JPH101320A - Mold and molding method - Google Patents

Mold and molding method

Info

Publication number
JPH101320A
JPH101320A JP15723496A JP15723496A JPH101320A JP H101320 A JPH101320 A JP H101320A JP 15723496 A JP15723496 A JP 15723496A JP 15723496 A JP15723496 A JP 15723496A JP H101320 A JPH101320 A JP H101320A
Authority
JP
Japan
Prior art keywords
mold
molding
determining means
interval determining
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15723496A
Other languages
Japanese (ja)
Other versions
JP3818552B2 (en
Inventor
Shinichiro Hirota
慎一郎 広田
Masaru Uno
賢 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Precision Inc
Original Assignee
Hoya Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Precision Inc filed Critical Hoya Precision Inc
Priority to JP15723496A priority Critical patent/JP3818552B2/en
Publication of JPH101320A publication Critical patent/JPH101320A/en
Application granted granted Critical
Publication of JP3818552B2 publication Critical patent/JP3818552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of stably producing many pieces of molded articles having uniform shapes and a mold capable of executing this method. SOLUTION: This mold has an upper mold 2 having a molding surface on its rear surface, a lower mold 4 having a molding surface on its front surface, >=1 intermediate molds 3a, 3b having molding surfaces on both front and rear surfaces and inter-mold space determining means. This molding method includes stages of introducing a previously heated and softened blank 1 for molding between the molding surfaces facing each other of the two adjacent molds of the mold or introducing the blank 1 for molding, softening the blank by heating, applying a pressure on the upper mold 2 or the lower mold 4 or both thereof and setting the spacings between the respective molds by the inter-mold space determining means 5a, 5b, 5c, thereby press molding the blank 1 for molding, then cooling the molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形型および成形
方法に関する。とくに、光学レンズや、表面に微細な溝
や凹凸パターンを有するガラス光学素子を精密成形する
技術に関する。
The present invention relates to a molding die and a molding method. In particular, the present invention relates to a technique for precisely molding an optical lens or a glass optical element having a fine groove or a concavo-convex pattern on the surface.

【0002】[0002]

【従来の技術】近年、加圧成形後に研磨することなく高
精度のガラスレンズを成形する方法が盛んに実施されて
いる。そのような方法の一例として、特開昭52−45
613号公報に記載される方法がある。この方法によれ
ば、まず非酸化性雰囲気下でガラス素材と成形型をガラ
スの軟化点近傍まで昇温する。そして、ガラスと型がほ
ぼ等しい温度になったところで型でガラスを加圧する。
その後、加圧を維持しながら型温度をガラス転移点以下
に下げ、さらに常圧下で冷却して成形品を取り出す。こ
の方法は、成形品を取り出した後に研磨する必要がない
とはいえ、成形に要するサイクルタイムが著しく長いと
いう問題があった。
2. Description of the Related Art In recent years, a method of molding a glass lens with high precision without polishing after pressure molding has been actively practiced. One example of such a method is disclosed in JP-A-52-45.
No. 613 discloses a method. According to this method, first, the temperature of the glass material and the mold are raised to near the softening point of the glass in a non-oxidizing atmosphere. Then, when the temperature of the glass and the mold becomes substantially equal, the glass is pressed by the mold.
Thereafter, the mold temperature is lowered to the glass transition point or lower while maintaining the pressure, and the molded product is taken out by cooling under normal pressure. Although this method does not require polishing after removing the molded product, it has a problem that the cycle time required for molding is extremely long.

【0003】そこで、効率よく多くの成形品を製造する
方法が検討され、新たな成形型が開発された。例えば、
特開昭63−64931号公報には、上型、複数個の中
間型および下型を加圧力の軸方向に順に配置し、これら
を取り囲む胴型を備えた成形型が開示されている。この
成形型の上型と中間型、中間型と下型の間に成形用素材
を導入し、加熱軟化して加圧成形すれば一度に多数個の
成形品を製造することが可能である。また、特開平1−
176240号公報にも、同様に上型、中間型、下型お
よびこれらを取り囲む胴型を有する成形型が開示されて
いる。
[0003] Therefore, a method for efficiently producing many molded products was studied, and a new molding die was developed. For example,
Japanese Patent Application Laid-Open No. 63-64931 discloses a molding die having an upper die, a plurality of intermediate dies, and a lower die arranged in order in the axial direction of the pressing force and having a body die surrounding these. If a molding material is introduced between the upper mold and the middle mold and between the middle mold and the lower mold, and heat-softened and pressure-molded, a large number of molded articles can be manufactured at one time. Further, Japanese Patent Laid-Open No.
No. 176240 also discloses a mold having an upper mold, an intermediate mold, a lower mold, and a body mold surrounding them.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の成形型を用いて加圧成形すると、加圧力が成形用素材
に対して均等に伝播しないために、成形する場所によっ
て成形用素材の伸びが異なってしまうという問題があ
る。成形用素材が伸び過ぎると、胴型と成形型の境界部
に成形用素材がはみ出して成形型の角部が損傷すること
があり、安定な成形は望めない。また、製造される成形
品も、はみ出した部分が欠けた肉薄の不良品になってし
まう。逆に、成形材料の伸びが少な過ぎると、肉厚で径
が小さい不良品ができてしまう。
However, when pressure molding is performed using these molding dies, since the pressing force is not evenly transmitted to the molding material, the elongation of the molding material differs depending on the molding location. Problem. If the molding material is excessively stretched, the molding material may protrude to the boundary between the body die and the molding die, and the corners of the molding die may be damaged, so that stable molding cannot be expected. In addition, the molded product to be manufactured is a thin defective product in which the protruding portion is missing. Conversely, if the elongation of the molding material is too small, a defective product having a large thickness and a small diameter will be produced.

