.

【0022】ニップル9は、予めフランジ10に溶接な
どにより固定されていて、継手の製造時には、フランジ
と一体となった単一部品となるものである。
The nipple 9 is fixed to the flange 10 in advance by welding or the like, and becomes a single part integrated with the flange when the joint is manufactured.

【0023】フランジ10は、予めニップル9を溶接な
どで取り付け、製造時には単一部品として扱うことがで
きる。そして、配管施工時には埋設管フランジにボルト
締結などにより接続される。また、このフランジ10
は、コイル状補強線材7の両端部にニップル9の端部を
溶接などして固定することにより、コイル状補強線材7
と一体構造部品として使用することができる。
The nipple 9 is attached to the flange 10 in advance by welding or the like, and can be handled as a single part during manufacturing. And at the time of piping construction, it is connected to the buried pipe flange by bolting or the like. In addition, this flange 10
The ends of the nipple 9 are fixed to both ends of the coiled reinforcing wire 7 by welding or the like, so that the coiled reinforcing wire 7
And can be used as an integral part.

【0024】マンドレル11は、可とう管積層成形体の
芯型であって、通常使用される構造のもののほか、その
中央部胴壁に水または空気の流通孔などを設けたものな
ど適宜に使用できる。
The mandrel 11 is a core mold of a flexible tube laminated molded body, and has a structure generally used, as well as a mandrel having a water or air circulation hole formed in a central body wall thereof. it can.

【0025】この可とう継手1の製造方法としては、図
2に示すように、まず、マンドレル11の表面に、所定
の幅のゴムシートを巻き付け、突き合わせ部を接着剤な
どで接合して円筒状の内面ゴム層2をつくる。また、ゴ
ムシートの代わりにゴムチューブを用いてもよくこの場
合は接合作業を省くことができる。
As shown in FIG. 2, a method of manufacturing the flexible joint 1 is as follows. First, a rubber sheet having a predetermined width is wound around the surface of the mandrel 11, and the butted portion is joined with an adhesive or the like to form a cylindrical shape. The inner rubber layer 2 is made. Further, a rubber tube may be used instead of the rubber sheet, and in this case, the joining operation can be omitted.

【0026】次に、図3に示すように、この内面ゴム層
2の外周面上に、予め所定の幅に裁断された帯状のトッ
ピング処理繊維コード14を管の軸線に対し、ホースの
釣合角度より小さい成形角度φで繊維方向15が交叉す
るように、交互に2プライ巻き付けて積層し、内側ゴム
被覆繊維補強層4を形成する。この成形角度φは45°
〜50°の範囲で設定される。この成形角度がホースの
釣合角度より小さい場合は、図19〜20に示すよう
に、巻付け円筒状成形体の径方向および軸方向に外力を
加えると、繊維コードがその2方向に変位し、両方向の
力が釣合う54°44′で静止する。その結果、図9に
示すように、外径が増すとともに円筒状胴壁の厚みが増
加し、曲げ剛性(変形反力)が大きくなる。
Next, as shown in FIG. 3, on the outer peripheral surface of the inner rubber layer 2, a band-shaped topping treated fiber cord 14 cut in advance to a predetermined width is balanced with the hose axis with respect to the axis of the pipe. Two plies are wound alternately and laminated so that the fiber directions 15 intersect at a forming angle φ smaller than the angle, and the inner rubber-coated fiber reinforcing layer 4 is formed. This forming angle φ is 45 °
It is set in the range of 50 °. When this forming angle is smaller than the equilibrium angle of the hose, as shown in FIGS. 19 to 20, when an external force is applied in the radial and axial directions of the wound cylindrical molded body, the fiber cord is displaced in the two directions. At 54 ° 44 'where the forces in both directions are balanced. As a result, as shown in FIG. 9, as the outer diameter increases, the thickness of the cylindrical body wall increases, and the bending rigidity (deformation reaction force) increases.

【0027】続いて、図4に示すように、この内側ゴム
被覆繊維補強層4の左端部外周面上に端部リング8を嵌
め込み、次いでニップル9付きフランジ10、コイル状
補強線材7およびニップル9´付きフランジ10´を補
強層4の他端からその表面を滑らすように嵌め込んで行
き、長手方向全体にわたって嵌入、配置したのち、端部
リング8´を嵌入する。
Subsequently, as shown in FIG. 4, an end ring 8 is fitted on the outer peripheral surface of the left end of the inner rubber-coated fiber reinforcing layer 4, and then a flange 10 with a nipple 9, a coiled reinforcing wire 7 and a nipple 9 The 'with flange 10' is fitted from the other end of the reinforcing layer 4 so as to slide on its surface, fitted and arranged over the entire longitudinal direction, and then the end ring 8 'is fitted.

【0028】図5に示すように、両端の端部リング8、
8´を芯にして、内側ゴム被覆繊維補強層4の端縁部4
a、4a´で巻き、折り返し重ね、その後に内面ゴム層
2の端縁部2a、2a´も巻き上げる。
As shown in FIG. 5, the end rings 8 at both ends,
8 ′ as a core, the edge 4 of the inner rubber-coated fiber reinforcing layer 4
a, 4a ', folded back and overlapped, and thereafter, the edges 2a, 2a' of the inner rubber layer 2 are also wound up.

