JPH10132021A - Piezoelectric damping material - Google Patents

Piezoelectric damping material

Info

Publication number
JPH10132021A
JPH10132021A JP28491196A JP28491196A JPH10132021A JP H10132021 A JPH10132021 A JP H10132021A JP 28491196 A JP28491196 A JP 28491196A JP 28491196 A JP28491196 A JP 28491196A JP H10132021 A JPH10132021 A JP H10132021A
Authority
JP
Japan
Prior art keywords
piezoelectric
particulates
damping material
glassy carbon
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28491196A
Other languages
Japanese (ja)
Inventor
Keiichi Asami
圭一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP28491196A priority Critical patent/JPH10132021A/en
Publication of JPH10132021A publication Critical patent/JPH10132021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily adjust electroconductivity in piezoelectric damping material obtained by scattering piezoelectric particulates and electroconductive particulates in high polymer matrix by adopting glassy carbon particulates to the electroconductive particulates. SOLUTION: Piezoelectric damping material having excellent characteristics suitable for a damping member is formed by scattering piezoelectric particulates and electroconductive particulates in high polymer matrix. Glassy carbon particulates are used for the electroconductive particulates. Ceramic or high polymer piezoelectric material is used for the piezoelectric particulates. Mean diameter of the pizoelectric particulates ranges between 0.1 and 50 micrometers. Its content may be desirably between 20 and 70vol% in respect to whole of the piezoelectric damping material. Sphrical glassy carbon obtained by burning spherical phenol resin under inactive atmosphere (including vacuum) is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電制振材料に関
するものである。特に、車両、鉄道、航空機などの輸送
機器関連部材、建築・建材関連部材、家電・OA機器の
ような業務用関連部材などにおいて発生する振動を減免
するための制振部材として好適な優れた制振特性を有す
る圧電制振材料に関するものである。
[0001] The present invention relates to a piezoelectric damping material. In particular, an excellent vibration damping member suitable as a vibration damping member for reducing or excluding vibrations generated in transportation equipment-related members such as vehicles, railways, and aircraft, construction / building material-related members, and business-related members such as home appliances and OA equipment. The present invention relates to a piezoelectric damping material having vibration characteristics.

【0002】[0002]

【従来の技術】従来知られている制振材料としては、高
分子系粘弾性材料を利用したものが多く、例えば、薄い
鋼板の間に高分子系粘弾性層をサンドイッチした制振鋼
板が実用化されている。これは、発生した振動の力によ
って高分子系粘弾性層が変形し、これが元の状態に戻る
時に分子間の摩擦により振動エネルギーが熱に変化し、
制振効果を発現させようとするものである。
2. Description of the Related Art As a conventionally known damping material, a polymer-based viscoelastic material is often used. For example, a damping steel plate in which a polymer-based viscoelastic layer is sandwiched between thin steel plates is practically used. Has been This is because the generated viscoelastic layer is deformed by the force of the generated vibration, and when this returns to the original state, the vibration energy changes to heat due to the friction between the molecules,
It is intended to exert a vibration damping effect.

【0003】また、最近、圧電特性を有する材料を制振
材料として利用する試みもなされている(「新素材」vo
l.5 、p66-69、1993、特開平5-240298号公報、特開平6-
85346 号公報)。この場合の制振材料は、圧電粒子と導
電性粒子とを充填した樹脂複合材料からなるものであ
る。その機構は、発生した振動エネルギーを圧電変換に
より電気的ポテンシャルとして取り出し、さらに導電性
粒子が形成する導電路に発生電流を流すことにより振動
エネルギーをジュール熱として消費するようにしたもの
である。すなわち、圧電複合材料に対して振動が加えら
れると振動エネルギーは圧電効果により電気的エネルギ
ーに変換されて圧電粒子に交流電圧が発生する。そし
て、複合材料中に導電粒子が存在することによって複合
材料は適当な抵抗を持ち、それにより発生した電気エネ
ルギーが最終的にジュール熱として消費されるのであ
る。
[0003] Recently, attempts have been made to use a material having piezoelectric characteristics as a vibration damping material ("new material" vo
l.5, p66-69, 1993, JP-A-5-240298, JP-A-6-
No. 85346). The vibration damping material in this case is made of a resin composite material filled with piezoelectric particles and conductive particles. The mechanism takes out the generated vibration energy as an electric potential by piezoelectric conversion, and further consumes the vibration energy as Joule heat by flowing a generated current through a conductive path formed by the conductive particles. That is, when vibration is applied to the piezoelectric composite material, the vibration energy is converted into electric energy by the piezoelectric effect, and an alternating voltage is generated in the piezoelectric particles. Then, the composite material has an appropriate resistance due to the presence of the conductive particles in the composite material, and the electric energy generated thereby is eventually consumed as Joule heat.