【0005】このような問題があるために、従来技術に
よる方法では、満足の行く成形品を効率よく製造するこ
とはできなかった。また、このような問題に対する解決
法について示唆を与える文献も存在しない。そこで、本
発明者らは、これらの問題点に対処し、満足の行く多数
個の成形品を効率よく製造する方法とその方法を実施し
得る成形型を提供することを目的として鋭意検討を行っ
た。また、本発明者らは、成形時の操作がより簡単で、
形の揃った多数個の成形品を安定に製造することができ
る方法とその方法を実施し得る成形型を提供することを
も目的として、鋭意検討を行った。
[0005] Due to these problems, satisfactory methods cannot be efficiently produced by the conventional method. Also, there is no literature that suggests a solution to such a problem. Accordingly, the present inventors have conducted intensive studies to address these problems and to provide a method for efficiently producing a large number of satisfactory molded products and a mold capable of implementing the method. Was. In addition, the present inventors have made the operation during molding easier,
The present inventors have conducted intensive studies for the purpose of providing a method capable of stably producing a large number of molded articles having a uniform shape and a mold capable of implementing the method.

【0006】[0006]

【課題を解決するための手段】これらの目的は、以下の
本発明によって達成された。即ち、本発明は、下面に成
形面を有する上型、上面に成形面を有する下型、上下両
面に成形面を有する1以上の中間型、および型間隔決定
手段を有する成形型に関する。さらに本発明は、成形型
の隣合う2つの型の向かい合った成形面の間に、予め加
熱軟化させた成形用素材を導入するか、成形用素材を導
入して加熱軟化させる工程、上型、下型またはその両方
に圧力を加えて各型間隔を型間隔決定手段により設定さ
れる間隔にすることによって成形用素材を加圧成形する
工程、冷却する工程を含む成形方法に関する。
These objects have been achieved by the present invention described below. That is, the present invention relates to an upper die having a molding surface on a lower surface, a lower die having a molding surface on an upper surface, one or more intermediate dies having molding surfaces on both upper and lower surfaces, and a molding die having a mold interval determining means. Furthermore, the present invention introduces a pre-heat-softened molding material between facing molding surfaces of two adjacent molds of a molding die, or introduces a molding material and heat-softens the upper mold, The present invention relates to a molding method including a step of applying pressure to a lower mold or both of them to set each mold interval to an interval set by a mold interval determining means, thereby pressing and molding a molding material, and a cooling step.

【0007】[0007]

【発明の実施の形態】以下に、本発明の成形型と成形方
法を順に詳しく説明する。成形型 本発明の成形型は、型間隔決定手段を有する点に特徴が
ある。型間隔決定手段は、上型と中間型の間隔、中間型
が複数個存在する場合は中間型とその隣の中間型の間
隔、および中間型と下型の間隔を決定する手段である。
本発明の成形型を用いて成形する場合、まず成形用素材
が型と型の間に導入される。このとき、通常は導入した
成形用素材の厚み分だけ型と型の間は開いている。その
後、加圧すると型と型の間隔は狭められ、やがて型と型
間隔決定手段が接触して一定の型間隔に保持される。こ
のとき、成形用素材は、上方にある型の下面と、下方に
ある型の上面、および型間隔決定手段によって囲まれる
空間内に圧縮される。このように、型間隔決定手段は加
圧成形時における型間隔を決定する。すなわち、型間隔
決定手段は、成形品の肉厚を決定し、加圧成形時に成形
用素材がはみ出すのを防止する役割を果たす。また、型
間隔決定手段は、加圧成形時に中間型が傾いて上下の成
形面がずれるのを防止する役割も果たす。このような型
間隔決定手段は、従来の成形型にはまったく存在しなか
ったものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a mold and a molding method of the present invention will be described in detail in order. Mold The mold according to the present invention is characterized in that it has a mold interval determining means. The mold interval determining means is means for determining the interval between the upper mold and the intermediate mold, the interval between the intermediate mold and the adjacent intermediate mold when there are a plurality of intermediate molds, and the interval between the intermediate mold and the lower mold.
When molding using the molding die of the present invention, first, a molding material is introduced between the dies. At this time, the space between the molds is usually opened by the thickness of the introduced molding material. Thereafter, when pressure is applied, the space between the molds is reduced, and the mold and the mold space determination means come into contact with each other and are maintained at a constant mold space. At this time, the molding material is compressed into a space surrounded by the lower surface of the upper mold, the upper surface of the lower mold, and the mold interval determining means. As described above, the mold interval determining means determines the mold interval during pressure molding. That is, the mold interval determining means determines the thickness of the molded product and plays a role in preventing the molding material from protruding during the pressure molding. Further, the mold interval determining means also plays a role of preventing the upper and lower molding surfaces from being displaced due to the inclination of the intermediate mold during the pressure molding. Such a mold interval determining means has never existed in a conventional molding die.

【0008】型間隔決定手段の形は、型および型に設け
られた成形面の形にあわせて適宜決定される。例えば、
型と成形面が円形であれば、型間隔決定手段はリング状
にするのが一般的である。また、型間隔決定手段は、上
方の型か下方の型のいずれかにあらかじめ固定されてい
ても構わない。また、型間隔決定手段は、各型間ごとに
独立した部材として設けられていてもよいし、一つの部
材が複数の型間を決定するものであってもよい。後者の
例として、例えば中間型の上面と下面の両面に固定され
た単一の部材であって、それによって中間型とその上方
にある型の間隔と、中間型とその下方にある型の間隔を
決定することができるものを挙げることができる。
[0008] The shape of the mold interval determining means is appropriately determined according to the shape of the mold and the molding surface provided on the mold. For example,
If the mold and the molding surface are circular, the mold interval determining means is generally formed in a ring shape. Further, the mold interval determination means may be fixed in advance to either the upper mold or the lower mold. Further, the mold interval determining means may be provided as an independent member for each mold, or one member may determine between a plurality of molds. As an example of the latter, for example, a single member fixed to both the upper and lower surfaces of the intermediate mold, whereby the distance between the intermediate mold and the mold above it, and the distance between the intermediate mold and the mold below it Can be determined.