【0029】次いで、図6に示すように、フランジ1
0、10´およびコイル状補強線材7を両側へ引き伸ば
し、フランジ10、10´を端部リング8、8´に密着
させるとともに、コイル状補強線材7の両端部をフラン
ジニップル9、9´に近接させる。なお、コイル状補強
線材7の両端部にフランジ10を固定した一体構造部品
を使用する場合には、図4に示すように、内側ゴム被覆
繊維補強層上中央部へ嵌入、配置するだけでよい。その
後、図7に示すように、この内側ゴム被覆繊維補強層4
の表面に、ゴムシート6をコイル状補強線材7のピッチ
間を埋めるように巻付け、中間ゴム層6をつくる。
Next, as shown in FIG.
0, 10 'and the coiled reinforcing wire 7 are stretched to both sides, and the flanges 10, 10' are brought into close contact with the end rings 8, 8 ', and both ends of the coiled reinforcing wire 7 are close to the flange nipples 9, 9'. Let it. In the case of using an integrally-structured component in which the flanges 10 are fixed to both ends of the coiled reinforcing wire 7, as shown in FIG. 4, it is only necessary to fit and arrange in the central portion on the inner rubber-coated fiber reinforcing layer. . Thereafter, as shown in FIG.
A rubber sheet 6 is wound around the surface of the wire so as to fill the pitch between the coiled reinforcing wires 7 to form an intermediate rubber layer 6.

【0030】次に、中間ゴム層6の表面に、外側ゴム被
覆繊維補強層5を内側ゴム被覆繊維補強層4と同じ構成
と方法で形成し、その外側ゴム被覆繊維補強層5の端縁
部をフランジニップル9の外周面に貼りつける。さら
に、この外側ゴム被覆繊維補強層5の表面にゴムシート
を巻き、接合して外面ゴム層3をつくる。
Next, an outer rubber-coated fiber reinforcement layer 5 is formed on the surface of the intermediate rubber layer 6 by the same configuration and method as the inner rubber-coated fiber reinforcement layer 4. On the outer peripheral surface of the flange nipple 9. Further, a rubber sheet is wound around the surface of the outer rubber-coated fiber reinforcement layer 5 and joined to form the outer rubber layer 3.

【0031】このようにして得られた、図7に示すフラ
ンジ付き円筒成形体を、図8(a)の示すように、その
両端部から押し金具12により軸方向に所定距離Lだけ
圧縮して、図9に示すように、コイル状補強線材7のピ
ッチを円筒成形体の中央部のP0から端部のPまで漸次
減少させるとともに、コイル状補強線材間の円筒状胴壁
を外周方向に膨らませて蛇腹状山部を形成させる。この
とき、コイル状補強線材7の巻き径D0 およびコイル状
補強線材間の円筒状胴壁の厚みt0 はともに中央部から
端部にかけて漸増し、それぞれtおよびDとなる。な
お、円筒成形体を軸方向に圧縮するとき、円筒成形体の
圧縮を容易にするために、マンドレル11の表面にワッ
クスを塗布したり、パイプの一部に水が流通する穴をあ
けたマンドレルを用いて、成形体とそのマンドレルとの
間に空気圧、または水圧を加えたり、あるいはこれらの
マンドレルにゴム製バックを設け、成形後圧縮空気を封
入して成形体を浮上させるなどの手段が好ましく用いら
れる。通常これらの圧力は1〜20kgf/cm2 の範
囲で適用される。
The cylindrical molded body with a flange shown in FIG. 7 obtained as described above is compressed axially by a predetermined distance L from both ends thereof by pressing fittings 12 as shown in FIG. as shown in FIG. 9, with progressively reducing the pitch of the coiled reinforcement wire 7 from P 0 of the central portion of the cylindrical molded bodies to P end, the cylindrical barrel wall between the coiled reinforcement wire in the outer circumferential direction Inflate to form bellows. At this time, the winding diameter D 0 of the coil-shaped reinforcing wire 7 and the thickness t 0 of the cylindrical body wall between the coil-shaped reinforcing wires gradually increase from the center to the end, and become t and D, respectively. When the cylindrical molded body is compressed in the axial direction, wax is applied to the surface of the mandrel 11 or a mandrel having a hole through which water flows through a part of the pipe is provided to facilitate compression of the cylindrical molded body. Preferably, means such as applying air pressure or water pressure between the molded body and its mandrel, or providing a rubber bag on these mandrels, sealing the compressed air after molding, and floating the molded body are preferable. Used. Usually, these pressures are applied in the range of 1 to 20 kgf / cm 2 .

【0032】続いて、この蛇腹状山形胴壁の外周面を布
ラッピングで締め付けてから、加硫を行った後、マンド
レル11と押し金具12を外して図1の製品を得る。
Subsequently, after the outer peripheral surface of the bellows-shaped chevron wall is tightened by cloth wrapping and vulcanization is performed, the mandrel 11 and the press fitting 12 are removed to obtain the product shown in FIG.