【0004】この場合の圧電複合材料の抵抗をR,圧電
粒子の容量をC,減衰させたい振動数をωとすると、イ
ンピーダンスの整合条件として、R=1/ωCの条件が
成立するときに、最も迅速に振動が減衰することが知ら
れている。従って、固有振動数に対応する適当な導電率
を設定することにより制振効果を大きくすることができ
るのである。
In this case, if the resistance of the piezoelectric composite material is R, the capacitance of the piezoelectric particles is C, and the frequency to be attenuated is ω, when the condition of R = 1 / ωC is satisfied as the impedance matching condition, It is known that the vibration is damped most quickly. Therefore, by setting an appropriate conductivity corresponding to the natural frequency, the vibration damping effect can be increased.

【0005】[0005]

【発明が解決しようとする課題】ところで、圧電粒子と
導電性粒子とを含有する複合材料からなる制振材料にお
いては、導電性粒子として一般的にカーボンブラック、
アセチレンブラック等のカーボン粒子が使用される。こ
のようなカーボン粒子を使用した場合、カーボン粒子が
ある特定の濃度(臨界充填量)になった時点で複合材料
の導電率が急激に増大することが知られている(特開平
5-240298号公報、「日本接着協会誌」vol.23、p103-11
1、1987)。
By the way, in a vibration damping material composed of a composite material containing piezoelectric particles and conductive particles, carbon black is generally used as the conductive particles.
Carbon particles such as acetylene black are used. When such carbon particles are used, it is known that the electrical conductivity of the composite material sharply increases when the carbon particles reach a certain concentration (critical filling amount) (Japanese Unexamined Patent Publication (Kokai) No. Heisei 9 (1994) -207).
5-240298, `` Journal of the Adhesion Society of Japan '' vol.23, p103-11
1, 1987).

【0006】この点を解決するために特開平6-85346 号
公報では、力学的な外力が与えられた場合において圧縮
性と圧縮に対する回復力の双方を有する弾性黒鉛を使用
することでカーボン粒子が網目状の凝集を起こす濃度付
近で導電率を緩やかに変化させることができることが開
示されている。しかし、弾性黒鉛を使用した場合も一般
的なカーボン粒子を使用した場合に比べ導電率の変化
は、わずかに緩やかにはなっているが、導電率を所定の
最適範囲に調整することは極めて困難である。
In order to solve this problem, Japanese Patent Application Laid-Open No. 6-85346 discloses that carbon particles can be reduced by using elastic graphite having both compressibility and recovery force against compression when a mechanical external force is applied. It is disclosed that the conductivity can be gradually changed in the vicinity of a concentration at which network aggregation occurs. However, even when elastic graphite is used, the change in conductivity is slightly slower than when using general carbon particles, but it is extremely difficult to adjust the conductivity to a predetermined optimum range. It is.

【0007】このように、従来の圧電制振材料において
は、カーボン粒子の臨界充填量近傍において導電率が急
激に変化するので、導電率を所定の最適範囲に調整する
ことが非常に困難であるという問題点があった。このよ
うに、材料の導電率を所望の値に調整することが困難で
あるということは、良好な制振効果が発現される導電率
を有する圧電材料を工業的に生産することが困難である
ことを意味する。
[0007] As described above, in the conventional piezoelectric damping material, the electric conductivity rapidly changes in the vicinity of the critical filling amount of carbon particles, and it is very difficult to adjust the electric conductivity to a predetermined optimum range. There was a problem. As described above, it is difficult to adjust the conductivity of a material to a desired value, which means that it is difficult to industrially produce a piezoelectric material having a conductivity that exhibits a good vibration damping effect. Means that.

