JPH10132114A - Pressure regulating device - Google Patents

Pressure regulating device

Info

Publication number
JPH10132114A
JPH10132114A JP30420896A JP30420896A JPH10132114A JP H10132114 A JPH10132114 A JP H10132114A JP 30420896 A JP30420896 A JP 30420896A JP 30420896 A JP30420896 A JP 30420896A JP H10132114 A JPH10132114 A JP H10132114A
Authority
JP
Japan
Prior art keywords
pressure
cooling
valve
valve element
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30420896A
Other languages
Japanese (ja)
Inventor
Shigeki Ono
茂樹 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyama Manufacturing Co Ltd
Original Assignee
Maruyama Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyama Manufacturing Co Ltd filed Critical Maruyama Manufacturing Co Ltd
Priority to JP30420896A priority Critical patent/JPH10132114A/en
Publication of JPH10132114A publication Critical patent/JPH10132114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the temperature of a valve element, which is seated and separated on/from a valve seat for regulating pressure at a section regulated to a preset regulating value, and the valve seat from rising for improvement of the accuracy of the present regulating value of a regulating device by fitting the valve element and cooling a range including the valve element and the valve seat by a cooling means. SOLUTION: During the operation of an extra-high pressure pump, the water supplied to a cooling water passage 62 for a regulating device cools a valve seat 78 cools a valve element 80 and the like while passing through a body 70. The valve element 80 is seated and separated on/from the valve seat 78 by the force which affects the valve element 80 from a belleville spring train 88, and the force which affects the lower end of the valve element 80 from the hydraulic pressure of a through hole 79 to regulate the hydraulic pressure of a discharging opening 66 to a preset regulating value. To change the present regulating value, an operating screw 90 is turned, so that the preload of the belleville spring train 88 is changed. At this time, the valve element 94 of a flow control valve 92 is also turned through a gear 96. A valve element 94 is moved in the axial direction for an increase in cooling performance so that the flowing cross section of a cooling water passage 62 may increase more as the preset regulating value of the regulating device 48 is larger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超高圧ポンプの
吐出圧等を調圧する調圧装置に係り、精度を改善された
調圧装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure regulator for regulating the discharge pressure of an ultra-high pressure pump, and more particularly to a pressure regulator having improved accuracy.

【0002】[0002]

【従来の技術】超高圧ポンプの吐出圧を調整する従来の
調圧装置(48)は温度対策がなんらなされていない。
2. Description of the Related Art A conventional pressure regulating device (48) for adjusting the discharge pressure of an ultra-high pressure pump has no measures against temperature.

【0003】[0003]

【発明が解決しようとする課題】ポンプからの吐出水
は、吐出圧の増大に連れて、温度が上昇し、具体例を示
すと、吸水温度が23°Cの場合、吐出水の温度は、吐
出圧が120MPa,150MPa、及び200MPa
のとき、それぞれ50°C、57°C、及び68°Cと
なる。
The temperature of the water discharged from the pump rises as the discharge pressure increases. For example, when the water absorption temperature is 23 ° C., the temperature of the discharged water is: Discharge pressure is 120MPa, 150MPa, and 200MPa
At 50 ° C., 57 ° C., and 68 ° C., respectively.

【0004】調圧装置は、温度上昇に伴い、異種材料の
部品間の膨張率の差に起因する調圧値の変動及び取付ボ
ルトの緩み、さらには、Oリングの劣化等の不具合の原
因に繋がる。
[0004] The pressure regulator causes fluctuations in pressure regulation value, loosening of mounting bolts, and deterioration of O-rings due to a difference in expansion coefficient between parts made of different materials with an increase in temperature. Connect.

【0005】この発明の目的は、このような問題点を克
服できる調圧装置を提供することである。
An object of the present invention is to provide a pressure regulating device which can overcome such problems.

【0006】[0006]

【課題を解決するための手段】この発明の調圧装置(48)
は次の(a)及び(b)の要素を有している。 (a)弁座(78)に就座及び離反して被調圧個所(66)の圧
力を設定調圧値に調整する弁体(80) (b)少なくとも弁体(80)及び弁座(78)を含む範囲を冷
却する冷却手段(62)
A pressure adjusting device (48) according to the present invention.
Has the following elements (a) and (b): (A) A valve element (80) that is seated on and separate from the valve seat (78) to adjust the pressure of the pressure-regulated point (66) to a set pressure adjustment value. (B) At least the valve element (80) and the valve seat Cooling means (62) for cooling the area including (78)