【0033】比較例1 直径200mmのゴム製バッグ付きマンドレルに天然ゴ
ムシートを巻き付け接合して内面ゴム層(硬度60°、
厚さ8mm)を形成し、その外周面上に天然ゴムでトッ
ピング処理した1260デニールポリエステルすだれ織
コード(糸径0.7mm、25本/25mm巾)を製品
の軸線に対し、成形角度54°44′で交互に2プライ
積層して内側ゴム被覆繊維補強層(2層、厚さ1mm)
を得た。次にこの外周面上の左端部に端部リング(SS
400、外径240mm、内径220mm、厚さ10m
m)を嵌入し、他方の右端部からニップル(STK、外
径220mm、厚さ5mm)付フランジ(200A J
IS 10K)、次にみがき棒鋼リング(SS400、
線径8mm、内径220mm)6個をピッチ90mmで
中央領域に、続いてもう1個の上記と同じ端部リングを
右端部に順次嵌入して配置した。両端の端部リングを芯
にして、まず、内側ゴム被覆繊維補強層を巻付け、折り
返した後、その上にさらに内面ゴムも巻付け、折り上げ
た。次いで、みがき棒鋼リングの両端部を両端のフラン
ジニップルに密着させた。そしてみがき棒鋼リング間に
中間ゴム層(天然ゴム、幅31mm、厚さ8mm)を巻
き込んで埋め、さらにその上に内側ゴム被覆繊維補強層
のときと同じ要領で外側ゴム被覆繊維補強層(天然ゴム
トッピング処理1260デニールポリエステルすだれ織
コード、2プライ、厚さ1mm)を形成した。次にその
上に外面ゴム層(天然ゴム、硬度60°、厚さ4mm)
を巻き付けた後、マンドレル表面に付設したゴム製バッ
グに4kgf/cm2 の加圧水を封入して、得られた積
層成形管内壁を外周方向に加圧しながら、長さ540m
mの積層成形管の両端を押し金具でそれぞれ60mmだ
け内側へ圧縮して、ピッチ70mm、山数6、長さ42
0mmの未加硫成形品を得た。そして、この未加硫成形
品を全長420mmにセットした状態で、加熱加硫(1
45℃×60分)を行なった後、冷却してマンドレルと
押し金具を外して、長さ420mm、内径200mmの
可とう管サンプルを得た。
Comparative Example 1 A natural rubber sheet was wound around a mandrel with a rubber bag having a diameter of 200 mm and joined to form an inner rubber layer (hardness 60 °, hardness 60 °).
A 1260 denier polyester blind cloth cord (yarn diameter 0.7 mm, 25 threads / 25 mm width) topped with natural rubber and formed on the outer peripheral surface at a molding angle of 54 ° 44 with respect to the axis of the product. 'And alternately laminate two plies on the inner rubber-coated fiber reinforcement layer (two layers, thickness 1 mm)
I got Next, an end ring (SS) is attached to the left end on this outer peripheral surface.
400, outer diameter 240mm, inner diameter 220mm, thickness 10m
m) and a flange (200AJ) with a nipple (STK, outer diameter 220 mm, thickness 5 mm) from the other right end.
IS 10K), then a polished bar steel ring (SS400,
Six (diameter: 8 mm, inner diameter: 220 mm) were placed in the central region at a pitch of 90 mm, and another one of the same end rings as described above was sequentially fitted to the right end. With the end rings at both ends as cores, first, the inner rubber-coated fiber reinforcing layer was wound and folded, and then the inner rubber was further wound thereon and folded up. Next, both ends of the polished steel bar ring were brought into close contact with the flange nipples at both ends. An intermediate rubber layer (natural rubber, width 31 mm, thickness 8 mm) is wound around and buried between the polish bar steel rings, and the outer rubber-coated fiber reinforcing layer (natural rubber) is further formed thereon in the same manner as the inner rubber-coated fiber reinforcing layer. Topping treatment 1260 denier polyester cord fabric cord, 2 plies, thickness 1 mm) was formed. Next, an outer rubber layer (natural rubber, hardness 60 °, thickness 4 mm) on it
Is wound, 4 kgf / cm 2 of pressurized water is sealed in a rubber bag attached to the surface of the mandrel, and the inner wall of the obtained laminated molded tube is 540 m long while being pressed in the outer peripheral direction.
m are pressed inward by 60 mm each with a press fitting, and the pitch is 70 mm, the number of peaks is 6, and the length is 42.
An unvulcanized molded article of 0 mm was obtained. Then, with this unvulcanized molded product set to a total length of 420 mm, heat vulcanization (1
(45 ° C. × 60 minutes), and then cooled to remove the mandrel and the metal fitting to obtain a flexible tube sample having a length of 420 mm and an inner diameter of 200 mm.