【0008】本発明は、上述した従来技術に鑑みてなさ
れたものであって、優れた制振効果を得るための導電率
の調整ないし制御の容易化が図られ、従って工業的規模
での製造に好適な圧電複合材料を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and facilitates the adjustment or control of the electrical conductivity for obtaining an excellent vibration damping effect. It is an object of the present invention to provide a piezoelectric composite material that is suitable for:

【0009】[0009]

【課題を解決するための手段】本発明者は、このような
課題を解決するために鋭意検討の結果、導電性粒子とし
て粒状グラッシーカーボンを用いることにより、導電率
の調整を容易に行うことができることを見出し、本発明
に到達した。すなわち、本発明は、粒子状の圧電性物質
と導電性粒子とが高分子マトリックス中に分散されてな
る圧電制振材料であって、導電性粒子が、粒状グラッシ
ーカーボンであることを特徴とする圧電制振材料を要旨
とするものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve such problems, and as a result, by using granular glassy carbon as the conductive particles, the conductivity can be easily adjusted. They have found that they can do so and have reached the present invention. That is, the present invention is a piezoelectric damping material in which a particulate piezoelectric substance and conductive particles are dispersed in a polymer matrix, wherein the conductive particles are granular glassy carbon. The gist is a piezoelectric damping material.

【0010】[0010]

【発明の実施の態様】以下、本発明を詳細に説明する。
本発明者の知見によれば、導電性を付与する成分とし
て、粒状グラッシーカーボンを含有させることによっ
て、粒状グラッシーカーボンの含有量変化に対する導電
率の変化をゆるやかにすることができることを見出し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
According to the findings of the present inventor, it has been found that by adding granular glassy carbon as a component for imparting conductivity, a change in conductivity with respect to a change in the content of granular glassy carbon can be made gentle.

【0011】このように、粒状グラッシーカーボンを採
用することにより導電率の変化を緩やかにすることがで
きる理由については必ずしも明らかではないが、以下の
ようなメカニズムによるものと推定される。カーボンブ
ラック、アセチレンブラックや弾性黒鉛のようなカーボ
ン粒子の臨界充填量の近傍において導電率が急激に変化
する理由は、カーボン粒子のような導電性粒子が臨界量
近傍で高分子マトリックス中において編み目状の凝集を
起こし、これによって粒子間の距離が近接して導電率が
急激に増大することに起因するものと考えられる。とこ
ろが、本発明におけるような粒状グラッシーカーボンを
用いた場合、上記のようなカーボン粒子のように凝集を
起こさないため急激な導電率の増大が起こらないと考え
られる。
The reason why the change in conductivity can be moderated by employing granular glassy carbon as described above is not always clear, but is presumed to be due to the following mechanism. The reason why the conductivity changes rapidly near the critical loading of carbon particles such as carbon black, acetylene black and elastic graphite is that conductive particles such as carbon particles are stitched in a polymer matrix near the critical amount. This is considered to be caused by agglomeration of the particles, whereby the distance between the particles becomes short and the conductivity sharply increases. However, when granular glassy carbon as used in the present invention is used, aggregation does not occur unlike the above-described carbon particles, so that it is considered that a sudden increase in conductivity does not occur.