【0007】調圧装置(48)による調圧の際、流体(16)
は、弁体(80)及び弁座(78)の間を通過するのに伴って、
温度を上昇させ、調圧装置(48)の温度上昇の原因にな
る。冷却手段(62)は、弁体(80)及び弁座(78)を冷却し
て、それらの温度上昇を抑制する。こうして、弁体(80)
及び弁座(78)は温度上昇を抑制されて、調圧装置(48)の
設定調圧値の精度が向上する。
When the pressure is adjusted by the pressure adjusting device (48), the fluid (16)
As it passes between the valve body (80) and the valve seat (78),
The temperature rises, causing the temperature of the pressure regulator (48) to rise. The cooling means (62) cools the valve body (80) and the valve seat (78) and suppresses a temperature rise thereof. Thus, the valve body (80)
In addition, the temperature rise of the valve seat (78) is suppressed, and the accuracy of the set pressure value of the pressure regulator (48) is improved.

【0008】この発明の他の調圧装置(48)は、さらに、
次の要素(c)及び(d)を有している。 (c)設定調圧値を調整する調圧値設定手段(90) (d)調圧値設定手段(90)に連動して設定調圧値の増大
に連れて冷却手段(62)の冷媒(16)の流量を増大する冷却
力制御手段(92)
[0008] Another pressure regulating device (48) of the present invention further comprises:
It has the following elements (c) and (d). (C) a pressure adjustment value setting means (90) for adjusting the set pressure adjustment value; (d) in conjunction with the pressure adjustment value setting means (90), the refrigerant (62) of the cooling means (62) increases as the set pressure adjustment value increases. Cooling power control means (92) for increasing the flow rate of (16)

【0009】超高圧ポンプ(30)の吐出圧の調圧等の場合
では、調圧値が高いとき程、流体(16)の温度は上昇す
る。冷却力制御手段(92)は、調圧値の上昇に合わせて、
冷却手段(62)の冷媒(16)の流量を増大させ、設定調圧値
の上昇に伴う流体(16)の温度上昇に対処する。
In the case of adjusting the discharge pressure of the ultrahigh pressure pump (30), the higher the pressure adjustment value, the higher the temperature of the fluid (16). The cooling power control means (92)
The flow rate of the refrigerant (16) of the cooling means (62) is increased to cope with an increase in the temperature of the fluid (16) accompanying an increase in the set pressure regulation value.

【0010】この発明の他の調圧装置(48)によれば、被
調圧個所(66)は、超高圧ポンプ(30)の吐出部(66)であ
り、冷却手段(62)は、超高圧ポンプ(30)の吸入部(32)へ
流体(16)を送るブースタポンプ(18)からの流体(16)を冷
媒(16)としている。
According to another pressure regulating device (48) of the present invention, the pressure-regulated portion (66) is the discharge portion (66) of the ultra-high pressure pump (30), and the cooling means (62) is The fluid (16) from the booster pump (18) that sends the fluid (16) to the suction part (32) of the high-pressure pump (30) is used as the refrigerant (16).

【0011】なお、本明細書において、超高圧ポンプ(3
0)とは、吐出圧が1000kgf/平方cm以上のものと定義
する。
In this specification, an ultra-high pressure pump (3
0) is defined as a discharge pressure of 1000 kgf / square cm or more.

【0012】超高圧ポンプ(30)は、ブースタポンプ(18)
から吸入した流体(16)を加圧して、吐出する。また、冷
却手段(62)は、ブースタポンプ(18)から流体(16)を供給
され、その流体(16)を冷媒(16)として使用する。超高圧
ポンプ(30)へ流体(16)を供給するブースタポンプ(18)
を、冷却手段(62)への冷媒(16)としての流体(16)の供給
にも利用して、構造の簡単化を図ることができる。
The ultra-high pressure pump (30) is a booster pump (18)
The fluid (16) sucked in from is pressurized and discharged. The cooling means (62) is supplied with the fluid (16) from the booster pump (18), and uses the fluid (16) as the refrigerant (16). Booster pump (18) that supplies fluid (16) to ultra-high pressure pump (30)
Can also be used to supply the fluid (16) as the refrigerant (16) to the cooling means (62), and the structure can be simplified.