【0034】実施例1 直径200mmのゴム製バッグ付マンドレルに内面ゴム
層(天然ゴム、硬度60°、厚さ8mm)を形成し、そ
の上に天然ゴムでトッピング処理した1260デニール
ポリエステルすだれ織コード(糸径0.7mm、25本
/25mm巾)を製品の軸線に対し、成形角度50°で
交互に2プライ積層して内側ゴム被覆繊維補強層(2
層、厚さ1mm)を得た。次にこの外周面上の左端部に
端部リング(SS400、外径240mm、内径220
mm、厚さ10mm)を嵌入し、他方の右端部からニッ
プル(STK、外径220mm、厚さ5mm)付フラン
ジ(200A JIS 10K)とピッチ90mmを有
するみがき棒鋼コイル(SS400、線径8mm、内径
220mm、有効巻数6)との一体構造部品を中央部領
域に、続いてもう1個の上記と同じ端部リングを右端部
に順次嵌入して配置した。次に、両端の端部リングを芯
にして、まず、内側ゴム被覆繊維補強層を巻付け、折り
返した後、その上に、さらに内面ゴムも巻付け、折り上
げた。次いでみがき棒鋼コイル両端のフランジを両端の
端部リングへ押し、密着させた。そしてみがき棒鋼コイ
ルのピッチ間に中間ゴム層(天然ゴム、幅31mm、厚
さ8mm)を巻き込んで埋め、さらにその上に外側ゴム
被覆繊維補強層(天然ゴムトッピング処理1260デニ
ールポリエステルすだれ織コード、2プライ、厚さ1m
m)を内側ゴム被覆繊維補強層のときと同じ要領で形成
した。次にその上に外面ゴム層(天然ゴム、硬度60
°、厚さ4mm)を巻き付けた後、マンドレル表面に付
設したゴム製バッグに4kgf/cm2 の水を封入し
て、得られた積層成形管内壁を外周方向に加圧しなが
ら、長さ540mmの積層成形管の両端を押し金具でそ
れぞれ60mmだけ内側へ圧縮し、ピッチが中央部から
端部へかけて80mm、70mmおよび60mm、山数
6、長さ420mmの未加硫成形品を得た。そしてこの
未加硫成形品を全長420mmにセットした状態で、加
熱加硫(145℃×60分)を行なった後、冷却してマ
ンドレルと押し金具を外して、長さ420mm、内径2
00mmの可とう管サンプルを得た。
Example 1 An inner rubber layer (natural rubber, hardness 60 °, thickness 8 mm) was formed on a mandrel with a rubber bag having a diameter of 200 mm, and a 1260 denier polyester blind cloth cord (topping treated with natural rubber) was formed thereon. A yarn diameter of 0.7 mm, 25 threads / 25 mm width) is alternately laminated in two plies at a molding angle of 50 ° with respect to the axis of the product, and the inner rubber-coated fiber reinforcement layer (2
Layer, thickness 1 mm). Next, an end ring (SS400, outer diameter 240 mm, inner diameter 220
mm, thickness 10 mm), and a nipple (STK, outer diameter 220 mm, thickness 5 mm) with a flange (200A JIS 10K) and a 90 mm pitch polished bar steel coil (SS400, wire diameter 8 mm, inner diameter) from the other right end An integral part with 220 mm and an effective number of turns of 6) was placed in the central region, followed by another end ring identical to the above at the right end. Next, using the end rings at both ends as cores, first, the inner rubber-coated fiber reinforcement layer was wound and folded, and then the inner rubber was further wound thereon and folded up. Next, the flanges at both ends of the polished bar steel coil were pressed against the end rings at both ends to bring them into close contact. Then, an intermediate rubber layer (natural rubber, width 31 mm, thickness 8 mm) is wound and filled between the pitches of the polishing steel bar coil, and an outer rubber-coated fiber reinforcing layer (natural rubber topping-treated 1260 denier polyester blind cloth cord, Ply, thickness 1m
m) was formed in the same manner as for the inner rubber-coated fiber reinforcing layer. Next, an outer rubber layer (natural rubber, hardness 60
°, 4 mm in thickness), and then 4 kgf / cm 2 of water was sealed in a rubber bag attached to the surface of the mandrel. Both ends of the laminated molded tube were each compressed inwardly by 60 mm using a metal fitting to obtain an unvulcanized molded product having a pitch of 80 mm, 70 mm and 60 mm, a peak number of 6, and a length of 420 mm from the center to the end. Then, with this unvulcanized molded product set to a total length of 420 mm, it is heated and vulcanized (145 ° C. × 60 minutes), then cooled, and the mandrel and the press fitting are removed, and the length is 420 mm and the inner diameter is 2 mm.
A 00 mm flexible tube sample was obtained.

【0035】本発明の実施例1で得られた可とう管サン
プルを最も許容偏心量が大きいとされた比較例1の従来
品とともに、変位(偏心)特性テストを行なった。その
結果、本発明の実施例1の可とう管サンプルの変位量δ
は480mmであり、これに対し比較例1の従来品サン
プルは260mmであった。変位特性テストにおける変
位量δはサンプルを偏心させ、荷重Wで最大曲げ応力
(最大引張応力)の発生する固定端断面におけるゴム被
覆繊維補強層の繊維コードの切断時の変位量を表わす。
また、この繊維コードの切断時における曲げ変位角度は
それぞれ70°および32°であった。
A displacement (eccentricity) characteristic test was performed on the flexible tube sample obtained in Example 1 of the present invention together with the conventional product of Comparative Example 1 which was determined to have the largest allowable eccentricity. As a result, the displacement amount δ of the flexible tube sample according to the first embodiment of the present invention.
Was 480 mm, whereas the conventional product sample of Comparative Example 1 was 260 mm. The displacement amount δ in the displacement characteristic test represents the displacement amount at the time of cutting the fiber cord of the rubber-coated fiber reinforcing layer at the fixed end cross section where the sample is eccentric and the maximum bending stress (maximum tensile stress) occurs under the load W.
The bending displacement angles at the time of cutting the fiber cord were 70 ° and 32 °, respectively.