【0012】本発明における粒子状の圧電性物質として
は、本発明の目的が達成され得る限りにおいて、従来公
知のセラミックス系及び高分子系圧電材料を用いること
ができる。セラミックス系圧電材料としては、チタン酸
バリウム系(BT)、ジルコン酸チタン酸鉛系(PZ
T)、ジルコン酸チタン酸ランタン酸鉛系(PLZ
T)、チタン酸鉛(PT)−ジルコン酸鉛(PZ)を基
本とした3成分系もしくは4成分系が好適に用いられ
る。3成分系もしくは4成分系の元素としては、Nb、
Mg、Ni、Mn、Co、Sn、Fe、Cd、Sb、A
l、Yb、In、Y、Ta、Bi、W、Tl、Reなど
が用いられる。また、高分子系圧電材料としては、ポリ
ーγーメチルグルタメート、ジアセチルセルロース、ポ
リフッ化ビニリデン、テトラフルオロエチレン、トリフ
ルオロエチレン、ポリ塩化ビニル、ナイロン11、ナイロ
ン7等が挙げられる。
As the particulate piezoelectric substance in the present invention, conventionally known ceramic-based and polymer-based piezoelectric materials can be used as long as the object of the present invention can be achieved. Barium titanate (BT), lead zirconate titanate (PZ)
T), lead zirconate titanate lanthanate (PLZ)
T), a three-component system or a four-component system based on lead titanate (PT) -lead zirconate (PZ) is preferably used. As the three-component or four-component element, Nb,
Mg, Ni, Mn, Co, Sn, Fe, Cd, Sb, A
1, Yb, In, Y, Ta, Bi, W, Tl, Re and the like are used. Examples of the polymer-based piezoelectric material include poly-γ-methyl glutamate, diacetyl cellulose, polyvinylidene fluoride, tetrafluoroethylene, trifluoroethylene, polyvinyl chloride, nylon 11, nylon 7, and the like.

【0013】粒子状の圧電性物質の平均粒子径は、0.1
〜50μm程度のものが好ましく、粒子状の圧電性物質
の含有量としては、圧電制振材料全体に対して10〜8
0vol%が好ましく、20〜70vol%がより好ま
しい。80vol%を越えると圧電制振材料の加工性が
悪くなり、10vol%未満の場合は、振動エネルギー
から電気エネルギーへの変換効率が低くなるため好まし
くない。
The average particle size of the particulate piezoelectric substance is 0.1.
About 50 μm is preferable, and the content of the particulate piezoelectric substance is 10 to 8 with respect to the whole piezoelectric damping material.
0 vol% is preferable, and 20 to 70 vol% is more preferable. If it exceeds 80 vol%, the workability of the piezoelectric damping material deteriorates, and if it is less than 10 vol%, the conversion efficiency from vibration energy to electric energy decreases, which is not preferable.

【0014】本発明で用いられる粒状グラッシーカーボ
ンとしては、フルフリルアルコール樹脂やフェノール樹
脂等の熱硬化性樹脂を不活性雰囲気中(真空を含む)で
炭素化して得られたものが使用できる。その中でも特に
球状フェノール樹脂を不活性雰囲気中1000℃以上の温度
で焼成して得られる球状グラッシーカーボンが好まし
い。球状フェノール樹脂の製造方法は、特公平5-72924
号公報に開示されており、また市販品も入手することが
できる。
As the granular glassy carbon used in the present invention, those obtained by carbonizing a thermosetting resin such as a furfuryl alcohol resin or a phenol resin in an inert atmosphere (including vacuum) can be used. Among them, spherical glassy carbon obtained by firing a spherical phenol resin at a temperature of 1000 ° C. or more in an inert atmosphere is particularly preferable. The method for producing the spherical phenolic resin is described in
And commercial products are also available.

【0015】本発明で用いる粒状グラッシーカーボンの
平均粒径は、0.1〜100μmの範囲内であることが好
ましく、1〜70μmがより好ましく、さらに3〜30
μmのものがより好ましい。平均粒径が、0.1μmより
小さい場合及び100μmより大きい場合は、抵抗の制
御が難しくなる。本発明による平均粒径とは、100個
以上の粒状グラッシーカーボンを倍率200倍の顕微鏡
で観察し、その内100個の平均をいう。
The average particle size of the granular glassy carbon used in the present invention is preferably in the range of 0.1 to 100 μm, more preferably 1 to 70 μm, and further preferably 3 to 30 μm.
μm is more preferred. When the average particle size is smaller than 0.1 μm or larger than 100 μm, it becomes difficult to control the resistance. The average particle size according to the present invention refers to an average of 100 or more granular glassy carbons observed with a microscope having a magnification of 200 times.

【0016】粒状グラッシーカーボンの含有量は、特に
制限されるものではなく、目的とする機能の発現に応じ
て適宜選択されうる。例えば、減免したい振動の大きさ
や振動の箇所に応じて、圧電材料、高分子マトリックを
選択し、最適な導電率になるように粒状グラッシーカー
ボンの含有量を設計することができる。圧電制振材料の
導電率(log σ)が、−5〜−9Ω-1・cm-1の範囲に
なるように粒状グラッシーカーボンを加えることが好ま
しく、−6〜−8Ω-1・cm-1の範囲になるように加え
ることがより好ましい。
The content of the particulate glassy carbon is not particularly limited, and can be appropriately selected according to the desired function. For example, a piezoelectric material and a polymer matrix can be selected in accordance with the magnitude and location of the vibration to be reduced, and the content of the granular glassy carbon can be designed so as to obtain the optimum conductivity. The conductivity of the piezoelectric vibration damping material (log sigma) is, it is preferable to add a particulate glassy carbon to be in the range of -5~-9Ω -1 · cm -1, -6~-8Ω -1 · cm -1 It is more preferable to add them so as to fall within the range.

【0017】高分子マトリックスとしては、フェノール
樹脂、エポキシ樹脂などの熱硬化性樹脂、ポリエチレ
ン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニ
ル、ポリフッ化ビニリデン、ポリテトラフルオロエチレ
ン、ポリウレタン、ポリアミド、ポリエステル、ポリエ
ーテル、ポリアリレート、液晶ポリマー等の熱可塑性樹
脂及び天然ゴム、シリコンゴム、ブタジエンなどの合成
ゴムも使用することができる。特に、高誘電率を有する
圧電性高分子であるポリフッ化ビニリデンを用いた場合
は、高温で分極処理を行うことにより複合材全体の圧電
効果を高めることができる。従って、力学エネルギーを
電気的エネルギーに変換する効率が大きくなるため、エ
ネルギー変換効率が大きくなる。
Examples of the polymer matrix include thermosetting resins such as phenolic resins and epoxy resins, polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyurethane, polyamide, polyester, polyether, and the like. Thermoplastic resins such as polyarylate and liquid crystal polymer, and synthetic rubbers such as natural rubber, silicone rubber, and butadiene can also be used. In particular, when polyvinylidene fluoride, which is a piezoelectric polymer having a high dielectric constant, is used, the piezoelectric effect of the entire composite can be enhanced by performing the polarization treatment at a high temperature. Therefore, the efficiency of converting mechanical energy into electrical energy increases, and the energy conversion efficiency increases.

【0018】本発明の圧電制振材料は、その高分子マト
リックスの性状に応じた射出成形、押し出し成形、注型
成形、真空成形、プレス成形、トランスファー成形、ペ
ースト加工などの通常の成形方法により容易に所望形状
に成形でき、二次加工も簡単である。また制振性の部材
・部品を成形する場合は、部材・部品全体を本発明の圧
電制振材料から構成することできる。また、部材・部品
のうち振動源に近い領域にのみ本発明の圧電制振材料を
使用した一種の積層構造または傾斜構造とすることもで
きる。
The piezoelectric vibration damping material of the present invention can be easily formed by ordinary molding methods such as injection molding, extrusion molding, casting molding, vacuum molding, press molding, transfer molding, and paste processing according to the properties of the polymer matrix. It can be formed into a desired shape, and secondary processing is easy. When a vibration damping member / part is formed, the entire member / part can be made of the piezoelectric vibration damping material of the present invention. Further, a kind of a laminated structure or a tilted structure using the piezoelectric damping material of the present invention may be used only in a region of the member / part close to the vibration source.

【0019】本発明の圧電制振材料は、自動車、オーデ
ィオ、建築・建設など産業用、民生用を問わず幅広い分
野における振動・騒音の抑制、減衰に有効に使用するこ
とができる。
The piezoelectric vibration damping material of the present invention can be effectively used for suppressing and attenuating vibrations and noises in a wide range of fields including industrial use and consumer use such as automobiles, audio equipment, construction and construction.

【0020】[0020]

【実施例】次に、本発明を実施例によって具体的に説明
する。 実施例1 粒子状の圧電性物質として平均粒径約5μmの圧電セラ
ミックスPZT(富士チタン工業社製PE60A)、導
電性粒子として平均粒径約5μmである球状グラッシー
カーボン(ユニチカ社製GCP−10H、1900℃焼成
品)、高分子マトリックスとしてポリフッ化ビニリデン
(PVDF)を使用した。粒子状の圧電性物質の体積分
率を40vol%に統一し、球状グラッシーカーボンの
充填量を変えることにより導電率を変化させた圧電制振
材料を以下の方法で作製した。
Next, the present invention will be described specifically with reference to examples. Example 1 A piezoelectric ceramic PZT (PE60A manufactured by Fuji Titanium Co., Ltd.) having an average particle size of about 5 μm as a particulate piezoelectric substance, a spherical glassy carbon having an average particle size of about 5 μm as a conductive particle (GCP-10H manufactured by Unitika), 1900 ° C.), and polyvinylidene fluoride (PVDF) was used as a polymer matrix. A piezoelectric damping material in which the volume fraction of the particulate piezoelectric substance was unified to 40 vol% and the conductivity was changed by changing the filling amount of spherical glassy carbon was produced by the following method.

【0021】すなわち、190℃でプラストミルにより
混練後、200℃、40kg/cm2 、3分間加熱プレ
ス成形した後、40kg/cm2 、3分間冷却プレスす
ることにより厚さ0.5mmのシートを得た。該シートか
ら100×15mmのシートを切り出し導電率を測定し
た。導電率は、ロレスタAP及びハイレスタ(三菱化学
社製)を用い測定した。さらに、図1の装置を用い、シ
ートの片端を固定して加振機により振動を与え、残留振
動を非接触変位センサーを使用して検出し、振幅が1/
eになる時間(τ:減衰時定数)を算出した。τの数値
により制振効果が評価できる。
That is, after kneading with a plast mill at 190 ° C., heat press molding is performed at 200 ° C., 40 kg / cm 2 for 3 minutes, and then cold pressed at 40 kg / cm 2 for 3 minutes to obtain a 0.5 mm thick sheet. Was. A 100 × 15 mm sheet was cut out from the sheet and the conductivity was measured. The conductivity was measured using Loresta AP and Hiresta (manufactured by Mitsubishi Chemical Corporation). Further, using the apparatus shown in FIG. 1, one end of the sheet is fixed and vibration is applied by a vibrator, and residual vibration is detected using a non-contact displacement sensor.
The time to become e (τ: decay time constant) was calculated. The damping effect can be evaluated by the numerical value of τ.

【0022】比較例1 球状グラッシーカーボンをカーボンブラック(CB:TO
KAI SEAST 300 )に変更したこと以外は、実施例1と同
様の方法で実験を行った。
Comparative Example 1 Spherical glassy carbon was replaced with carbon black (CB: TO
An experiment was performed in the same manner as in Example 1 except that the experiment was changed to KAI SEAST 300).

【0023】参考例1 特開昭64-9808 号公報の方法に従って弾性黒鉛の合成し
た。コークス粉末(ロンザ社製、PC−40)6gを9
7%濃硫酸と70%濃硝酸50/50容量比の混酸10
0ml中に少量ずつ加えた後、100℃で1時間加熱し
た。ついで濾過し十分水洗した後、乾燥した。これを水
に分散させ、撹拌しながらpH10になるまで1N−N
aOHを加えた。メンブランフィルター(0.1μm)で
濾過した後、濾液に1N−HClをpH2以下となるよ
うに加え析出した粉末を濾過し乾燥した。この粉末をア
ルゴン気流中400℃/minの昇温速度で2800℃
まで加熱して、30分間保持して黒鉛化処理し、平均粒
径約2μmの弾性黒鉛を得た。収量3.3gであった。
REFERENCE EXAMPLE 1 Elastic graphite was synthesized according to the method described in JP-A-64-9808. 6 g of coke powder (PC-40, manufactured by Lonza)
Mixed acid 10 with a 50/50 volume ratio of 7% concentrated sulfuric acid and 70% concentrated nitric acid
After adding little by little to 0 ml, the mixture was heated at 100 ° C. for 1 hour. Then, the mixture was filtered, washed sufficiently with water, and dried. This is dispersed in water, and 1N-N
aOH was added. After filtration through a membrane filter (0.1 μm), 1N-HCl was added to the filtrate so as to have a pH of 2 or less, and the precipitated powder was filtered and dried. This powder is heated to 2800 ° C. in an argon stream at a rate of 400 ° C./min.
, And held for 30 minutes for graphitization to obtain elastic graphite having an average particle size of about 2 µm. The yield was 3.3 g.

【0024】比較例2 球状グラッシーカーボンを上記参考例1で得た弾性黒鉛
に変更したこと以外は、実施例1と同様の方法で実験を
行った。
Comparative Example 2 An experiment was conducted in the same manner as in Example 1 except that the spherical glassy carbon was changed to the elastic graphite obtained in Reference Example 1.

【0025】実施例1及び比較例1及び2の試料につい
て測定した導電率の値を図2に、減衰時定数を図3に示
す。図2は、導電粒子の含有率(vol %)を横軸とし、
試料の導電率(Ω-1・cm-1)の対数を縦軸に表したグ
ラフであり、これから明らかなように、本発明の圧電制
振材料は、球状グラッシーカーボンの充填量の変化に伴
って導電率が非常に緩やかに変化していること、また比
較例1及び2では、導電率が特定の含有量において殆ど
垂直に立ち上がるように変化していることがわかる。こ
のことは、所望の導電率の調整を簡単に行うことが出来
る事を示している。また、図3は、導電粒子の含有率
(vol %)を横軸とし、試料の減衰時定数(msec)を縦
軸に表したグラフであり、これから明らかなように、本
発明の圧電制振材料は、比較例より幅広い範囲で減衰効
果が大きいことがわかる。
FIG. 2 shows the values of the conductivity measured for the samples of Example 1 and Comparative Examples 1 and 2, and FIG. 3 shows the decay time constant. FIG. 2 shows the content (vol%) of the conductive particles on the horizontal axis,
5 is a graph in which the logarithm of the conductivity (Ω −1 · cm −1 ) of the sample is represented on the vertical axis. As is apparent from the graph, the piezoelectric damping material of the present invention is accompanied by a change in the filling amount of spherical glassy carbon. It can be seen that the conductivity changes very slowly, and in Comparative Examples 1 and 2, the conductivity changes so as to rise almost vertically at a specific content. This indicates that the desired conductivity can be easily adjusted. FIG. 3 is a graph in which the abscissa represents the content (vol%) of the conductive particles and the ordinate represents the decay time constant (msec) of the sample. As is apparent from FIG. It can be seen that the material has a greater damping effect over a wider range than the comparative example.

【0026】[0026]

【発明の効果】本発明によれば、優れた制振効果を得る
ための導電率の調整ないし制御の容易化が図られ、従っ
て工業的規模での製造に好適な圧電複合材料を提供でき
るため、自動車、オーディオ、建築・建設など産業用、
民生用を問わず幅広い分野における振動・騒音の抑制、
減衰に有効に使用することができる。
According to the present invention, it is possible to easily adjust or control the electrical conductivity for obtaining an excellent vibration damping effect, and thus to provide a piezoelectric composite material suitable for production on an industrial scale. , Automobile, audio, construction and construction industries,
Vibration and noise suppression in a wide range of fields regardless of consumer use,
It can be used effectively for attenuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の圧電制振材料の残留振動を測定するた
めの、残留振動測定装置を示すブロック図である。
FIG. 1 is a block diagram showing a residual vibration measuring device for measuring residual vibration of a piezoelectric damping material of the present invention.

【図2】本発明の圧電制振材料及び比較例の材料につい
て、導電粒子の含有率に対する導電率の変化を表したグ
ラフである。
FIG. 2 is a graph showing a change in conductivity with respect to the content of conductive particles for the piezoelectric damping material of the present invention and a material of a comparative example.