【0013】この発明の他の調圧装置(48)は次の要素
(e)及び(f)を有している。 (e)冷却手段(62)で使用された後の流体(16)の温度と
超高圧ポンプ(30)の吸入流体温度との差を検出する温度
差検出手段(63) (f)温度差検出手段(63)の出力変化に基づいて調圧値
の変動を検出する調圧値変動検出手段
Another pressure regulating device (48) of the present invention has the following elements (e) and (f). (E) temperature difference detection means (63) for detecting the difference between the temperature of the fluid (16) after being used in the cooling means (62) and the suction fluid temperature of the ultrahigh pressure pump (30); Pressure change value detecting means for detecting a change in the pressure value based on the output change of the means (63)

【0014】冷却手段(62)で使用された後の流体(16)の
温度と超高圧ポンプ(30)の吸入流体温度との差Tsは、
超高圧ポンプ(30)の吐出圧、すなわち調圧装置(48)の実
際の調圧値の変動に対して一定の関係を有している。調
圧装置(48)は、設定調圧値にもかかわらず、調圧装置(4
8)の温度変化に伴って、実際の調圧値を変化させてしま
うが、温度差Tsの変動から調圧装置(48)の実際の調圧
値の変動を概略検出することができる。
The difference Ts between the temperature of the fluid (16) after being used in the cooling means (62) and the suction fluid temperature of the ultrahigh pressure pump (30) is:
It has a certain relationship with the fluctuation of the discharge pressure of the ultrahigh pressure pump (30), that is, the actual pressure adjustment value of the pressure adjustment device (48). The pressure regulating device (48) operates the pressure regulating device (4) regardless of the set pressure regulating value.
Although the actual pressure regulation value changes with the temperature change of 8), the variation of the actual pressure regulation value of the pressure regulator (48) can be roughly detected from the variation of the temperature difference Ts.

【0015】[0015]

【発明の実施の形態】以下、図面を参照してこの発明を
説明する。図5はキャビテーション気泡生成用水中ノズ
ル装置10の全体概略図である。タンク12は、水道栓14か
ら水16を供給され、水16を所定レベルで貯留するように
なっている。ブースタポンプ18は、ストレーナ20を介し
てタンク12内の水16を吸入し、フィルタ22を介して給水
通路24へ吐出する。水圧計26,28は、それぞれフィルタ
22のブースタポンプ18側及び給水通路24側に配設され、
水圧を測定する。超高圧ポンプ30は、基端側及び先端側
にそれぞれ吸入口32及び吐出口66(図6)を備え、吸入
口32を給水通路24へ接続され、吐出口66を吐出通路34へ
接続されている。プーリ38,40は、モータ36の出力軸及
びクランク軸にそれぞれ取り付けられ、ベルト42を掛け
られ、超高圧ポンプ30は、モータ36より伝達された回転
動力により駆動される。安全弁44は、超高圧ポンプ30の
一方の側部に取り付けられ、吐出通路34の液圧を許容値
以下に制限する。水圧計46は超高圧ポンプ30の吐出圧を
測定する。調圧装置48は、超高圧ポンプ30の他方の側部
に取り付けられ、超高圧ポンプ30の吐出圧を設定値に調
整する。遠隔操作用ハンドル50は、調圧装置48から離れ
た個所に配設されて、手動で回転操作され、遠隔操作用
ハンドル50の回転変位はフレキシブルシャフト52を介し
て調圧装置48へ伝達されて、遠隔操作用ハンドル50によ
り調圧装置48の設定調圧値が変更されるようになってい
る。タンク54は水16を所定レベルで貯留し、ノズル56
は、タンク54の水16に沈められて、吐出通路34を介して
超高圧ポンプ30から圧送されて来る水16を超高圧で噴射
する。このような超高圧噴射によりキャビテーション気
泡がタンク54内の水16内に生成され,ワークの洗浄、は
つり等が行われる。フィルタ22の給水通路24側は流量調
整用のニードル弁58を介してシール用冷却水路60へ接続
され、超高圧ポンプ30のシール部が、シール用冷却水路
60内を通過する水16により冷却される。フィルタ22の給
水通路24側は、さらに、調圧装置用冷却水路62へも接続
され、ブースタポンプ18からの水16が調圧装置48へも供
給されるようになっている。水温センサ63は、調圧装置
48の下流側の調圧装置用冷却水路62の部位に取り付けら
れ、調圧装置48において冷却を済ませて来た水16の温度
を検出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 5 is an overall schematic view of an underwater nozzle device 10 for generating cavitation bubbles. The tank 12 is supplied with water 16 from a tap faucet 14 and stores the water 16 at a predetermined level. The booster pump 18 sucks the water 16 in the tank 12 via the strainer 20 and discharges it to the water supply passage 24 via the filter 22. Water pressure gauges 26 and 28 are each a filter
22 are provided on the booster pump 18 side and the water supply passage 24 side,
Measure the water pressure. The ultra-high pressure pump 30 has a suction port 32 and a discharge port 66 (FIG. 6) on the base end side and the distal end side, respectively. The suction port 32 is connected to the water supply passage 24, and the discharge port 66 is connected to the discharge passage 34. I have. The pulleys 38 and 40 are attached to the output shaft and the crankshaft of the motor 36, respectively, and are hung by a belt 42. The ultrahigh-pressure pump 30 is driven by the rotating power transmitted from the motor 36. The safety valve 44 is attached to one side of the ultra-high pressure pump 30, and limits the hydraulic pressure of the discharge passage 34 to a value equal to or less than an allowable value. The water pressure gauge 46 measures the discharge pressure of the ultra-high pressure pump 30. The pressure regulator 48 is attached to the other side of the ultra-high pressure pump 30, and adjusts the discharge pressure of the ultra-high pressure pump 30 to a set value. The remote control handle 50 is disposed at a location remote from the pressure regulator 48 and is manually rotated. The rotational displacement of the remote control handle 50 is transmitted to the pressure regulator 48 via the flexible shaft 52. The set pressure value of the pressure control device 48 is changed by the remote control handle 50. The tank 54 stores the water 16 at a predetermined level.
The water is submerged in the water 16 of the tank 54, and the water 16 that is pressure-fed from the ultrahigh-pressure pump 30 through the discharge passage 34 is jetted at an ultrahigh pressure. By such an ultra-high pressure injection, cavitation bubbles are generated in the water 16 in the tank 54, and the work is washed and the work is washed. The water supply passage 24 side of the filter 22 is connected to a sealing cooling water passage 60 via a flow rate adjusting needle valve 58, and the sealing portion of the ultra-high pressure pump 30 is connected to the sealing cooling water passage.
It is cooled by water 16 passing through 60. The water supply passage 24 side of the filter 22 is further connected to a pressure control device cooling water channel 62 so that the water 16 from the booster pump 18 is also supplied to the pressure control device 48. The water temperature sensor 63 is a pressure regulator
The temperature of the water 16 which is attached to the pressure control device cooling water channel 62 downstream of the pressure control device 48 and has been cooled by the pressure control device 48 is detected.

【0016】図6は超高圧ポンプ30をマニホールド64側
から見た図である。マニホールド64は、左右の側部に、
相互に連通している1対の吐出口66を備え、安全弁44の
ボデー68及び調圧装置48のボデー70は、内部の通孔が吐
出口66へ連通するように、マニホールド64の各側部に接
合される。ボデー68,70は、それら内部に形成された通
孔が壁面に開口する部位にプラグ72を取外し自在に螺着
されている。超高圧ポンプ30の吐出口66へ所定の通路、
例えば吐出通路34(図5)を接続する場合は、ボデー6
8,70のいずれか一方又は両方のプラグ72が、取り外さ
れて、そこへ管路が接続される。
FIG. 6 is a view of the ultra-high pressure pump 30 as viewed from the manifold 64 side. The manifold 64 is located on the left and right sides,
A body 68 of the safety valve 44 and a body 70 of the pressure regulator 48 are provided with a pair of discharge ports 66 communicating with each other. Joined to. The plugs 72 are detachably screwed to the portions of the bodies 68 and 70 where the through holes formed therein open to the wall surface. A predetermined passage to the discharge port 66 of the ultra-high pressure pump 30,
For example, when connecting the discharge passage 34 (FIG. 5), the body 6
Either one or both of the plugs 72 are removed, and the conduit is connected thereto.

【0017】図1、図2、及び図3はそれぞれ調圧装置
48の正面図、左側面図、及び右側面図、図4は図1にお
いて分流部104がボデー70へ接続されている高さのボデ
ー70の断面図である。弁座78は、ボデー70の上部からボ
デー70内へ嵌挿され、弁座78より垂下する通孔79を介し
て接続口82へ連通している。弁体80は、上下方向へ変位
して、弁座78に就座及び離反して、弁座78を開閉する。
接続口82は、ボデー70の接合側側面に開口し、マニホー
ルド64の吐出口66へ接続される。Oリング84は、接続口
82を放射方向内側に含むように、ボデー70の側面の環状
溝に嵌着され、マニホールド64とボデー70との接合部の
シールを行う。Oリング85は、弁座78の下面の環状溝に
嵌着され、ボデー70と弁座78との接合面におけるシール
を行う。余水口86は、接続口82とは反対側のボデー70の
側面に開口し、弁座78及び通孔79を介して接続口82へ連
通している。皿ばね列88は、ボデー70の上面側に接合さ
れるボデー89内に弁座78の中心線に中心線を揃えて配設
され、弁座78を弁体80の方へ付勢している。操作ねじ90
は、ボデー89に螺合し、回転に伴い皿ばね列88の方への
進退量を変化させ、これにより、皿ばね列88の予荷重、
すなわち調圧装置48の設定調圧値を調整する。減速機91
は、ボデー89の上面に下端を固定されているブラケット
95の上面に固定され、入力軸93を側方へ突出させ、入力
軸93の回転を減速して、操作ねじ90へ伝達する。入力軸
93には、フレキシブルシャフト52(図5)が接続され、
フレキシブルシャフト52を介して遠隔操作用ハンドル50
(図5)の回転が伝達されるようになっている。流量制
御弁92は、調圧装置用冷却水路62に配設され、弁体94の
軸方向変位により調圧装置用冷却水路62の流通断面積を
制御するようになっている。ギヤ96,98は、それぞれ操
作ねじ90及び弁体94の上端部に回転方向へ一体に取り付
けられ、相互にかみ合っている。L形通孔100,102は、
弁座78の下側において、通孔79を避けてボデー70内に穿
設されている。調圧装置用冷却水路62は、ボデー70へ至
る前に分流部104,106に分かれ、ボデー70内ではL形通
孔100,102となり、さらに、分流部108,110になってい
る。
FIG. 1, FIG. 2 and FIG.
4 is a cross-sectional view of the body 70 at a height where the flow dividing portion 104 is connected to the body 70 in FIG. The valve seat 78 is inserted into the body 70 from above the body 70, and communicates with the connection port 82 through a through hole 79 hanging down from the valve seat 78. The valve body 80 is displaced in the up-down direction, seats on and separates from the valve seat 78, and opens and closes the valve seat 78.
The connection port 82 opens on the joint side surface of the body 70 and is connected to the discharge port 66 of the manifold 64. O-ring 84 is a connection port
It is fitted in the annular groove on the side surface of the body 70 so as to include 82 inside in the radial direction, and seals the joint between the manifold 64 and the body 70. The O-ring 85 is fitted in an annular groove on the lower surface of the valve seat 78, and seals a joint surface between the body 70 and the valve seat 78. The spill port 86 opens on the side surface of the body 70 opposite to the connection port 82, and communicates with the connection port 82 via the valve seat 78 and the through hole 79. The disc spring row 88 is disposed in the body 89 joined to the upper surface side of the body 70 with the center line aligned with the center line of the valve seat 78, and biases the valve seat 78 toward the valve body 80. . Operation screw 90
Is screwed into the body 89, and changes the amount of advance and retreat toward the disc spring row 88 with the rotation, whereby the preload of the disc spring row 88,
That is, the set pressure adjustment value of the pressure adjustment device 48 is adjusted. Reducer 91
Is a bracket whose lower end is fixed to the upper surface of the body 89
The input shaft 93 is fixed to the upper surface of the projection 95, and the input shaft 93 is protruded to the side. Input shaft
The flexible shaft 52 (FIG. 5) is connected to 93,
Handle 50 for remote control via flexible shaft 52
The rotation shown in FIG. 5 is transmitted. The flow control valve 92 is disposed in the cooling water passage 62 for the pressure regulator, and controls the flow cross-sectional area of the cooling water passage 62 for the pressure regulator by the axial displacement of the valve element 94. The gears 96 and 98 are integrally attached to the operation screw 90 and the upper end of the valve body 94 in the rotational direction, and mesh with each other. L-shaped through holes 100 and 102
A hole is formed in the body 70 below the valve seat 78, avoiding the through hole 79. Before reaching the body 70, the pressure regulator cooling water passage 62 is divided into flow dividing portions 104 and 106, and the body 70 has L-shaped through holes 100 and 102, and further has flow dividing portions 108 and 110.

【0018】調圧装置48の作用について説明する。超高
圧ポンプ30の運転中、ブースタポンプ18も運転状態に維
持され、タンク12内の水16は、ブースタポンプ18により
吸入されて、一部は調圧装置用冷却水路62へ供給され
る。調圧装置用冷却水路62へ供給された水16は、ボデー
70内のL形通孔100,102を通過する際、ボデー70を、特
にボデー70の弁座78、弁体80、Oリング84,85を冷却
し、分流部108,110を経て放出される。弁座78及び弁体
80の冷却によりそれらの熱膨張率の差に因る設定調圧値
の変動が抑制される。Oリング84,85の冷却によりそれ
らの劣化が抑制される。
The operation of the pressure regulator 48 will be described. During operation of the ultra-high pressure pump 30, the booster pump 18 is also maintained in the operating state, and the water 16 in the tank 12 is sucked by the booster pump 18 and a part of the water 16 is supplied to the pressure regulator cooling water channel 62. The water 16 supplied to the pressure regulator cooling water channel 62 is
When passing through the L-shaped through holes 100 and 102 in the body 70, the body 70, in particular, the valve seat 78, the valve body 80 and the O-rings 84 and 85 of the body 70 are cooled and discharged through the branch parts 108 and 110. . Valve seat 78 and valve body
The cooling of 80 suppresses the fluctuation of the set pressure regulation value due to the difference between the coefficients of thermal expansion. The cooling of the O-rings 84, 85 suppresses their deterioration.

【0019】弁体80は、皿ばね列88から弁体80へ及ぼさ
れる弁座78への就座方向の力と、通孔79の水圧から弁体
80の下端に及ぼされる弁座78からの離反方向の力とを相
互に対向して受け、それらの力関係により、弁座78に就
座したり、離反したりし、これにより、吐出口66の水圧
を皿ばね列88の予荷重に関係する設定調圧値に調整す
る。調圧装置48の設定調圧値は遠隔操作用ハンドル50の
回転操作により変更される。すなわち、遠隔操作用ハン
ドル50の回転は、フレキシブルシャフト52を介して入力
軸93へ伝達され、操作ねじ90が、回転して、皿ばね列88
の予荷重を変化させ、結果、調圧装置48の設定調圧値が
変更される。
The valve body 80 is formed by the force in the seating direction applied to the valve seat 78 from the disc spring row 88 to the valve body 80 and the water pressure in the through hole 79.
It receives the force in the direction away from the valve seat 78 exerted on the lower end of the valve seat 80 facing each other, and, depending on the relationship between the forces, sits on or separates from the valve seat 78, and thereby the discharge port 66 Is adjusted to a set pressure adjustment value related to the preload of the disc spring row 88. The set pressure adjustment value of the pressure adjustment device 48 is changed by rotating the remote control handle 50. That is, the rotation of the remote control handle 50 is transmitted to the input shaft 93 via the flexible shaft 52, and the operation screw 90 rotates to rotate the disc spring train 88.
Is changed, and as a result, the set pressure adjustment value of the pressure adjustment device 48 is changed.

【0020】一方、操作ねじ90の回転に伴い、ギヤ96が
回転して、流量制御弁92の弁体94も回される。弁体94
は、回転により軸方向へ変位し、調圧装置48の設定調圧
値が大きいとき程、調圧装置用冷却水路62の流通断面積
を増大する軸方向位置となる。これにより、ボデー70の
L形通孔100,102を流れる水16の流量が増大し、冷却能
力が増大する。調圧装置48の設定調圧値が大きいとき
程、弁座78及び弁体80の間を通過する水16の温度が上昇
して、これに伴い、ボデー70の温度も上昇する傾向があ
るが、流量制御弁92における流量増大により、冷却能力
が増大するため、調圧装置48の設定調圧値の増大に因る
ボデー70の温度上昇が抑制される。
On the other hand, with the rotation of the operation screw 90, the gear 96 rotates and the valve element 94 of the flow control valve 92 also rotates. Valve element 94
Is displaced in the axial direction by rotation, and the axial position where the flow cross-sectional area of the cooling water passage 62 for the pressure adjusting device increases as the set pressure adjusting value of the pressure adjusting device 48 increases. Thereby, the flow rate of the water 16 flowing through the L-shaped through holes 100 and 102 of the body 70 increases, and the cooling capacity increases. As the set pressure value of the pressure regulator 48 increases, the temperature of the water 16 passing between the valve seat 78 and the valve body 80 increases, and accordingly, the temperature of the body 70 also tends to increase. Since the cooling capacity increases due to the increase in the flow rate of the flow control valve 92, the rise in the temperature of the body 70 due to the increase in the set pressure value of the pressure regulator 48 is suppressed.

【0021】図7は所定の冷却水流量時の調圧装置48の
実際の調圧値Pと調圧装置用冷却水路62から放出されて
来る水16(=処理後冷却水)の温度Tとの関係を示すグ
ラフである。T1は調圧装置用冷却水路62への導入前の
水16(=超高圧ポンプ30が吸入する水16)の温度であ
る。図7から温度差Ts(=T−T1)と実際の調圧値
Pとはほぼ比例関係があることが理解される。また、調
圧装置48の実際の調圧値は、遠隔操作用ハンドル50によ
る調整終了後の調圧装置48の温度変化のために、変化す
る。調圧装置48内の冷却を終えて出て来る水16の温度T
を水温センサ63(図5)により測定して、Ts(=T−
T1。T1は給水通路24又はタンク12に常時設置型温度
センサを設けて測定するか、運転開始時に先立ってタン
ク12の水16に温度計を沈めて測定できる。)変動を監視
することにより、実際の調圧値Pの変動をおおよそ知る
ことができる。
FIG. 7 shows the actual pressure value P of the pressure regulator 48 at a predetermined cooling water flow rate, the temperature T of the water 16 (= processed cooling water) discharged from the pressure regulator cooling water channel 62, and 6 is a graph showing the relationship of. T1 is the temperature of the water 16 (= water 16 sucked by the ultrahigh pressure pump 30) before being introduced into the cooling water passage 62 for the pressure regulator. It is understood from FIG. 7 that the temperature difference Ts (= T−T1) and the actual pressure regulation value P have a substantially proportional relationship. Further, the actual pressure value of the pressure regulator 48 changes due to a temperature change of the pressure regulator 48 after the adjustment by the remote control handle 50 is completed. Temperature T of water 16 coming out after cooling in pressure regulator 48
Is measured by the water temperature sensor 63 (FIG. 5), and Ts (= T−
T1. T1 can be measured by providing an always-installed temperature sensor in the water supply passage 24 or the tank 12, or by submerging a thermometer in the water 16 of the tank 12 before starting operation. ) By monitoring the fluctuation, the actual fluctuation of the pressure regulation value P can be roughly known.

【図面の簡単な説明】[Brief description of the drawings]

【図1】調圧装置の正面図である。FIG. 1 is a front view of a pressure adjusting device.

【図2】調圧装置の左側面図である。FIG. 2 is a left side view of the pressure adjusting device.

【図3】調圧装置の右側面図である。FIG. 3 is a right side view of the pressure adjusting device.

【図4】図1において分流部がボデーへ接続されている
高さのボデーの断面図である。
FIG. 4 is a cross-sectional view of the body having a height in which a branch portion is connected to the body in FIG. 1;

【図5】キャビテーション気泡生成用水中ノズル装置の
全体概略図である。
FIG. 5 is an overall schematic view of an underwater nozzle device for generating cavitation bubbles.

【図6】超高圧ポンプをマニホールド側から見た図であ
る。
FIG. 6 is a view of the ultra-high pressure pump viewed from a manifold side.

【図7】所定の冷却水流量時の調圧装置の実際の調圧値
と調圧装置用冷却水路から放出されて来る水(=処理後
冷却水)の温度との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between an actual pressure value of the pressure regulator at a predetermined cooling water flow rate and a temperature of water (= cooled water after treatment) discharged from the pressure regulator cooling water channel. .

【符号の説明】[Explanation of symbols]

16 水(冷媒、流体) 18 ブースタポンプ 30 超高圧ポンプ(超高圧ポンプ) 32 吸入口(吸入部) 48 調圧装置 62 調圧装置用冷却水路(冷却手段) 63 水温センサ(温度差検出手段) 66 吐出口(被調圧個所、吐出部) 78 弁座 80 弁体 90 操作ねじ(調圧値設定手段) 92 流量制御弁(冷却力制御手段) Reference Signs List 16 water (refrigerant, fluid) 18 booster pump 30 ultra high pressure pump (ultra high pressure pump) 32 suction port (suction part) 48 pressure regulator 62 cooling water channel for pressure regulator (cooling means) 63 water temperature sensor (temperature difference detecting means) 66 Discharge port (pressure-regulated part, discharge part) 78 Valve seat 80 Valve element 90 Operating screw (pressure regulation value setting means) 92 Flow control valve (cooling force control means)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月21日[Submission date] March 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図 6】 [Fig. 6]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)弁座(78)に就座及び離反して被調
圧個所(66)の圧力を設定調圧値に調整する弁体(80),及
び(b)少なくとも前記弁体(80)及び前記弁座(78)を含
む範囲を冷却する冷却手段(62)、を有していることを特
徴とする調圧装置。
(A) a valve body (80) which seats on and separates from a valve seat (78) to adjust the pressure of a pressure-regulated point (66) to a set pressure regulation value; and (b) at least the valve A pressure regulating device, comprising: cooling means (62) for cooling an area including the body (80) and the valve seat (78).
【請求項2】 (c)設定調圧値を調整する調圧値設定
手段(90)、及び(d)前記調圧値設定手段(90)に連動し
て設定調圧値の増大に連れて前記冷却手段(62)の冷媒(1
6)の流量を増大する冷却力制御手段(92),を有している
ことを特徴とする請求項1記載の調圧装置。
(C) a pressure adjustment value setting means (90) for adjusting the set pressure adjustment value; and (d) an increase in the set pressure adjustment value in conjunction with the pressure adjustment value setting means (90). The refrigerant (1) of the cooling means (62)
2. A pressure regulating device according to claim 1, further comprising a cooling force control means (92) for increasing the flow rate in (6).
【請求項3】 前記被調圧個所(66)は、超高圧ポンプ(3
0)の吐出部(66)であり、前記冷却手段(62)は、前記超高
圧ポンプ(30)の吸入部(32)へ流体(16)を送るブースタポ
ンプ(18)からの流体(16)を冷媒(16)としていることを特
徴とする請求項1又は2記載の調圧装置。
3. The ultra-high pressure pump (3)
0), and the cooling means (62) is a fluid (16) from a booster pump (18) that sends the fluid (16) to a suction part (32) of the ultrahigh pressure pump (30). 3. The pressure regulating device according to claim 1, wherein the refrigerant is a refrigerant (16).
【請求項4】 (e)前記冷却手段(62)で使用された後
の流体(16)の温度と前記超高圧ポンプ(30)の吸入流体温
度との差を検出する温度差検出手段(63)、及び(f)前
記温度差検出手段(63)の出力変化に基づいて調圧値の変
動を検出する調圧値変動検出手段、を有していることを
特徴とする請求項3記載の調圧装置。
4. A temperature difference detecting means (63) for detecting a difference between a temperature of the fluid (16) after being used by the cooling means (62) and a temperature of a suction fluid of the ultrahigh pressure pump (30). 4. The method according to claim 3, further comprising: (f) a pressure regulation value fluctuation detecting means for detecting a fluctuation of the pressure regulating value based on an output change of the temperature difference detecting means (63). Pressure regulator.
JP30420896A 1996-10-31 1996-10-31 Pressure regulating device Pending JPH10132114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30420896A JPH10132114A (en) 1996-10-31 1996-10-31 Pressure regulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30420896A JPH10132114A (en) 1996-10-31 1996-10-31 Pressure regulating device

Publications (1)

Publication Number Publication Date
JPH10132114A true JPH10132114A (en) 1998-05-22

Family

ID=17930321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30420896A Pending JPH10132114A (en) 1996-10-31 1996-10-31 Pressure regulating device

Country Status (1)

Country Link
JP (1) JPH10132114A (en)

Similar Documents

Publication Publication Date Title
EP0725900B1 (en) Relief valve seat for positive displacement pump
JP6285880B2 (en) Pump device
US7311005B2 (en) Method and device for continuous measuring of dynamic fluid consumption, including pressure regulator
US7637440B2 (en) Suck back valve
US20080292472A1 (en) Method for Controlling the Discharge Pressure of an Engine-Driven Pump
WO2009067434A1 (en) Pump suction pressure limiting speed control and related pump driver and sprinkler system
JP3843484B2 (en) Returnless internal combustion engine fuel supply device and adjustment method thereof
US6827637B2 (en) Waterjet cutting system and method of operation
US6874977B2 (en) High pressure coolant system
US5727773A (en) Adjustable fluid valve assembly
JPH10132114A (en) Pressure regulating device
US10215171B2 (en) Apparatus for feeding gas mixtures at the intake of a high pressure compressor
CN107166734B (en) Constant temperature water supply method and constant temperature water supply device
JP3411849B2 (en) Wire saw processing liquid supply device
JP3620870B2 (en) Ejector vacuum pump
US5048754A (en) Conditioning system for water based can sealants
US6986283B2 (en) Method and apparatus for exchanging fluid in a transmission system
EP3821131A1 (en) Centrifugal pump
JP2732430B2 (en) Liquid mixing pumping device
JPH10267006A (en) Hydraulic pressure actuator control device
SE444967B (en) DEVICE TO CONTROL THE FLUID OF FLUID FUEL FOR A TURBINE ENGINE
EP1270077A1 (en) Pressure discharge flotation device.
JP2020012378A (en) Pump device
JPH0245399A (en) Liquid feeder
JP2020200094A (en) Fuel supply device