【0036】上記の測定結果から明らかなように、本発
明により得られる可とう管は比較例として選んだ従来の
可とう管と比較して、特に偏心(変位量)、曲げ(変位
角度)など材料力学的特性に大きな改良がみられた。す
なわち、本発明の構造による可とう管は従来のものに比
べて、約2倍の偏心および曲げを生じ、同一量の変位に
要する偏心反力および曲げ反力は1/2と小さい。これ
は、本発明の可とう管の構造が管の中央部から両端部に
かけて曲げ剛性(変形反力)および抵抗モーメントを漸
増し、両端部で最大となって、地震力による最大曲げ応
力に耐えることができるようになった結果の証左であ
る。これは、従来よりさらに大きい地震時の地盤の管軸
直角方向への変位にも十分追随が可能であることを示唆
するものである。これは、本発明可とう管の端部へかけ
ての漸減ピッチを有する鋼製コイル状補強線材と漸増厚
みを有する蛇腹状胴壁との構成が大きく寄与しているも
のと推測される。
As is clear from the above measurement results, the flexible tube obtained by the present invention is particularly different from the conventional flexible tube selected as a comparative example in terms of eccentricity (displacement amount), bending (displacement angle) and the like. Significant improvements in material mechanical properties were observed. That is, the flexible tube according to the structure of the present invention causes about twice the eccentricity and bending as compared with the conventional one, and the eccentric reaction force and bending reaction force required for the same amount of displacement are as small as 1/2. This is because the flexible pipe structure of the present invention gradually increases the bending stiffness (deformation reaction force) and the resistance moment from the center to both ends of the pipe, becomes maximum at both ends, and withstands the maximum bending stress due to seismic force. It is a testimony to the result of being able to do it. This suggests that it is possible to sufficiently follow the displacement of the ground in the direction perpendicular to the pipe axis during a larger earthquake than before. This is presumed to be largely due to the configuration of the steel coiled reinforcing wire having a gradually decreasing pitch toward the end of the flexible tube of the present invention and the bellows-shaped body wall having a gradually increasing thickness.

【0037】[0037]

【発明の効果】以上、説明したように、この発明の可と
う管によれば、両端部で鋼製コイルピッチを最小にする
とともに、その間の蛇腹状山部胴壁の高さを最大にした
ので、可とう管が曲げ、または偏心を起こしても、この
部分のコイルピッチおよび胴壁が最大に真直ぐに伸ばさ
れ、最大引張応力による伸長に追随できる結果、従来み
られた端部胴壁の破損が防止できるようになった。
As described above, according to the flexible pipe of the present invention, the steel coil pitch is minimized at both ends, and the height of the bellows-like mountain wall is maximized therebetween. Therefore, even if the flexible tube is bent or eccentric, the coil pitch and the body wall of this part are stretched to the maximum straightness, and can follow the elongation due to the maximum tensile stress. Damage can now be prevented.

【0038】また、中央部から両端部にかけて胴壁およ
びコイルの直径ならびに胴壁厚さを漸増させたので、曲
げ剛性(変形反力)も漸増して曲率半径が増大した結
果、従来品にみられた端部におけるきわめて小さな曲率
半径の形成による局部的、破壊的変形を防止した。そし
て、中央部に向って漸次増加する曲率半径の形成による
緩慢な変形を可とう部全体に行わせて、きわめて短い可
とう部、例えば6山部をもつ可とう管で従来品に比べ、
約2倍という大きな曲げおよび偏心を行わせることがで
きるようになった。
Further, since the diameter of the body wall and the coil and the thickness of the body wall are gradually increased from the center to both ends, the bending stiffness (deformation reaction force) is also gradually increased and the radius of curvature is increased. Local and destructive deformation due to the formation of a very small radius of curvature at the end of the cut is prevented. Then, the entire flexible portion is subjected to slow deformation due to the formation of a radius of curvature that gradually increases toward the center portion, so that a very short flexible portion, for example, a flexible tube having six peaks, compared to the conventional product.
Bending and eccentricity as large as about twice can be performed.

【0039】さらに、この発明の製造方法によれば、繊
維コードをホースの釣合角度より小さい一定の成形角度
で積層して円筒状成形体を作り、これを単に圧縮するだ
けで、その中央部から両端部にかけて鋼製コイルピッチ
およびそのピッチ間の蛇腹状胴壁幅を漸減させた構造を
有する可とう管を多くの設備および時間を要することな
く経済的に製造することができるようになった。
Further, according to the production method of the present invention, the fiber cords are laminated at a constant molding angle smaller than the hose balancing angle to form a cylindrical molded body, which is simply compressed, and the central part is formed. The flexible pipe having a structure in which the steel coil pitch and the bellows-like body wall width between the pitches are gradually reduced from to the both ends can be economically manufactured without requiring much equipment and time. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の可とう管の構成を示す部分破断側面図
である。
FIG. 1 is a partially broken side view showing a configuration of a flexible tube according to the present invention.

【図2】マンドレルに内面ゴム層を形成した状態を示す
部分破断側面図である。
FIG. 2 is a partially broken side view showing a state in which an inner rubber layer is formed on a mandrel.

【図3】内面ゴム層に内側ゴム被覆繊維補強シートを巻
回、積層する状態を示す部分破断側面図である。
FIG. 3 is a partially broken side view showing a state in which an inner rubber-coated fiber reinforced sheet is wound around and laminated on an inner rubber layer.

【図4】内側ゴム被覆繊維補強層に端部リング、ニップ
ル付フランジとコイル状補強線材を配置した状態を示す
部分破断側面図である。
FIG. 4 is a partially broken side view showing a state in which an end ring, a flange with a nipple, and a coiled reinforcing wire are arranged on an inner rubber-coated fiber reinforcing layer.