【0009】型間隔決定手段の材質は、成形過程におけ
る加熱に耐え得るものの中から選択する。特に、使用す
る成形用素材よりも大きい熱膨張率を有する材料を使用
するのが好ましい。このような材質の型間隔決定手段を
設けておけば、加圧成形後に成形体の上下を型に接触さ
せたまま加圧下で冷却することが可能になる。即ち、冷
却による型間隔決定手段の収縮が成形体の収縮に比べて
大きいため、成形体の上下からの加圧は、型間隔決定手
段ではなく、成形体に向けられるからである。したがっ
て、かかる実施態様を採用することによって、成形体の
上下を型に接触させて加圧状態のまま転移点を経て冷却
することが可能になり、面精度を高めることができるよ
うになる。但し、この場合、成形型に導入する成形用素
材の容量を、加圧成形時に成形体の外周部の一部または
全部が型間隔決定手段の内側に接触しない程度にし、さ
らに、冷却工程において、内径が収縮した型間隔決定手
段に成形体が締め付けられないように注意すべきであ
る。内径が収縮した型間隔決定手段に締め付けられた成
形体は、取り出しが困難になるからである。
The material of the mold interval determining means is selected from those which can withstand heating during the molding process. In particular, it is preferable to use a material having a larger coefficient of thermal expansion than the molding material to be used. If the mold interval determining means of such a material is provided, it is possible to cool under pressure while keeping the upper and lower portions of the molded body in contact with the mold after the pressure molding. That is, since the shrinkage of the mold interval determining means due to cooling is greater than the shrinkage of the molded body, pressure from above and below the molded body is directed to the molded body instead of the mold interval determining means. Therefore, by adopting such an embodiment, it is possible to contact the upper and lower surfaces of the molded body with the mold and to cool the molded body through the transition point in a pressurized state, thereby improving the surface accuracy. However, in this case, the volume of the molding material to be introduced into the molding die is set such that part or all of the outer peripheral portion of the molded body does not come into contact with the inside of the mold interval determination means at the time of pressure molding, and further, in the cooling step, Care should be taken that the compact is not clamped against the mold spacing determining means whose inner diameter has shrunk. This is because it is difficult to take out the compact that has been clamped by the mold interval determining means whose inner diameter has contracted.

【0010】本発明の成形型を構成する上型、下型、中
間型は、従来より使用されている形状、材質のものを使
用することができる。例えば、特開昭63−64931
号公報や特開平1−176240号公報に具体的に記載
される上型、下型、中間型を使用することができる。材
質は、成形過程における加熱によって過度の変形や変質
をしないものの中から選択する。例えば、金属バインダ
ーをほとんど含まない超硬合金を使用することができ
る。上型の下面、中間型の上下両面、下型の上面には成
形面が設けられている。上型の下面と中間型の上面、中
間型の下面とその隣の中間型の上面、中間型の下面と下
型の上面の組み合わせによって、成形品の形状が決定さ
れる。成形面は、上型の下面、中間型の上下両面、下型
の上面のそれぞれに1つずつ設けられているのが一般的
であるが、複数個設けられていても構わない。また、両
面に成形面が設けられている中間型は、片面に成形面を
有する2枚の型を裏面どおしで結合させたものであって
も構わない。成形面は、加熱成形後の成形用素材の収縮
を考慮して設定する。成形面の加工は、本発明の分野で
周知の技術を用いて行うことができ、その実例は後述の
実施例に挙げられている。
The upper mold, the lower mold and the intermediate mold constituting the mold of the present invention may be of conventional shapes and materials. For example, JP-A-63-64931
And lower molds and intermediate molds specifically described in Japanese Unexamined Patent Application Publication No. Hei. The material is selected from those that do not undergo excessive deformation or deterioration due to heating during the molding process. For example, a cemented carbide hardly containing a metal binder can be used. Molding surfaces are provided on the lower surface of the upper die, the upper and lower surfaces of the intermediate die, and the upper surface of the lower die. The shape of the molded product is determined by the combination of the lower surface of the upper die and the upper surface of the intermediate die, the lower surface of the intermediate die and the upper surface of the intermediate die adjacent thereto, and the lower surface of the intermediate die and the upper surface of the lower die. Generally, one molding surface is provided on each of the lower surface of the upper die, the upper and lower surfaces of the intermediate die, and the upper surface of the lower die, but a plurality of molding surfaces may be provided. Further, the intermediate mold having the molding surfaces on both surfaces may be a mold in which two molds each having a molding surface on one surface are bonded together through the back surface. The molding surface is set in consideration of shrinkage of the molding material after heat molding. The processing of the molding surface can be performed using a technique well known in the field of the present invention, and examples thereof are given in Examples described later.

【0011】本発明の成形型を構成する中間型の数は1
以上にする。中間型の数がm個であり、型の一面上に設
けられた成形面の数がn個であれば、一度に(m+1)
×n個の成形品を一度に製造することができる。ただ
し、中間型の数mを増やし過ぎると、加圧成形時の圧力
伝播にむらが生じたり、成形型の横ずれが生じ易くなっ
て均一な成形品を製造しにくくなるので注意を要する。
但し、後述の型摺動ガイド手段や横ずれ防止手段の併用
は、成形型の横ずれを防止に有効であり、これらの併用
の有無等も考慮して中間型の数mは適宜決定できる。
The number of intermediate molds constituting the mold of the present invention is one.
Above. If the number of intermediate molds is m and the number of molding surfaces provided on one surface of the mold is n, (m + 1) at a time
× n molded articles can be manufactured at one time. However, if the number m of the intermediate mold is excessively increased, care must be taken since unevenness in pressure propagation during pressure molding and lateral displacement of the mold are likely to occur, making it difficult to produce a uniform molded product.
However, the combined use of the mold sliding guide means and the lateral displacement prevention means described later is effective for preventing lateral displacement of the molding die, and the number m of the intermediate molds can be determined as appropriate in consideration of the presence or absence of the combined use.

【0012】本発明の成形型には、型摺動ガイド手段が
設置されていてもよい。型摺動ガイド手段は、成形用素
材導入時や加圧時における型の摺動をガイドする手段で
ある。型摺動ガイド手段を設置することによって、加圧
による力を横方向に逃がすことなく型に均一にかけるこ
とができる。このため、成形型の横ずれを防止でき、か
つ一様な成形品をより確実で効率よく製造することがで
きる。型摺動ガイド手段は型間隔決定手段と結合して1
つの部材として構成してもよいし、異なる単一の部材が
それぞれ型摺動ガイド手段としての機能と型間隔決定手
段としての機能を有するものであってもよい。また、本
発明の成形型には、さらに成形型の横ずれ防止手段が設
置されていてもよい。横ずれ防止手段を設置することに
よって、加圧による成形型全体のたわみと型の横ずれを
防ぐことができる。このため、型摺動ガイド手段の場合
と同じく、横ずれ防止手段を設置することによって一様
な成形品をより確実で効率よく製造することができる。
横ずれ防止手段は、上型、中間型、下型および型間隔決
定手段を取り囲むスリーブのように型摺動をガイドする
機能も併せ持つものであってもよい(実施例3)。
The mold according to the present invention may be provided with mold sliding guide means. The mold sliding guide means is a means for guiding the sliding of the mold when the molding material is introduced or when pressure is applied. By providing the mold sliding guide means, the force due to pressurization can be uniformly applied to the mold without escaping in the lateral direction. Therefore, lateral displacement of the mold can be prevented, and a uniform molded product can be more reliably and efficiently manufactured. The mold sliding guide means is combined with the mold interval determining means to
It may be configured as one member, or different single members may each have a function as a mold sliding guide means and a function as a mold space determination means. Further, the mold of the present invention may be further provided with means for preventing the mold from laterally shifting. By providing the lateral displacement prevention means, it is possible to prevent deflection of the entire molding die due to pressurization and lateral displacement of the die. For this reason, as in the case of the mold sliding guide means, a uniform molded product can be more reliably and efficiently manufactured by installing the lateral displacement prevention means.
The lateral displacement prevention means may also have a function of guiding the mold sliding like a sleeve surrounding the upper mold, the intermediate mold, the lower mold and the mold interval determining means (third embodiment).

【0013】成形方法 本発明の成形方法は、上記の本発明の成形型を用いて行
う。使用する成形用素材の種類は特に制限されないた
め、ガラス素材などを幅広く用いることができる。1つ
の成形型について1種類の成形用素材を用いるのが典型
的であるが、場合によっては2種類以上の成形用素材を
成形面に応じて使い分けてもよい。成形用素材は、成形
型の隣合う2つの型の向かい合った成形面の間に導入し
て加熱軟化させるか、予め加熱軟化させて導入する。導
入は、成形型を組み立てながら適宜行ってもよいし、予
め組み立ててある成形型に導入してもよい。次に、上
型、下型またはその両方に圧力を加えて各型間隔を型間
隔決定手段により設定される間隔にする。このときの加
圧は、棒状体で上型の中心部を押してもよいし、上型の
面全体に圧力をかけてもよい。加圧中は成形用素材が軟
化していなければならないため、加熱しながら加圧して
も構わない。このようにして加圧成形した後、冷却する
ことによって成形品を得る。加圧成形と冷却は、窒素雰
囲気下で行うのが効率が良くて好ましい。尚、本発明に
おいて成形用素材がガラス素材である場合、ガラス素材
の種類に制限はなく、また、ガラスの種類に応じて、成
形条件(成形時のガラスの軟化温度や加圧時間)や冷却
条件等は、適宜決定できる。また、本発明により得られ
る成形体の形状にも特に制限はなく、これまで、精密プ
レス成形法により成形できることが知られているもので
ありば、同様に成形することができる。
Molding method The molding method of the present invention is carried out using the above-mentioned molding die of the present invention. Since the type of molding material to be used is not particularly limited, a glass material or the like can be widely used. Typically, one type of molding material is used for one molding die. However, in some cases, two or more types of molding materials may be properly used according to the molding surface. The molding material is introduced between the opposing molding surfaces of two adjacent molds of the molding die to be heated and softened, or is heated and softened in advance and introduced. The introduction may be carried out as appropriate while assembling the molding die, or may be introduced into a previously assembled molding die. Next, pressure is applied to the upper mold, the lower mold, or both to set each mold interval to an interval set by the mold interval determining means. At this time, the pressure may be applied by pressing the center of the upper mold with a rod-shaped body or by applying pressure to the entire surface of the upper mold. Since the material for molding must be softened during pressurization, pressurization may be performed while heating. After the pressure molding in this manner, a molded product is obtained by cooling. Pressure molding and cooling are preferably performed in a nitrogen atmosphere because of high efficiency. In the present invention, when the forming material is a glass material, there is no limitation on the type of the glass material, and the forming conditions (softening temperature and pressurizing time of the glass at the time of forming) and cooling are determined according to the type of the glass. Conditions and the like can be determined as appropriate. The shape of the molded article obtained by the present invention is not particularly limited, and any molded article which has been known to be able to be molded by a precision press molding method can be similarly molded.

【0014】[0014]

【実施例】以下に実施例を挙げて、本発明をさらに説明
する。 実施例1 図1(a)は、ガラス素材1a、1b、1cを導入した
本発明の成形型の断面図である。この成形型は、重クラ
ウン系光学ガラス(転移点515℃、屈伏点545℃)
でできている片面が非球面のメニスカスレンズ(外径3
0mm、中心肉厚4mm)を加圧成形するための成形型
である。上記重クラウン系光学ガラスは100〜300
℃で測定した熱膨張係数が89×10-7/℃である。成
形型は、下面に成形面を有する上型2、上下両面に成形
面を有する中間型3a、3b、上面に成形面を有する下
型4、およびリング状部材(型間隔決定手段+型摺動ガ
イド手段)5aa、5b、5cで構成される。型2、3
a、3b、4に設けられた成形面6は、光学鏡面上に白
金系合金薄膜を形成したものである。上方から見ると、
型2、3a、3b、4は円形であり、リング状部材5
a、5b、5cと、型2、3a、3b、4とのクリアラ
ンスは成形品の軸ずれが生じない程度に狭められてい
る。これらの部材には、金属バインダーをほとんど含ま
ない超硬合金が使用されている(熱膨張係数49×10
-7/℃)。
The present invention will be further described with reference to the following examples. Example 1 FIG. 1A is a cross-sectional view of a molding die of the present invention into which glass materials 1a, 1b, and 1c have been introduced. This mold is made of heavy-crown optical glass (transition point: 515 ° C, yield point: 545 ° C)
Meniscus lens with an aspherical surface on one side (outer diameter 3
(0 mm, center thickness 4 mm). The heavy crown optical glass is 100 to 300.
The coefficient of thermal expansion measured at ° C. is 89 × 10 −7 / ° C. The mold includes an upper mold 2 having a molding surface on a lower surface, intermediate dies 3a and 3b having molding surfaces on both upper and lower surfaces, a lower mold 4 having a molding surface on an upper surface, and a ring-shaped member (mold interval determining means + mold sliding). Guide means) 5aa, 5b and 5c. Type 2, 3
The molding surfaces 6 provided at a, 3b and 4 are formed by forming a platinum-based alloy thin film on an optical mirror surface. Looking from above,
The molds 2, 3a, 3b, 4 are circular, and the ring-shaped members 5
The clearances between a, 5b, 5c and the dies 2, 3a, 3b, 4 are narrowed to such an extent that no axial deviation of the molded product occurs. For these members, a cemented carbide containing almost no metal binder is used (thermal expansion coefficient 49 × 10 4).
-7 / ° C).

【0015】各成形面6の外側には平面部7a、7b、
7c、9a、9b、9cが設けられており、平面部7
a、7b、7cと接するようにリング状部材5a、5
b、5cがそれぞれ設置されている。上型2、中間型3
a、3bはリング状部材5a、5b、5cのリング内面
を上下に摺動することができる。すなわち、リング状部
材は型摺動をガイドする機能をも有する。下向きの摺動
は、成形面の外側にある平面部9a、9b、9cがリン
グ状部材の平面部8a、8b、8cと接触するまで行う
ことができる。
Outside each molding surface 6, flat portions 7a, 7b,
7c, 9a, 9b, 9c are provided,
a, 7b, 7c so that the ring-shaped members 5a, 5c
b and 5c are provided respectively. Upper mold 2, middle mold 3
a and 3b can slide up and down on the inner surfaces of the rings of the ring-shaped members 5a, 5b and 5c. That is, the ring-shaped member also has a function of guiding the mold sliding. The downward sliding can be performed until the flat portions 9a, 9b, 9c outside the molding surface come into contact with the flat portions 8a, 8b, 8c of the ring-shaped member.

【0016】この成形型を用いて、以下の方法によって
光学ガラスを成形した。成形用素材として、前記ガラス
素材を使用した。このガラス素材1a、1b、1cを、
図1(a)に示すように、上型2と中間型3aの間、中
間型3aと中間型3bの間、および中間型3bと下型4
の間にそれぞれ導入した。導入したガラス素材の容量
は、後述する加圧成形時にガラス素材がリング状部材の
内側端部10からはみ出さずに周辺部11が丸みを帯び
る程度の量とした。ガラス素材導入後、窒素雰囲気下で
600℃にて上型2を下向きに加圧した。1分間の加圧
を経て、成形面の外側にある平面部9a、9b、9cが
リング状部材の平面部8a、8b、8cに接触し、図1
(b)に示す状態になった。その後、冷却して光学ガラ
スを取り出した。この成形方法を繰返し行った結果、中
心肉厚が一定となり、高精度レンズに要求される品質性
能がすべて良好な光学レンズを安定に製造することがで
きた。成形品はすべて許容公差内であり、目的とした規
格から外れた欠陥品はなかった。
Using this mold, an optical glass was formed by the following method. The glass material was used as a molding material. This glass material 1a, 1b, 1c
As shown in FIG. 1A, between the upper mold 2 and the middle mold 3a, between the middle mold 3a and the middle mold 3b, and between the middle mold 3b and the lower mold 4
Between each introduced. The capacity of the introduced glass material was such that the peripheral portion 11 was rounded without the glass material protruding from the inner end portion 10 of the ring-shaped member at the time of pressure molding described later. After the introduction of the glass material, the upper mold 2 was pressed downward at 600 ° C. in a nitrogen atmosphere. After pressing for 1 minute, the flat portions 9a, 9b, 9c outside the molding surface come into contact with the flat portions 8a, 8b, 8c of the ring-shaped member.
The state shown in FIG. After cooling, the optical glass was taken out. As a result of repeating this molding method, the center thickness became constant, and an optical lens having good quality and performance required for a high-precision lens could be stably manufactured. All the molded products were within the allowable tolerance, and no defective products were out of the intended specifications.

【0017】実施例2 実施例1に記載される成形型を用いて、以下の条件a又
はbに変更したうえで実施例1に記載される方法にした
がって光学ガラスを成形した。 [方法a]軟化していないガラス素材の代わりに、予め
600℃に加熱して軟化させたガラス素材を導入した。 [方法b]ガラス素材の加圧工程を、真空状態で行っ
た。 本実施例の方法aおよびbによる場合も、実施例1と同
様に高品質な光学ガラスを安定に製造することができ
た。
Example 2 Using the mold described in Example 1, the optical glass was molded in accordance with the method described in Example 1, after changing the conditions a or b below. [Method a] Instead of a glass material that was not softened, a glass material that had been softened by heating to 600 ° C. in advance was introduced. [Method b] The step of pressing the glass material was performed in a vacuum state. Also in the case of the methods a and b of this embodiment, high-quality optical glass could be stably produced as in the case of the first embodiment.

【0018】実施例3 図2は、ガラス素材1a、1b、1cを導入した本発明
の別の成形型の断面図である。この成形型は、図1に示
した実施例1の成形型の外周にリング状部材5a、5
b、5cをガイドするスリーブ12を設けたものであ
る。スリーブ12は、横ずれ防止手段としての役割を果
たす。この成形型を用いて、実施例1と同様の方法によ
り光学ガラスを成形した。冷却後の成形品の取り出し
は、スリーブを保持し、押し出し棒によって下型2を突
き上げて順次分解することにより行った。その結果、図
2の成形型を用いれば、セットと加圧成形の安定性が高
まることが確認された。
Embodiment 3 FIG. 2 is a sectional view of another molding die of the present invention into which glass materials 1a, 1b, and 1c are introduced. This mold has ring-shaped members 5a, 5a on the outer periphery of the mold of Example 1 shown in FIG.
b, 5c are provided. The sleeve 12 plays a role as a means for preventing lateral displacement. Using this mold, an optical glass was formed in the same manner as in Example 1. The molded product after cooling was taken out by holding the sleeve, pushing up the lower mold 2 with an extruding rod, and sequentially disassembling it. As a result, it was confirmed that the use of the mold shown in FIG. 2 increased the stability of setting and pressure molding.

【0019】(実施例4)図3は、ガラス素材1a、1
b、1cを導入した本発明のさらに別の成形型の断面図
である。この成形型は、上型2、中間型3a、3b、下
型4、リング状部材(型間隔決定手段)5a、5b、5
c、スリーブ12で構成される。スリーブ12は成形型
の横ずれを防止するとともに、型摺動をガイドする機能
をも有する。また、リング状部材5a、5b、5cは、
成形品の肉厚を決定し、上下面の傾きを防止する機能を
有する。型2、3a、3b、4とスリーブ12には、金
属バインダーをほとんど含まない超硬合金が使用されて
おり、その熱膨張係数は49×10-7/℃である。リン
グ状部材5a、5b、5cは、型の外縁にあって円周か
らはみ出さない大きさを有しており、熱膨張係数180
×10-7/℃のステンレス鋼で形成されている。
(Embodiment 4) FIG. 3 shows glass materials 1a and 1a.
It is sectional drawing of further another shaping | molding die of this invention which introduced b and 1c. This mold includes an upper mold 2, an intermediate mold 3a, 3b, a lower mold 4, a ring-shaped member (mold interval determining means) 5a, 5b, 5
c, and a sleeve 12. The sleeve 12 has a function of preventing lateral displacement of the mold and guiding the mold sliding. The ring-shaped members 5a, 5b, 5c
It has the function of determining the thickness of the molded product and preventing inclination of the upper and lower surfaces. For the molds 2, 3a, 3b, 4 and the sleeve 12, a cemented carbide containing almost no metal binder is used, and its thermal expansion coefficient is 49 × 10 −7 / ° C. The ring-shaped members 5a, 5b, 5c have a size at the outer edge of the mold that does not protrude from the circumference, and have a thermal expansion coefficient of 180.
It is formed of stainless steel of × 10 -7 / ° C.

【0020】型2、3a、3b、4の各成形面は、光学
鏡面上に白金系合金薄膜を形成したものである。各成形
面6の外側には図1と同様に平面部7a、7b、7c、
9a、9b、9cが設けられている。これらの平面部の
面積は、接触するリング状部材5a、5b、5cの平面
部の面積よりも大きい。型2、3a、3b、4とスリー
ブ12とのクリアランスは狭く、また、リング状部材5
a、5b、5cとスリーブ12とのクリアランスは、加
圧成形時の温度において狭くなるように設定されてい
る。この成形型を用いて、実施例1に記載される方法に
したがって光学ガラスを成形した。ガラス素材は、10
0〜300℃で測定した熱膨張係数が89×10-7/℃
のものを使用した。そのガラス素材の容量は、加圧成形
時にガラス素材の周辺部11がリング状部材の内側端部
10に接触しない程度の量とした。このため、ガラス成
形体がリング状部材に締め付けられることなく、かつそ
の上下面を各型の成形面に接触させたまま冷却を行うこ
とができた。その結果、実施例1の場合よりも、より面
精度が高い光学ガラスが安定に製造された。
Each of the molding surfaces of the dies 2, 3a, 3b, and 4 has a platinum-based alloy thin film formed on an optical mirror surface. Outside each molding surface 6, as in FIG. 1, flat portions 7a, 7b, 7c,
9a, 9b and 9c are provided. The area of these flat parts is larger than the area of the flat parts of the ring-shaped members 5a, 5b, 5c that come into contact with each other. The clearance between the molds 2, 3a, 3b, 4 and the sleeve 12 is narrow, and the ring-shaped member 5
The clearance between a, 5b, 5c and the sleeve 12 is set so as to be narrow at the temperature at the time of pressure molding. Using this mold, an optical glass was molded according to the method described in Example 1. Glass material is 10
The coefficient of thermal expansion measured at 0 to 300 ° C. is 89 × 10 −7 / ° C.
Was used. The capacity of the glass material was set to such an amount that the peripheral portion 11 of the glass material did not contact the inner end portion 10 of the ring-shaped member at the time of pressure molding. For this reason, cooling could be performed without the glass molded body being fastened to the ring-shaped member and with the upper and lower surfaces thereof being in contact with the molding surfaces of the respective molds. As a result, an optical glass having higher surface accuracy than in the case of Example 1 was stably manufactured.

【0021】実施例5 図4(a)は、ガラス素材1a〜1eを導入した本発明
のさらに別の成形型の断面図である。この成形型は、微
細な凹凸表面パターンを有する回折格子付き平板製品
(外径64mm、中心肉厚1mm)を加圧成形するため
に使用するものである。この成形型は、上型2、中間型
3a〜3d、下型4、リング状部材(型間隔決定手段)
5a〜5e、上支持体13、下支持体14および4本の
円柱15で構成される。このうち、型2、3a〜3d、
4、支持体13、14の材質は、CVD法で調製した炭
化珪素である。図5に示す成形面の形成は、まず平面を
研磨してレジストを塗布し、フォトマスクを用いた密着
露光法により微細パターンをレジストに転写し、反応性
イオンエッチング法で溝幅1〜数μm、溝深さ0.2〜
0.3μmのパターンを形成し(レジストは除去)、表
面層として硬質炭素薄膜を形成することにより行った。
各成形型及び型支持体の外周部には4箇所の穴が開けら
れており、これらに超硬合金の円柱15が貫通してい
る。これによって、軸ずれと上下の成形面のずれを防止
している。さらに、各円柱15には、成形品の肉厚を決
め、かつ成形品の上下面の傾きを防止するためのリング
状部材5a〜5eを挿入してある。リング状部材の例を
図6に示す。リング状部材5a〜5eの材質は、熱膨張
係数180×10-7/℃]のステンレス鋼である。
Embodiment 5 FIG. 4A is a cross-sectional view of still another molding die of the present invention into which glass materials 1a to 1e have been introduced. This molding die is used for pressure-molding a flat product with a diffraction grating having a fine uneven surface pattern (outer diameter 64 mm, center thickness 1 mm). The molding die includes an upper die 2, intermediate dies 3a to 3d, a lower die 4, and a ring-shaped member (die interval determining means).
5a to 5e, an upper support 13, a lower support 14, and four cylinders 15. Among them, molds 2, 3a to 3d,
4. The material of the supports 13 and 14 is silicon carbide prepared by the CVD method. 5 is formed by first polishing a flat surface, applying a resist, transferring a fine pattern to the resist by a contact exposure method using a photomask, and forming a groove width of 1 to several μm by a reactive ion etching method. , Groove depth 0.2 ~
This was performed by forming a pattern of 0.3 μm (resist was removed) and forming a hard carbon thin film as a surface layer.
Four holes are formed in the outer peripheral portion of each mold and the mold support, and a cemented carbide column 15 penetrates these holes. This prevents axial displacement and displacement between the upper and lower molding surfaces. Further, ring-shaped members 5a to 5e for determining the thickness of the molded product and preventing the upper and lower surfaces of the molded product from being inclined are inserted into each column 15. FIG. 6 shows an example of the ring-shaped member. The material of the ring-shaped members 5a to 5e is stainless steel having a thermal expansion coefficient of 180 × 10 −7 / ° C.].

【0022】鏡面になった平板ガラス素材を用いて、微
細パターン付きガラス製品を調製した。まず、下支持体
13に円柱15を挿入、嵌合し、型2、3a〜d、4と
リング状部材5a〜5eおよび熱膨張係数89×10-7
/℃のガラス素材1a〜1eを交互に積み上げて図4
(a)に示す構造を組み立てた。平板ガラス素材は、加
圧成形時にガラス素材がリング状部材の内側端部10に
接しないように配置した。この操作は、機械的に各成形
型の間に隙間を空けてガラス素材を導入し、導入したガ
ラス素材が型の中央に位置するように外部から機械的に
位置決めすることにより行うこともできる。この状態
で、成形機にセットし、真空下640℃で加圧成形し
た。約1分間の加圧によって、各リング状部材の上側平
面部に中間型と上型が接触し、肉厚が決定された。この
肉厚が決定されるまでの伸びは約50μmであった。こ
の成形を繰り返して行った結果、得られた成形品は真空
状態で加圧しているためにガストラップがないことが確
認された。また、微細パターンの転写性が極めて良好
で、肉厚をはじめとする必要な品質性能はすべて良好で
あった。また、横ずれと回転の防止も十分であった。
A glass product with a fine pattern was prepared using a flat glass material having a mirror surface. First, the cylinder 15 is inserted into the lower support 13 and fitted therein, and the dies 2, 3a to 4d, the ring-shaped members 5a to 5e, and the coefficient of thermal expansion 89 × 10 −7.
/ ° C glass materials 1a to 1e are alternately stacked and FIG.
The structure shown in (a) was assembled. The flat glass material was arranged so that the glass material did not contact the inner end portion 10 of the ring-shaped member during pressure molding. This operation can also be performed by mechanically introducing a glass material with a gap between the molds, and mechanically positioning the introduced glass material from the outside so that the introduced glass material is positioned at the center of the mold. In this state, it was set in a molding machine and molded under pressure at 640 ° C. under vacuum. By the pressing for about 1 minute, the intermediate mold and the upper mold contacted the upper flat surface of each ring-shaped member, and the wall thickness was determined. The elongation before this thickness was determined was about 50 μm. As a result of repeating this molding, it was confirmed that the obtained molded article had no gas trap because it was pressurized in a vacuum state. Further, the transferability of the fine pattern was extremely good, and all necessary quality performances including the thickness were good. Further, prevention of lateral displacement and rotation was sufficient.

【0023】[0023]

【発明の効果】本発明の成形型および成形方法によれ
ば、中間型が傾くことによる上下の成形面のずれや、成
形箇所によって成形品の形状がばらつくのを防ぐことが
できる。したがって、本発明によれば、形が揃った多数
個の成形品を安定して製造することができる。
According to the molding die and the molding method of the present invention, it is possible to prevent the upper and lower molding surfaces from being displaced due to the inclination of the intermediate mold and to prevent the shape of the molded product from being varied depending on the molding location. Therefore, according to the present invention, it is possible to stably manufacture a large number of molded articles having a uniform shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に記載される本発明の成形型の断面
図。
FIG. 1 is a sectional view of a mold according to the present invention described in Example 1.

【図2】実施例3に記載される本発明の成形型の断面
図。
FIG. 2 is a cross-sectional view of the mold of the present invention described in Example 3.

【図3】実施例4に記載される本発明の成形型の断面
図。
FIG. 3 is a sectional view of a mold according to the present invention described in Example 4.

【図4】実施例5に記載される本発明の成形型の断面
図。
FIG. 4 is a cross-sectional view of a mold according to the present invention described in Example 5.

【図5】実施例5に記載される本発明の成形型の成形面
の拡大断面図。
FIG. 5 is an enlarged sectional view of a molding surface of a molding die of the present invention described in Example 5.

【図6】実施例5に記載されるリング状部材を装着した
本発明の成形型の平面図。
FIG. 6 is a plan view of a molding die of the present invention equipped with the ring-shaped member described in Example 5.

【符号の説明】[Explanation of symbols]

1:成形用素材 2:上型 3:中間型 4:下型
5:リング状部材 6:成形面 7、8、9:平面部 10:リング状部材の
内側端部 11:成形品の周辺部 12:スリーブ 13:上支持体 1
4:下支持体 15:円柱
1: Material for molding 2: Upper mold 3: Intermediate mold 4: Lower mold
5: Ring-shaped member 6: Forming surface 7, 8, 9: Flat portion 10: Inner end of ring-shaped member 11: Peripheral portion of molded product 12: Sleeve 13: Upper support 1
4: Lower support 15: Column

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 下面に成形面を有する上型、上面に成形
面を有する下型、上下両面に成形面を有する1以上の中
間型、および型間隔決定手段を有する成形型。
1. A mold having an upper mold having a molding surface on a lower surface, a lower mold having a molding surface on an upper surface, at least one intermediate mold having molding surfaces on both upper and lower surfaces, and a mold having a mold interval determining means.
【請求項2】 型間隔決定手段が、隣合う2つの型の外
縁間に位置する部材である請求項1の成形型。
2. The molding die according to claim 1, wherein the mold interval determining means is a member located between outer edges of two adjacent dies.
【請求項3】 型摺動ガイド手段をさらに有する請求項
1または2の成形型。
3. The molding die according to claim 1, further comprising a die sliding guide means.
【請求項4】 型間隔決定手段が型摺動ガイド手段の内
面に固定されている請求項3の成形型。
4. The molding die according to claim 3, wherein the mold interval determining means is fixed to an inner surface of the mold sliding guide means.
【請求項5】 成形型の横ずれ防止手段をさらに有する
請求項1〜4のいずれかの成形型。
5. The molding die according to claim 1, further comprising means for preventing lateral displacement of the molding die.
【請求項6】 型間隔決定手段の熱膨張係数が、成形用
素材の熱膨張係数よりも大きい請求項1〜5のいずれか
の成形型。
6. The molding die according to claim 1, wherein a coefficient of thermal expansion of the mold interval determining means is larger than a coefficient of thermal expansion of the molding material.
【請求項7】 成形面が鏡面または微細パターンを有す
る請求項1〜6のいずれかの成形型。
7. The molding die according to claim 1, wherein the molding surface has a mirror surface or a fine pattern.
【請求項8】 請求項1〜7のいずれかの成形型の隣合
う2つの型の向かい合った成形面の間に、予め加熱軟化
させた成形用素材を導入するか、成形用素材を導入して
加熱軟化させる工程、 上型、下型またはその両方に圧力を加えて各型間隔を型
間隔決定手段により設定される間隔にすることによって
成形用素材を加圧成形する工程、および、 冷却する工程、を含む成形方法。
8. A molding material heated and softened in advance or a molding material is introduced between opposed molding surfaces of two adjacent molds of the molding die according to any one of claims 1 to 7. Heating and softening; pressing the upper mold, the lower mold or both of them to set each mold interval to the interval set by the mold interval determining means, and press-cooling the molding material. And a molding method.
【請求項9】 成形用素材がガラス素材である請求項8
の成形方法。
9. The molding material is a glass material.
Molding method.
【請求項10】 導入する成形用素材の容量を、加圧成
形時に成形体の外周部の一部または全部が型間隔決定手
段と接触しない程度にする請求項8または9の成形方
法。
10. The molding method according to claim 8, wherein the volume of the molding material to be introduced is such that part or all of the outer peripheral portion of the molded body does not come into contact with the mold interval determining means during pressure molding.
【請求項11】 成形用素材を減圧下において加圧成形
する請求項8〜10のいずれかの成形方法。
11. The molding method according to claim 8, wherein the molding material is molded under pressure under reduced pressure.
JP15723496A 1996-06-18 1996-06-18 Mold and molding method Expired - Lifetime JP3818552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15723496A JP3818552B2 (en) 1996-06-18 1996-06-18 Mold and molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15723496A JP3818552B2 (en) 1996-06-18 1996-06-18 Mold and molding method

Publications (2)

Publication Number Publication Date
JPH101320A true JPH101320A (en) 1998-01-06
JP3818552B2 JP3818552B2 (en) 2006-09-06

Family

ID=15645180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15723496A Expired - Lifetime JP3818552B2 (en) 1996-06-18 1996-06-18 Mold and molding method

Country Status (1)

Country Link
JP (1) JP3818552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043206A (en) * 2017-05-03 2017-08-15 湖北戈碧迦光电科技股份有限公司 Optical glass rod mould and forming frock
WO2017188491A1 (en) * 2016-04-29 2017-11-02 주식회사 애니캐스팅 Glass pattern molding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188491A1 (en) * 2016-04-29 2017-11-02 주식회사 애니캐스팅 Glass pattern molding device
CN107043206A (en) * 2017-05-03 2017-08-15 湖北戈碧迦光电科技股份有限公司 Optical glass rod mould and forming frock

Also Published As

Publication number Publication date
JP3818552B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
EP0580112A1 (en) Manufacturing method of glass optical elements having a fine concave and convex pattern and press-molding die therefor
JPWO2013027808A1 (en) Optical element manufacturing method and manufacturing apparatus
JPH101320A (en) Mold and molding method
JPH0226843A (en) Mold for molding glass
JPH03218932A (en) Lens forming mold
JP4094210B2 (en) Manufacturing method of glass optical element and molding die for glass optical element used therefor
JP3134581B2 (en) Mold for optical element molding
JPH09188529A (en) Device for forming optical element
JPH0692658A (en) Mold for molding optical element and method for molding optical element
JPH07215721A (en) Lens forming device
JP2621956B2 (en) Optical element molding method
JP3204613B2 (en) Mold for molding glass tray
US6250643B1 (en) Damper plate and method for producing thereof
JP3199825B2 (en) Optical element molding method
JP4832939B2 (en) Method for manufacturing optical element molding die
JP3203402B2 (en) Optical element molding die, method of manufacturing the same, and optical element molding method
JPH06263458A (en) Material and method for forming optical element
JPH107426A (en) Mold and molding process
JP2650975B2 (en) Glass optical element molding method
JPH02111635A (en) Forming mold for press lens and forming method
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP3164410B2 (en) Body mold for molding optical elements
JPH06171964A (en) Method for forming optical element
JPH11255529A (en) Molding apparatus for optical element
JP2003063832A (en) Mold for forming optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

EXPY Cancellation because of completion of term