【図3】本発明の圧電制振材料及び比較例の材料につい
て、導電粒子の含有率に対する減衰時定数の変化を表し
たグラフである。
FIG. 3 is a graph showing a change in a decay time constant with respect to a content ratio of conductive particles for a piezoelectric vibration damping material of the present invention and a material of a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒子状の圧電性物質と導電性粒子とが高
分子マトリックス中に分散されてなる圧電制振材料であ
って、導電性粒子が、粒状グラッシーカーボンであるこ
とを特徴とする圧電制振材料。
1. A piezoelectric damping material comprising a particulate piezoelectric substance and conductive particles dispersed in a polymer matrix, wherein the conductive particles are granular glassy carbon. Damping material.
JP28491196A 1996-10-28 1996-10-28 Piezoelectric damping material Pending JPH10132021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28491196A JPH10132021A (en) 1996-10-28 1996-10-28 Piezoelectric damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28491196A JPH10132021A (en) 1996-10-28 1996-10-28 Piezoelectric damping material

Publications (1)

Publication Number Publication Date
JPH10132021A true JPH10132021A (en) 1998-05-22

Family

ID=17684655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28491196A Pending JPH10132021A (en) 1996-10-28 1996-10-28 Piezoelectric damping material

Country Status (1)

Country Link
JP (1) JPH10132021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033256A1 (en) * 2001-10-12 2003-04-24 Kimura, Toshio Laminate damping base material, and damping structure with stack of this base material
JP2006077131A (en) * 2004-09-09 2006-03-23 Mitsubishi Electric Corp Vibrational sound decreasing member and vibrational sound decreased device
JP2010053414A (en) * 2008-08-29 2010-03-11 Mitsubishi Electric Corp Porous material, sound absorbing and insulating structure, electric equipment, vacuum cleaner and method for producing porous material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033256A1 (en) * 2001-10-12 2003-04-24 Kimura, Toshio Laminate damping base material, and damping structure with stack of this base material
US7160607B2 (en) 2001-10-12 2007-01-09 Kurimoto, Ltd. Laminate damping base material, and damping structure with stack of this base material
DE10297295B4 (en) * 2001-10-12 2009-04-02 Toshio Fujisawa Tanimoto Laminated damping base material and damping arrangement with layering of this base material
JP2006077131A (en) * 2004-09-09 2006-03-23 Mitsubishi Electric Corp Vibrational sound decreasing member and vibrational sound decreased device
JP2010053414A (en) * 2008-08-29 2010-03-11 Mitsubishi Electric Corp Porous material, sound absorbing and insulating structure, electric equipment, vacuum cleaner and method for producing porous material

Similar Documents

Publication Publication Date Title
US5951908A (en) Piezoelectrics and related devices from ceramics dispersed in polymers
US8796908B2 (en) Piezoelectric body, ultrasound transducer, medical ultrasound diagnostic system, and nondestructive ultrasound test system
JPH07501658A (en) Electromagnetic radiation susceptor material using ferromagnetic amorphous alloy particles
KR20140009253A (en) Polymer composite piezoelectric body and method for producing same
JP2020143275A (en) Composite material for shielding electromagnetic radiation, raw material for additive manufacturing methods and product comprising the composite material as well as method for manufacturing the product
KR101026975B1 (en) Microcomposite powder based on flat graphite particles and a fluoropolymer and objects made from same
JP2016534568A (en) EDLC electrode and manufacturing process thereof
EP1701364A1 (en) Electrode for capacitor
Han et al. Colloidal processing for improved piezoelectric properties of flexible 0–3 ceramic–polymer composites
JP4655252B2 (en) Method for producing modified conductive elastomer
Sumita et al. New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: effect of the electromechanical coupling factor
JPH03201517A (en) Electric double layer capacitor
JPH10132021A (en) Piezoelectric damping material
CN112876789B (en) Conductive particle filled polymer layered composite dielectric material and preparation method thereof
WO2002072686A2 (en) Ptc conductive polymer compositions
JP2013075945A (en) Electret sheet
JP3602933B2 (en) Activated carbon substrate
JP2002070938A (en) Piezoelectric damping material
WO2023192102A1 (en) Piezoelectric harvester
JPH021382B2 (en)
JP2981901B2 (en) Piezoelectric element for underwater acoustic transducer
JPH10132022A (en) Piezoelectric damping material and sheet made of the same
JPH0685346A (en) Piezoelectric composite material
JP2000007316A (en) Solid active carbon and electric double layer capacitor using the same
JPH0413729A (en) Production of polytetrafluoroethylene granulated powder