【図5】内側ゴム被覆繊維層および内面ゴム層を端部リ
ングに巻き上げて固定した状態を示す部分破断側面図で
ある。
FIG. 5 is a partially broken side view showing a state in which the inner rubber-coated fiber layer and the inner rubber layer are wound up around an end ring and fixed.

【図6】フランジと端部リングを内側ゴム被覆繊維補強
層と内面ゴム層で固定した状態を示す要部断面図であ
る。
FIG. 6 is a cross-sectional view of a main part showing a state in which the flange and the end ring are fixed by the inner rubber-coated fiber reinforcing layer and the inner rubber layer.

【図7】コイル状補強線材間に中間ゴム層、その上に外
側ゴム被覆繊維補強層、外面ゴム層を形成し、ニップル
に固定した要部断面図である。
FIG. 7 is a cross-sectional view of a main part in which an intermediate rubber layer is formed between coiled reinforcing wires, an outer rubber-coated fiber reinforcing layer and an outer rubber layer are formed thereon, and fixed to a nipple.

【図8】(a)通常のマンドレルで成形した積層成形体
を圧縮して胴壁を膨らませた状態を示す胴壁要部断面図
である。 (b)流通孔を有するマンドレルで胴壁を膨らませた1
例を示す部分破断要部側面図である。
FIG. 8A is a cross-sectional view of a main part of a trunk wall showing a state in which a laminated molded body molded with a normal mandrel is compressed to expand a trunk wall. (B) The body wall is inflated with a mandrel having a flow hole 1
It is a partial fracture | rupture principal part side view which shows an example.

【図9】本発明の製造方法で得られた可とう管の要部拡
大側面図である。
FIG. 9 is an enlarged side view of a main part of a flexible pipe obtained by the manufacturing method of the present invention.

【図10】(a)従来の可とう管の構成を示す部分破断
側面図である。 (b)上記可とう管が偏心したときの状態を示す側面図
である。
FIG. 10A is a partially cutaway side view showing a configuration of a conventional flexible pipe. (B) It is a side view which shows the state when the said flexible pipe is eccentric.

【図11】(a)別の従来の可とう管の構成を示す部分
破断側面図である。 (b)上記可とう管の偏心の状態を示す側面図である。
FIG. 11 (a) is a partially broken side view showing the configuration of another conventional flexible pipe. (B) It is a side view showing the state of eccentricity of the above-mentioned flexible tube.

【図12】(a)別の従来の可とう管の構成を示す部分
破断側面図である。 (b)上記可とう管の偏心の状態を示す側面図である。
FIG. 12 (a) is a partially cutaway side view showing the configuration of another conventional flexible pipe. (B) It is a side view showing the state of eccentricity of the above-mentioned flexible tube.

【図13】(a)別の従来の可とう管の構成を示す部分
破断側面図である。 (b)上記可とう管の偏心の状態を示す側面図である。
FIG. 13 (a) is a partially cutaway side view showing the configuration of another conventional flexible pipe. (B) It is a side view showing the state of eccentricity of the above-mentioned flexible tube.

【図14】従来の可とう管が地震による地盤ひずみで曲
げを生じたときの状態を示す側面図である。
FIG. 14 is a side view showing a state where a conventional flexible pipe bends due to ground strain caused by an earthquake.

【図15】従来の可とう管が地震による地盤ひずみで偏
心したときの状態を示す側面図である。
FIG. 15 is a side view showing a state where a conventional flexible pipe is eccentric due to ground strain caused by an earthquake.

【図16】片持はりの自由端に荷重が働いたときのはり
の曲り(たわみ)の状態を示す説明図である。
FIG. 16 is an explanatory diagram showing a state of bending (deflection) of a beam when a load acts on a free end of the cantilever.

【図17】図17に示す片持はりのたわみ曲線を示した
ものである。
FIG. 17 shows a deflection curve of the cantilever shown in FIG. 17;

【図18】本発明の可とう管が偏心したときの中心軸線
の曲率半径を従来品と比較した模示図である。
FIG. 18 is a schematic diagram in which the radius of curvature of the center axis when the flexible tube of the present invention is eccentric is compared with a conventional product.

【図19】円筒状成形体を圧縮して、繊維コード群が軸
方向に変位し、さらに径方向に変位する寸前の状態の模
示側面図である。
FIG. 19 is a schematic side view of a state in which the cylindrical molded body is compressed, the fiber cord group is displaced in the axial direction, and immediately before being displaced in the radial direction.

【図20】図19の繊維コード群の変位力が釣り合って
静止し、端部にかけて漸減した幅の蛇腹状山部を形成し
たときの、軸線に対する繊維コード成形角度を示す要部
側面図である。
20 is a main part side view showing an angle of forming the fiber cord with respect to the axis when the displacement force of the fiber cord group of FIG. 19 is balanced and stationary, and a bellows-shaped crest having a width gradually reduced toward the end is formed. .

【符号の説明】[Explanation of symbols]

1 本発明の可とう管 2 内面ゴム層 2a,2a´ 内面ゴム層の端縁部 3 外面ゴム層 4 内側ゴム被覆繊維補強層 4a,4a´ 内側ゴム被覆繊維補強層の端縁部 5 外側ゴム被覆繊維補強層 6 中間ゴム層 7 鋼製コイル状補強線材 7´ 鋼製リング 8,8´ 端部リング 9,9´ ニップル 10,10´ フランジ 11 マンドレル 12 押し金具 13 流通孔 14 繊維コード 15 繊維方向 I 本発明の可とう管 II 従来の可とう管 A,B 固定端部 D0 ,D コイル状補強線材の中央部、両端部の内
径 E 縦弾性係数 I 断面二次モーメント L 圧縮長さ M 曲げモーメント P0,P コイル状補強線材の中央部、両端部のピッチ W 地震力 Z 断面係数 a,b,c,d,e,f 可とう管の引張側胴壁山部 a´,b´,c´,d´,e´,f´ 可とう管の圧縮
側胴壁山部 l はりの長さ 0,t 可とう管胴壁の中央部、両端部の厚さ x 荷重作用点からの距離 y たわみ α 静止角度 δ 変位量 θ 変位角度 φ 成形角度 ρ,ρ,ρ 可とう管中心軸線の両端部か
ら中央部にかけての曲率半径 σ 曲げ応力
 DESCRIPTION OF SYMBOLS 1 Flexible tube of this invention 2 Inner rubber layer 2a, 2a 'Edge of inner rubber layer 3 Outer rubber layer 4 Inner rubber-coated fiber reinforcement layer 4a, 4a' Edge of inner rubber-coated fiber reinforcement layer 5 Outer rubber Coated fiber reinforcing layer 6 Intermediate rubber layer 7 Steel coiled reinforcing wire 7 'Steel ring 8, 8' End ring 9, 9 'Nipple 10, 10' Flange 11 Mandrel 12 Press fitting 13 Flow hole 14 Fiber cord 15 Fiber Direction I Flexible tube of the present invention II Conventional flexible tube A, B Fixed end D0, D Of the center and both ends of the coiled reinforcing wire
Diameter E Longitudinal modulus I Second moment of area L Compressed length M Bending moment P0, P Pitch at center and both ends of coiled reinforcing wire W Seismic force Z Sectional coefficient a, b, c, d, e, f Tensile side wall crests a ′, b ′, c ′ of flexible pipe d ', e', f 'Compression of flexible tube
Side trunk wall mountain l Beam length  t0, T Thickness of the center and both ends of the flexible tube body wall x Distance from load application point y Deflection α Static angle δ Displacement amount θ Displacement angle φ Forming angle ρa, Ρb, Ρc At both ends of the flexible tube center axis
Radius of curvature from center to center σ Bending stress

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F16L 23/024 23/028 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FIF16L 23/024 23/028

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内外ゴム層,鋼製補強線材および繊維補
強層から形成される円筒状胴壁が補強線材間で外周方向
に膨らんだ形状を有する鋼製コイル補強可とう管におい
て、該円筒状胴壁の断面中央部に一定ピッチを有する鋼
製コイル状補強線材を配置し、該鋼製コイル状補強線材
の内側および外側に管軸に対しホースの釣合角度より小
さい成形角度で積層したゴムトッピング繊維コードから
なる内外側ゴム被覆繊維補強層を設け、該内外側ゴム被
覆繊維補強層の間ならびに内側および外側に中間ゴム層
ならびに内外面ゴム層を設けて得られた積層成形体を軸
方向に圧縮して、前記鋼製コイル状補強線材のピッチを
中央部から両端部にかけて漸減させたことを特徴とする
鋼製コイル補強可とう管。
1. A steel coil-reinforced flexible tube having a cylindrical body wall formed of an inner and outer rubber layer, a steel reinforcing wire, and a fiber reinforcing layer having a shape bulging in an outer circumferential direction between the reinforcing wires. A rubber in which a steel coiled reinforcing wire having a constant pitch is disposed at the center of the cross section of the trunk wall, and laminated on the inside and outside of the steel coiled reinforcing wire at a forming angle smaller than the hose balancing angle with respect to the pipe axis. An inner / outer rubber-coated fiber reinforcement layer comprising a topping fiber cord is provided, and a laminated molded product obtained by providing an intermediate rubber layer and an inner / outer rubber layer between the inner and outer rubber-coated fiber reinforcement layers and inside and outside is subjected to an axial direction. Wherein the pitch of the steel coiled reinforcing wire is gradually reduced from a central portion to both ends thereof.
【請求項2】 フランジが鋼製コイル状補強線材と接合
されている請求項1記載の鋼製コイル補強可とう管。
2. The steel coil-reinforced flexible tube according to claim 1, wherein the flange is joined to the steel coiled reinforcing wire.
【請求項3】 マンドレルに内面ゴム層を形成し、該内
面ゴム層の外周面にゴムトッピング繊維コードを管軸に
対しホースの釣合角度より小さい成形角度で積層して内
側ゴム被覆繊維補強層を形成し、該内側ゴム被覆繊維補
強層の外周面中央部に一定ピッチを有する鋼製コイル状
補強線材を管軸方向に嵌入・配置し、該鋼製コイル状補
強線材の両端部にフランジおよび端部リングを設け、該
フランジおよび端部リングに内側ゴム被覆繊維補強層と
内面ゴム層の端縁部を一体的に成形・固定し、該内側ゴ
ム被覆繊維補強層の外周面に鋼製コイル状補強線材のピ
ッチ間を埋める中間ゴム層、外側ゴム被覆繊維補強層お
よび外面ゴム層を設けて円筒状積層成形体を形成したの
ち、該成形体を押し金具により両端部から管軸方向に圧
縮して、前記鋼製コイル状補強線材のピッチを中央部か
ら両端部にかけて漸減させるとともに、該鋼製コイル状
補強線材間の円筒状胴壁を外周方向に膨らませ、さらに
加硫することを特徴とする鋼製コイル補強可とう管の製
造方法。
3. An inner rubber-coated fiber reinforcing layer in which an inner rubber layer is formed on a mandrel, and a rubber topping fiber cord is laminated on an outer peripheral surface of the inner rubber layer at a forming angle smaller than a hose balancing angle with respect to a pipe axis. A steel coiled reinforcing wire having a constant pitch is fitted and arranged in the pipe axis direction at the center of the outer peripheral surface of the inner rubber-coated fiber reinforcing layer, and flanges are provided at both ends of the steel coiled reinforcing wire. An end ring is provided, and an end portion of the inner rubber-coated fiber reinforcing layer and an inner rubber layer are integrally formed and fixed to the flange and the end ring, and a steel coil is formed on an outer peripheral surface of the inner rubber-coated fiber reinforcing layer. After forming an intermediate rubber layer, an outer rubber-coated fiber reinforcement layer, and an outer rubber layer that fill the pitch between the reinforcing wire rods to form a cylindrical laminated molded body, the molded body is compressed in the axial direction of the tube from both ends by metal fittings. And the steel core The pitch of the ill-shaped reinforcing wire is gradually reduced from the center to both ends, and the cylindrical body wall between the steel coil-shaped reinforcing wires is expanded in the outer circumferential direction and further vulcanized. Manufacturing method of tube.
【請求項4】 フランジを鋼製コイル状補強線材に接合
する請求項3記載の鋼製コイル補強可とう管の製造方
法。
4. The method according to claim 3, wherein the flange is joined to the steel coiled reinforcing wire.
JP30411796A 1996-10-29 1996-10-29 Steel coil reinforced flexible tube and method for manufacturing the same Expired - Fee Related JP3908309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30411796A JP3908309B2 (en) 1996-10-29 1996-10-29 Steel coil reinforced flexible tube and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30411796A JP3908309B2 (en) 1996-10-29 1996-10-29 Steel coil reinforced flexible tube and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10132155A true JPH10132155A (en) 1998-05-22
JP3908309B2 JP3908309B2 (en) 2007-04-25

Family

ID=17929244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30411796A Expired - Fee Related JP3908309B2 (en) 1996-10-29 1996-10-29 Steel coil reinforced flexible tube and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3908309B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292095A (en) * 2005-04-12 2006-10-26 Toyo Tire & Rubber Co Ltd High-pressure rubber hose
JP2010500523A (en) * 2006-08-11 2010-01-07 ビーエイチピー ビルリトン ペトロレウム ピーティーワイ エルティーディー Hose improvements
US9157558B2 (en) 2008-10-29 2015-10-13 Aflex Hose Limited Reinforced flexible hose
CN105782603A (en) * 2016-04-05 2016-07-20 中国船舶重工集团公司第七〇二研究所 Composite material structural part with metal flanges and preparing method of composite material structural part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292095A (en) * 2005-04-12 2006-10-26 Toyo Tire & Rubber Co Ltd High-pressure rubber hose
JP2010500523A (en) * 2006-08-11 2010-01-07 ビーエイチピー ビルリトン ペトロレウム ピーティーワイ エルティーディー Hose improvements
US9157558B2 (en) 2008-10-29 2015-10-13 Aflex Hose Limited Reinforced flexible hose
CN105782603A (en) * 2016-04-05 2016-07-20 中国船舶重工集团公司第七〇二研究所 Composite material structural part with metal flanges and preparing method of composite material structural part

Also Published As

Publication number Publication date
JP3908309B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
US4403631A (en) Flexible pipe
AU722738B2 (en) Flexible pipe with internal gasproof undulating metal tube
JPH01127328A (en) Lining material for duct line and its manufacture
US6676169B1 (en) Connection for composite tubing
DK2079573T3 (en) Reinforced pipe made of polyethylene composite material and method of manufacture thereof
US6679298B2 (en) Collapsible flexible pipe
US3871408A (en) Oil suction and discharge hose
US4258755A (en) Helical wire reinforced hose
US20070251185A1 (en) Dual-bias airbeam
US3910098A (en) Mandrel for shaping pipes
JPH10132155A (en) Steel coil reinforcing flexible tube and manufacture thereof
US20090126821A1 (en) High-pressure rubber hose and method and apparatus for producing the same
JP4964706B2 (en) Pipe fitting
US4493140A (en) Method of manufacturing a flexible pipe
JP3981419B2 (en) Embedded flexible joint and manufacturing method thereof
JP3096961B2 (en) Reinforced high pressure hose
JPS6132545B2 (en)
JPH09323364A (en) Frp cylindrical form and its manufacture
GB2043831A (en) Rolling Diaphragms
JP3770673B2 (en) Steel coil reinforced buried flexible joint integrally formed with flange and method for manufacturing the same
JP2001159478A (en) Flexible expansion pipe and flexible expansion joint
JP3760734B2 (en) Pressurized cylinder
JPS5952319B2 (en) flexible joint pipe
JP2009036225A (en) Pipe joint
JP2005001335A (en) Method for manufacturing flexible pipe with externally corrugated shape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees