JPH10130641A - Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel - Google Patents

Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel

Info

Publication number
JPH10130641A
JPH10130641A JP30114996A JP30114996A JPH10130641A JP H10130641 A JPH10130641 A JP H10130641A JP 30114996 A JP30114996 A JP 30114996A JP 30114996 A JP30114996 A JP 30114996A JP H10130641 A JPH10130641 A JP H10130641A
Authority
JP
Japan
Prior art keywords
phosphor
stimulable phosphor
radiation image
alkaline earth
activated alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30114996A
Other languages
Japanese (ja)
Inventor
Yuji Isoda
勇治 礒田
Masato Funahashi
真人 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP30114996A priority Critical patent/JPH10130641A/en
Publication of JPH10130641A publication Critical patent/JPH10130641A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the afterglow of accelerated phosphorescence of a radiation image conversion panel and improve the image quality by adding Mg to a specific tetradecahedral rare-earth-activated alkaline earth metal fluoride halide- accelerated phosphor and incorporating the phosphor contg. Mg into the panel. SOLUTION: This tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor is represented by formula I (wherein M is an alkali metal; and (x), (y), (a), (b), and (c) are each a value satisfying the conditions of formula II). This phosphor is produced by using Ba, Ca, Eu, Mg, and an alkali metal halide. Usually, Mg is introduced into the phosphor by producing an accelerated phosphor contg. no Mg, mixing the phosphor with an Mg halide and fine alumina particles, etc., as a sintering inhibitor, and sintering the mixture. An accelerated phosphor layer is formed by causing a binder to contain and support the phosphor in a dispersion state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な14面体型
の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽
性蛍光体、そしてその輝尽性蛍光体を用いた放射線像変
換パネルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel tetrahedral rare earth activated alkaline earth metal fluorinated halide stimulable phosphor and a radiation image conversion panel using the stimulable phosphor. It is.

【0002】[0002]

【従来の技術】従来の放射線写真法に代わる方法とし
て、たとえば特開昭55−12145号公報に記載され
ているような輝尽性蛍光体を用いる放射線像記録再生方
法が知られている。この方法は、輝尽性蛍光体を含有す
る放射線像変換パネル(蓄積性蛍光体シート)を利用す
るもので、被写体を透過した、あるいは被検体から発せ
られた放射線を該パネルの輝尽性蛍光体に吸収させ、そ
ののちに輝尽性蛍光体を可視光線、赤外線などの電磁波
(励起光)で時系列的に励起することにより、該輝尽性
蛍光体中に蓄積されている放射線エネルギーを蛍光(輝
尽発光光)として放出させ、この蛍光を光電的に読み取
って電気信号を得、次いで得られた電気信号に基づいて
被写体あるいは被検体の放射線画像を可視像として再生
するものである。読み取りを終えた該パネルは、残存す
る画像の消去が行なわれた後、次の撮影のために備えら
れる。すなわち、放射線像変換パネルは繰り返し使用す
ることができる。
2. Description of the Related Art As an alternative to the conventional radiographic method, there is known a radiation image recording / reproducing method using a stimulable phosphor as described in, for example, JP-A-55-12145. This method uses a radiation image conversion panel (a stimulable phosphor sheet) containing a stimulable phosphor, and transmits radiation transmitted through a subject or emitted from a subject to the stimulable phosphor of the panel. By absorbing the stimulable phosphor with electromagnetic waves (excitation light) such as visible light and infrared light in a time series manner, the radiation energy stored in the stimulable phosphor is absorbed by the body. The fluorescent light is emitted (stimulated emission light), the fluorescent light is read photoelectrically to obtain an electric signal, and a radiation image of a subject or a subject is reproduced as a visible image based on the obtained electric signal. . After the reading of the panel is completed, after the remaining image is deleted, the panel is prepared for the next photographing. That is, the radiation image conversion panel can be used repeatedly.

【0003】上記の放射線像記録再生方法によれば、従
来の放射線写真フィルムと増感紙との組合せを用いる放
射線写真法による場合に比較して、はるかに少ない被曝
線量で情報量の豊富な放射線画像を得ることができると
いう利点がある。さらに、従来の放射線写真法では一回
の撮影ごとに放射線写真フィルムを消費するのに対し
て、この放射線像変換方法では放射線像変換パネルをく
り返し使用するので、資源保護、経済効率の面からも有
利である。
According to the above-described radiographic image recording / reproducing method, a radiation having a much smaller amount of exposure and a richer amount of information than a conventional radiographic method using a combination of a radiographic film and an intensifying screen. There is an advantage that an image can be obtained. Furthermore, while the conventional radiographic method consumes radiographic film for each photographing operation, this radiographic image conversion method uses a radiographic image conversion panel repeatedly, which also contributes to resource conservation and economic efficiency. It is advantageous.

【0004】輝尽性蛍光体は、放射線を照射した後、励
起光を照射すると輝尽発光を示す蛍光体であるが、実用
上では、波長が400〜900nmの範囲にある励起光
によって300〜500nmの波長範囲の輝尽発光を示
す蛍光体が一般的に利用される。従来より放射線像変換
パネルに用いられてきた輝尽性蛍光体の例としては、希
土類付活アルカリ土類金属弗化ハロゲン化物系蛍光体を
挙げることができる。
A stimulable phosphor is a phosphor that emits stimulable light when irradiated with radiation and then with excitation light. However, in practice, the stimulable phosphor has a wavelength of 400 to 900 nm due to the excitation light. Phosphors that exhibit stimulated emission in the 500 nm wavelength range are commonly used. Examples of stimulable phosphors conventionally used in radiation image conversion panels include rare earth-activated alkaline earth metal fluorinated halide-based phosphors.

【0005】放射線像記録再生方法に用いられる放射線
像変換パネルは、基本構造として、支持体とその表面に
設けられた輝尽性蛍光体層とからなるものである。ただ
し、蛍光体層が自己支持性である場合には必ずしも支持
体を必要としない。輝尽性蛍光体層は、通常は輝尽性蛍
光体とこれを分散状態で含有支持する結合剤とからな
る。ただし、輝尽性蛍光体層としては、蒸着法や焼結法
によって形成される結合剤を含まないで輝尽性蛍光体の
凝集体のみから構成されるものが知られている。また、
輝尽性蛍光体の凝集体の間隙に高分子物質が含浸されて
いる輝尽性蛍光体層を持つ放射線像変換パネルも知られ
ている。これらのいずれの蛍光体層でも、輝尽性蛍光体
はX線などの放射線を吸収したのち励起光の照射を受け
ると輝尽発光を示す性質を有するものであるから、被写
体を透過したあるいは被検体から発せられた放射線は、
その放射線量に比例して放射線像変換パネルの輝尽性蛍
光体層に吸収され、パネルには被写体あるいは被検体の
放射線像が放射線エネルギーの蓄積像として形成され
る。この蓄積像は、上記励起光を照射することにより輝
尽発光光として放出させることができ、この輝尽発光光
を光電的に読み取って電気信号に変換することにより放
射線エネルギーの蓄積像を画像化することが可能とな
る。
The radiation image conversion panel used in the radiation image recording / reproducing method has, as a basic structure, a support and a stimulable phosphor layer provided on the surface of the support. However, when the phosphor layer is self-supporting, a support is not necessarily required. The stimulable phosphor layer usually comprises a stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. However, as the stimulable phosphor layer, a layer composed of only an aggregate of the stimulable phosphor without a binder formed by a vapor deposition method or a sintering method is known. Also,
There is also known a radiation image conversion panel having a stimulable phosphor layer in which a polymer substance is impregnated in a gap between stimulable phosphor aggregates. In any of these phosphor layers, the stimulable phosphor has a property of exhibiting stimulable emission when irradiated with excitation light after absorbing radiation such as X-rays. The radiation emitted from the specimen
The radiation image is absorbed by the stimulable phosphor layer of the radiation image conversion panel in proportion to the radiation dose, and a radiation image of the subject or the subject is formed on the panel as a radiation energy accumulation image. This accumulated image can be emitted as stimulated emission light by irradiating the excitation light, and the accumulated image of radiation energy is imaged by photoelectrically reading the stimulated emission light and converting it into an electric signal. It is possible to do.

【0006】なお、輝尽性蛍光体層の表面(支持体に面
していない側の表面)には通常、ポリマーフィルムある
いは無機物の蒸着膜などからなる保護膜が設けられてい
て、蛍光体層を化学的な変質あるいは物理的な衝撃から
保護している。
The surface of the stimulable phosphor layer (the surface not facing the support) is usually provided with a protective film such as a polymer film or an inorganic vapor-deposited film. Is protected from chemical alteration or physical impact.

【0007】前記の希土類付活アルカリ土類金属弗化ハ
ロゲン化物系輝尽性蛍光体は、感度が優れ、また放射線
像変換パネルとして使用した場合に鮮鋭度の高い放射線
再生画像をもたらすため、実用上において優れた輝尽性
蛍光体ということができる。しかしながら、放射線像記
録再生方法の実用化が進むにつれて、更に高性能の輝尽
性蛍光体への要望が高まっている。
The rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor is excellent in sensitivity and, when used as a radiation image conversion panel, provides a radiation-reproduced image with high sharpness. Above, it can be said to be an excellent stimulable phosphor. However, as radiation image recording / reproducing methods have been put into practical use, demands for stimulable phosphors having higher performance have been increasing.

【0008】特開平7−233369号公報は、従来用
いられている希土類付活アルカリ土類金属弗化ハロゲン
化物系輝尽性蛍光体が板状粒子からなっていることに注
目して、その問題点を明らかにし、その解決として、特
定の基本組成式を有し、14面体型形状にある希土類賦
活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体
と、その輝尽性蛍光体を放射線像変換パネルに利用する
ことを提案している。
Japanese Patent Application Laid-Open No. Hei 7-233369 discloses the problem that the conventionally used rare earth activated alkaline earth metal fluorinated halide stimulable phosphor is composed of plate-like particles. In order to solve the problem, a rare earth activated alkaline earth metal fluorinated halide stimulable phosphor having a specific basic composition formula and having a tetradecahedral shape and a stimulable phosphor were irradiated with radiation. It is proposed to use it for an image conversion panel.

【0009】[0009]

【発明が解決しようとする課題】本発明は、放射線像記
録再生方法に利用した場合において、上記の特開平7−
233369号公報に具体的に記載されている14面体
型希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽
性蛍光体に比べて、特に輝尽残光について低減された1
4面体型希土類賦活アルカリ土類金属弗化ハロゲン化物
系輝尽性蛍光体を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention, when applied to a radiation image recording / reproducing method, is disclosed in Japanese Patent Laid-Open No.
Compared with the tetradecahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor specifically described in JP-A-233369, the stimulable phosphor has a reduced stimulable afterglow.
It is an object of the present invention to provide a tetrahedral rare earth activated alkaline earth metal fluoride halide stimulable phosphor.

【0010】すなわち、輝尽性蛍光体は、放射線エネル
ギーの照射を受けると、その照射された放射線エネルギ
ー量に応じて放射線エネルギーをその内部に蓄積し、そ
の後に励起光の照射を受けると輝尽発光を示すが、通常
の輝尽性蛍光体は、励起光の照射が終了した後もわずか
な時間、その輝尽発光が継続する性質を示す。記録媒体
として、輝尽性蛍光体を平面層状に配置した放射線像変
換パネルを用いる放射線像変換方法(放射線像記録再生
方法)では、その再生工程において、通常は、レーザ光
を励起光として用い、そのレーザ光をパネルの表面で走
査させながら、輝尽発光を取り出して、蓄積されていた
放射線像を読み出す方法が利用される。従って、輝尽残
光が走査速度に比較して長時間続くと、励起光が照射さ
れている輝尽性蛍光体からの輝尽発光に、その直前に励
起光が照射され、次いで励起が終了した輝尽性蛍光体か
らの輝尽残光がノイズとして入り込んだ状態で集光さ
れ、最終的に得られる放射線像再生画像の画質を低下さ
せる結果となる。従って、優れた画質を持つ放射線像再
生画像を得るためには、輝尽残光を可能な限り低減する
ことが望ましい。すなわち、本発明は、14面体型希土
類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光
体の持つ他の特性を殆ど低下させることなく、その輝尽
残光を低減することを目的とする。
That is, when the stimulable phosphor is irradiated with radiation energy, the stimulable phosphor accumulates radiation energy therein in accordance with the amount of the irradiated radiation energy, and thereafter, when irradiated with excitation light, the stimulable phosphor is stimulated. Although the phosphor emits light, the ordinary stimulable phosphor exhibits such a property that the stimulated emission continues for a short time after the irradiation of the excitation light is completed. In a radiation image conversion method (radiation image recording / reproduction method) using a radiation image conversion panel in which a stimulable phosphor is arranged in a planar layer as a recording medium, a laser beam is usually used as excitation light in the reproduction step. A method is used in which the stimulated emission is extracted while scanning the laser light on the surface of the panel, and the accumulated radiation image is read. Therefore, if the stimulating residual light continues for a long time compared to the scanning speed, the stimulating light emitted from the stimulable phosphor irradiated with the exciting light is irradiated with the exciting light immediately before, and then the excitation ends. The stimulable phosphor emitted from the stimulable phosphor is condensed in a state where the stimulable phosphor enters as noise, resulting in a deterioration in the quality of the finally obtained radiation image reproduced image. Therefore, in order to obtain a radiation image reproduction image having excellent image quality, it is desirable to reduce stimulating afterglow as much as possible. That is, an object of the present invention is to reduce the stimulable afterglow of the tetradecahedral rare-earth-activated alkaline earth metal fluorohalide-based stimulable phosphor without substantially reducing other properties of the phosphor. .

【0011】[0011]

【課題を解決するための手段】本発明は、基本組成式
(I): Ba1-x Cax FBr1-yy :aEu,bM,cMg …(I) [ただし、Mはアルカリ金属(例、Li、K、Na、C
e)を表わし、x、y、a、bそしてcはそれぞれ、0
≦x≦0.03、0<y≦0.30、0.0001≦a
≦0.01、0≦b≦0.001、そして0<c≦0.
1の範囲の数値である。]で表わされる14面体型希土
類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光
体、およびそれを含む放射線像変換パネルにある。な
お、本明細書中に記載した蛍光体組成における上記の
x、y、a、b、cなどの係数は、得られた蛍光体を分
析して求めた数値である。蛍光体製造時の焼成工程の前
後で、組成の変化が生じるため、蛍光体製造時に用いた
各原料の各成分の比と出来上がった蛍光体の各成分の比
は若干異なる。
SUMMARY OF THE INVENTION The present invention is basic formula (I): Ba 1-x Ca x FBr 1-y I y: aEu, bM, cMg ... (I) [ however, M is an alkali metal ( Example, Li, K, Na, C
e), where x, y, a, b and c are each 0
≦ x ≦ 0.03, 0 <y ≦ 0.30, 0.0001 ≦ a
≦ 0.01, 0 ≦ b ≦ 0.001, and 0 <c ≦ 0.
It is a numerical value in the range of 1. ], And a radiation image conversion panel containing the same. The coefficients such as x, y, a, b, and c in the phosphor composition described in the present specification are numerical values obtained by analyzing the obtained phosphor. Since the composition changes before and after the firing step in the manufacture of the phosphor, the ratio of each component of each raw material used in the manufacture of the phosphor and the ratio of each component of the completed phosphor are slightly different.

【0012】上記基本組成式(I)におけるx、y、
a、b、そしてcは、それぞれ特に、0.001≦x≦
0.02、0.10≦y≦0.20、0.001≦a≦
0.01、0<b≦0.0003、そして0.001<
c≦0.01の範囲の数値であることが好ましい。な
お、上記の基本組成式(I)の輝尽性蛍光体は、その輝
尽性蛍光体としての基本的な特性を変えない限り、所望
により、ストロンチウムなどの他のアルカリ土類金属、
もしくはそれら以外の元素を含んでいてもよい。また、
アルカリ金属は二種以上のものが組み合されていてもよ
い。
In the above basic composition formula (I), x, y,
a, b, and c are each, in particular, 0.001 ≦ x ≦
0.02, 0.10 ≦ y ≦ 0.20, 0.001 ≦ a ≦
0.01, 0 <b ≦ 0.0003, and 0.001 <
It is preferable that the value be in the range of c ≦ 0.01. The stimulable phosphor of the above basic composition formula (I) may optionally include other alkaline earth metals such as strontium, as long as the basic properties of the stimulable phosphor are not changed.
Alternatively, other elements may be included. Also,
Two or more alkali metals may be combined.

【0013】[0013]

【発明の実施の形態】本発明の14面体型希土類賦活ア
ルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体は、バ
リウム、カルシウム、ユーロピウム、マグネシウム、そ
してアルカリ金属(例、Na、K、Li、Cs)などの
ハロゲン化物を用い、そしてさらに、特開平7−233
369号公報に記載の方法に準じる方法を利用して製造
することができる。なお、本発明の14面体型希土類賦
活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体に
Mgを導入するためには、上記のように通常はMgのハ
ロゲン化物が用いられる。マグネシウムのハロゲン化物
は、通常、そのMgハロゲン化物を含まない14面体型
希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性
蛍光体を製造したのち、これに当該マグネシウムハロゲ
ン化物、そして例えば、焼結防止剤として用いるアルミ
ナ微粒子などを添加混合して更に焼成する方法などを利
用して、目的の輝尽性蛍光体中に導入される。
BEST MODE FOR CARRYING OUT THE INVENTION The tetradecahedral rare earth activated alkaline earth metal fluoride halide stimulable phosphor of the present invention comprises barium, calcium, europium, magnesium and alkali metals (eg, Na, K, Li). , Cs) and the like, and further disclosed in JP-A-7-233.
It can be produced using a method according to the method described in JP-A-369-369. In order to introduce Mg into the tetradecahedral rare earth activated alkaline earth metal fluoride halide stimulable phosphor of the present invention, a halide of Mg is usually used as described above. The magnesium halide is usually prepared by preparing a tetrahedral rare earth activated alkaline earth metal fluorinated halide stimulable phosphor not containing the Mg halide, and then adding the magnesium halide and, for example, calcination. It is introduced into the intended stimulable phosphor using a method of adding and mixing alumina fine particles or the like used as an anti-binding agent, followed by baking.

【0014】本発明の14面体型の希土類賦活アルカリ
土類金属弗化ハロゲン化物系輝尽性蛍光体は、正六面体
と正八面体との中間多面体であり、通常は、アスペクト
比は1.0〜5.0の範囲にあり、その形状は、上記の
特開平7−733369号公報に写真で示されたものと
同様である。
The tetrahedral rare earth activated alkaline earth metal fluoride halide stimulable phosphor of the present invention is an intermediate polyhedron between a regular hexahedron and a regular octahedron, and usually has an aspect ratio of 1.0 to 1.0. 5.0 and the shape is the same as that shown in the photograph in the above-mentioned JP-A-7-733369.

【0015】本発明の放射線像変換パネルは、その輝尽
性蛍光体層に、前記の基本組成式で表わされる14面体
型希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽
性蛍光体を含むものであり、その輝尽性蛍光体層は通
常、輝尽性蛍光体とこれを分散状態で含有支持する結合
剤とからなるのものである。蛍光体層中には更に、他の
輝尽性蛍光体および/または着色剤などの添加剤が含ま
れていてもよい。
In the radiation image storage panel of the present invention, the stimulable phosphor layer contains a tetradecahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor represented by the aforementioned basic composition formula. The stimulable phosphor layer is usually composed of a stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. The phosphor layer may further contain other stimulable phosphors and / or additives such as colorants.

【0016】次に、蛍光体層が輝尽性蛍光体とこれを分
散状態で含有支持する結合剤とからなる場合を例にと
り、本発明の放射線像変換パネルを製造する方法を説明
する。蛍光体層は、次のような公知の方法により支持体
上に形成することができる。まず、輝尽性蛍光体と結合
剤とを溶剤に加え、これを充分に混合して、結合剤溶液
中に輝尽性蛍光体が均一に分散した塗布液を調製する。
塗布液における結合剤と輝尽性蛍光体との混合比は、目
的とする放射線像変換パネルの特性、蛍光体の種類など
によって異なるが、一般には結合剤と蛍光体との混合比
は、1:1乃至1:100(重量比)の範囲から選ば
れ、そして特に1:8乃至1:40(重量比)の範囲か
ら選ぶのが好ましい。上記のようにして調製された蛍光
体と結合剤とを含有する塗布液を、次に、支持体の表面
に均一に塗布することにより塗膜を形成する。この塗布
操作は、通常の塗布手段、たとえば、ドクターブレー
ド、ロールコーター、ナイフコーターなどを用いること
により行なうことができる。
Next, the method for producing the radiation image storage panel of the present invention will be described, taking as an example the case where the phosphor layer comprises a stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. The phosphor layer can be formed on a support by the following known method. First, a stimulable phosphor and a binder are added to a solvent and mixed well to prepare a coating solution in which the stimulable phosphor is uniformly dispersed in a binder solution.
The mixing ratio between the binder and the stimulable phosphor in the coating solution varies depending on the characteristics of the intended radiation image conversion panel, the type of the phosphor, and the like. Generally, the mixing ratio between the binder and the phosphor is 1%. It is selected from the range of 1: 1 to 1: 100 (weight ratio), and particularly preferably selected from the range of 1: 8 to 1:40 (weight ratio). The coating solution containing the phosphor and the binder prepared as described above is then uniformly applied to the surface of the support to form a coating film. This coating operation can be performed by using ordinary coating means, for example, a doctor blade, a roll coater, a knife coater, or the like.

【0017】支持体としては、従来の放射線像変換パネ
ルの支持体として公知の材料から任意に選ぶことができ
る。公知の放射線像変換パネルにおいて、支持体と蛍光
体層の結合を強化するため、あるいは放射線像変換パネ
ルとしての感度もしくは画質(鮮鋭度、粒状性)を向上
させるために、蛍光体層が設けられる側の支持体表面に
ゼラチンなどの高分子物質を塗布して接着性付与層とし
たり、あるいは二酸化チタンなどの光反射性物質からな
る光反射層、もしくはカーボンブラックなどの光吸収性
物質からなる光吸収層などを設けることが知られてい
る。本発明において用いられる支持体についても、これ
らの各種の層を設けることができ、それらの構成は所望
の放射線像変換パネルの目的、用途などに応じて任意に
選択することができる。さらに特開昭58−20020
0号公報に記載されているように、得られる画像の鮮鋭
度を向上させる目的で、支持体の蛍光体層側の表面(支
持体の蛍光体層側の表面に接着性付与層、光反射層また
は光吸収層などが設けられている場合には、その表面を
意味する)には微小凹凸が形成されていてもよい。
The support can be arbitrarily selected from materials known as supports for conventional radiation image conversion panels. In a known radiation image conversion panel, a phosphor layer is provided to enhance the bond between the support and the phosphor layer or to improve the sensitivity or image quality (sharpness, granularity) of the radiation image conversion panel. A polymer material such as gelatin is applied to the surface of the support on the side to form an adhesion-imparting layer, or a light-reflective layer made of a light-reflective material such as titanium dioxide, or a light-absorbent material such as carbon black It is known to provide an absorption layer or the like. The support used in the present invention can also be provided with these various layers, and the configuration thereof can be arbitrarily selected depending on the desired purpose and application of the radiation image storage panel. Further, JP-A-58-20020
As described in JP-A No. 0, the surface of the support on the side of the phosphor layer (the surface of the support on the side of the phosphor layer, the adhesion-imparting layer, In the case where a layer or a light absorbing layer is provided, the surface thereof means fine irregularities.

【0018】上記のようにして支持体上に塗膜を形成し
たのち塗膜を乾燥して、支持体上への輝尽性蛍光体層の
形成を完了する。蛍光体層の層厚は、目的とする放射線
像変換パネルの特性、蛍光体の種類、結合剤と蛍光体と
の混合比などによって異なるが、通常は20μm乃至1
mmとする。ただし、この層厚は50乃至500μmと
するのが好ましい。なお、輝尽性蛍光体層は、必ずしも
上記のように支持体上に塗布液を直接塗布して形成する
必要はなく、たとえば、別に、ガラス板、金属板、プラ
スチックシートなどのシート上に塗布液を塗布し乾燥す
ることにより蛍光体層を形成したのち、これを、支持体
上に押圧するか、あるいは接着剤を用いるなどして支持
体と蛍光体層とを接合してもよい。
After forming the coating on the support as described above, the coating is dried to complete the formation of the stimulable phosphor layer on the support. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the kind of the phosphor, the mixing ratio of the binder to the phosphor, and the like.
mm. However, this layer thickness is preferably 50 to 500 μm. The stimulable phosphor layer does not necessarily need to be formed by directly applying the coating solution on the support as described above. For example, the stimulable phosphor layer may be separately applied on a sheet such as a glass plate, a metal plate, or a plastic sheet. After forming a phosphor layer by applying and drying a liquid, the phosphor layer may be joined to the support by pressing the phosphor layer on a support or using an adhesive.

【0019】前述のように、通常は蛍光体層の上に保護
膜が付設される。保護膜としては、セルロース誘導体や
ポリメチルメタクリレートなどのような透明な有機高分
子物質を適当な溶媒に溶解して調製した溶液を蛍光体層
の上に塗布することで形成されたもの、あるいはポリエ
チレンテレフタレートなどの有機高分子フィルムや透明
なガラス板などの保護膜形成用シートを別に形成して蛍
光体層の表面に適当な接着剤を用いて設けたもの、ある
いは無機化合物を蒸着などによって蛍光体層上に成膜し
たものなどが用いられる。また、有機溶媒可溶性のフッ
素系樹脂の塗布膜により形成され、パーフルオロオレフ
ィン樹脂粉末もしくはシリコーン樹脂粉末を分散、含有
させた保護膜であってもよい。
As described above, usually, a protective film is provided on the phosphor layer. As the protective film, a film formed by applying a solution prepared by dissolving a transparent organic polymer substance such as a cellulose derivative or polymethyl methacrylate in an appropriate solvent onto the phosphor layer, or polyethylene. An organic polymer film such as terephthalate or a sheet for forming a protective film such as a transparent glass plate is separately formed and provided on the surface of the phosphor layer using a suitable adhesive, or an inorganic compound is deposited on the phosphor by vapor deposition or the like. A film formed on the layer is used. Further, the protective film may be formed of a coating film of a fluorine-based resin soluble in an organic solvent, in which a perfluoroolefin resin powder or a silicone resin powder is dispersed and contained.

【0020】なお、得られる画像の鮮鋭度を向上させる
ことを目的として、本発明の放射線像変換パネルを構成
する上記各層の少なくとも一つの層が励起光を吸収し、
輝尽発光光は吸収しないような着色剤によって着色され
ていてもよく、独立した着色中間層を設けてもよい(特
公昭54−23400号公報参照)。
For the purpose of improving the sharpness of the obtained image, at least one of the layers constituting the radiation image conversion panel of the present invention absorbs excitation light,
The stimulated emission light may be colored by a coloring agent that does not absorb the light, or an independent colored intermediate layer may be provided (see Japanese Patent Publication No. 54-23400).

【0021】上記の方法により、支持体上に、前記基本
組成式(I)で表わされる14面体型希土類賦活アルカ
リ土類金属弗化ハロゲン化物系輝尽性蛍光体とこれを分
散状態で含有支持する結合剤とからなる蛍光体層が付設
されてなる本発明の放射線像変換パネルを製造すること
ができる。
According to the above-mentioned method, a tetrahedral rare earth activated alkaline earth metal fluorinated halide stimulable phosphor represented by the basic composition formula (I) and a dispersion containing the same in a dispersed state are provided on a support. The radiation image storage panel according to the present invention, which is provided with a phosphor layer made of a binder, can be manufactured.

【0022】[0022]

【実施例】【Example】

[比較例1]Ba0.841 Ca0.149 FBr0.850.15
0.004Eu, 0.0001Kの製造 1)1150mLのBaBr2 水溶液(2.5モル/
L)、72.37gのCaBr2 ・2H2 O、36mL
のEuBr3 水溶液(0.2モル/L)、4.95gの
KBr、及び1812mLの水を容積4000mLの反
応容器に入れた。この反応容器中の反応母液を60℃に
保温し、直径60mmのスクリュー型撹拌羽根を500
rpmで回転させて、反応母液を撹拌した。288mL
のNH4 F水溶液(5モル/mL)を、撹拌下に保温し
ている上記の反応母液中にローラーポンプを用いて4.
8mL/分の送液速度で注入し、沈殿物を生成させた。
注入の完了後も保温と撹拌を2時間続けて沈殿物の熟成
を行なった。次に沈殿物を濾別し、メタノール2Lで洗
浄した。次いで、洗浄した沈殿物を取り出し、120℃
で4時間真空乾燥させて、320gの蛍光体前駆体結晶
(以下、BFB結晶という)を得た。得られた結晶を走
査型電子顕微鏡で観察したところ、その大部分が14面
体型の結晶であった。
Comparative Example 1 Ba 0.841 Ca 0.149 FBr 0.85 I 0.15 :
Production of 0.004Eu, 0.0001K 1) 1150 mL of BaBr 2 aqueous solution (2.5 mol /
L), 72.37 g CaBr 2 .2H 2 O, 36 mL
Of EuBr 3 (0.2 mol / L), 4.95 g of KBr, and 1812 mL of water were placed in a 4000 mL reaction vessel. The reaction mother liquor in the reaction vessel was kept at 60 ° C., and a screw-type stirring blade having a diameter of 60 mm was set to 500 mm.
The reaction mother liquor was stirred by rotation at rpm. 288 mL
3. An NH 4 F aqueous solution (5 mol / mL) was placed in the above reaction mother liquor kept under stirring with a roller pump.
The mixture was injected at a flow rate of 8 mL / min to produce a precipitate.
After completion of the injection, the mixture was kept warm and stirred for 2 hours to mature the precipitate. Next, the precipitate was separated by filtration and washed with 2 L of methanol. Next, the washed precipitate was taken out,
For 4 hours to obtain 320 g of a phosphor precursor crystal (hereinafter, referred to as a BFB crystal). Observation of the obtained crystal with a scanning electron microscope revealed that most of the crystal was a tetrahedral crystal.

【0023】2)上記のBFB結晶を20.6gとり、
これに、BaI2 を4.4g、BaF2 を0.18g、
KBrを0.0012g、そして焼成時の焼結による粒
子形状の変化や粒子間融着による粒子サイズ分布の変化
を防止するためのアルミナの超微粒子粉体を0.125
g添加し、乳鉢で混合したのち、プラスチックビンに入
れ、充分に振って撹拌した。これを取って石英ボートに
充填し、チューブ炉を用い、窒素ガス雰囲気中、800
℃で2時間焼成して標記の組成式で表わされるユーロピ
ウム賦活弗化臭化バリウム蛍光体粒子を得た。得られた
蛍光体粒子を走査型電子顕微鏡で観察したところ、その
大部分が原料結晶と同じく14面体の形状にあった。
2) Take 20.6 g of the above-mentioned BFB crystal,
To this, the BaI 2 4.4g, the BaF 2 0.18g,
0.0012 g of KBr and 0.125 of ultrafine alumina powder for preventing a change in particle shape due to sintering during firing and a change in particle size distribution due to fusion between particles.
g was added and mixed in a mortar, then placed in a plastic bottle, shaken sufficiently, and stirred. This was taken and filled in a quartz boat. Using a tube furnace, in a nitrogen gas atmosphere, 800
The mixture was calcined at 2 ° C. for 2 hours to obtain europium-activated barium fluorobromide phosphor particles represented by the composition formula shown above. Observation of the obtained phosphor particles with a scanning electron microscope revealed that most of the particles were in the shape of a tetrahedron, like the raw material crystal.

【0024】[実施例1]Ba0.841 Ca0.149 FBr
0.850.15: 0.004Eu, 0.0001K,0.001 Mgの製造 比較例1の工程1)で得られたBFB結晶を用い、これ
に添加する物質に、さらに0.0189g(0.000
103モル、蛍光体母体に対するMg添加量:0.1モ
ル%)のMgBr2 を付加した以外は、比較例1と同様
にして標題の組成式で表わされる14面体型のユーロピ
ウム賦活弗化臭化バリウム蛍光体粒子を得た。
Example 1 Ba 0.841 Ca 0.149 FBr
0.85 I 0.15 : 0.004Eu, 0.0001K, 0.001 Production of Mg Using the BFB crystal obtained in Step 1) of Comparative Example 1, 0.0189 g (0.000 g) was added to the substance added thereto.
A tetrahedral europium-activated fluorobromide represented by the composition formula of the title was prepared in the same manner as in Comparative Example 1 except that MgBr 2 (103 mol, the amount of Mg added to the phosphor matrix: 0.1 mol%) was added. Barium phosphor particles were obtained.

【0025】[実施例2]Ba0.841 Ca0.149 FBr
0.850.15: 0.004Eu, 0.0001K,0.005 Mgの製造 比較例1の工程1)で得られたBFB結晶を用い、これ
に添加する物質に、さらに0.0945g(0.000
514モル、蛍光体母体に対するMg添加量:0.5モ
ル%)のMgBr2 を付加した以外は、比較例1と同様
にして標題の組成式で表わされる14面体型のユーロピ
ウム賦活弗化臭化バリウム蛍光体粒子を得た。
Example 2 Ba 0.841 Ca 0.149 FBr
0.85 I 0.15 : 0.004Eu, 0.0001K, 0.005 Production of Mg Using the BFB crystal obtained in Step 1) of Comparative Example 1, 0.0945 g (0.000 g) was added to the substance to be added thereto.
A tetrahedral europium-activated fluorofluorobromide represented by the title composition formula was prepared in the same manner as in Comparative Example 1 except that MgBr 2 was added in an amount of 514 mol (the amount of Mg added to the phosphor matrix: 0.5 mol%). Barium phosphor particles were obtained.

【0026】[実施例3]Ba0.841 Ca0.149 FBr
0.850.15: 0.004Eu, 0.0001K,0.0010Mgの製造 比較例1の工程1)で得られたBFB結晶を用い、これ
に添加する物質に、更に0.189g(0.00103
モル、蛍光体母体に対するMg添加量:1.0モル%)
のMgBr2 を付加した以外は比較例1と同様にして標
題の組成式で表わされる14面体型のユーロピウム賦活
弗化臭化バリウム蛍光体粒子を得た。
Example 3 Ba 0.841 Ca 0.149 FBr
Production of 0.85 I 0.15 : 0.004 Eu, 0.0001 K, 0.0010 Mg Using the BFB crystal obtained in the step 1) of Comparative Example 1, 0.189 g (0.00103 g) was added to the substance to be added thereto.
Mol, Mg added to phosphor matrix: 1.0 mol%)
In the same manner as in Comparative Example 1 except that MgBr 2 was added, tetrahedral europium-activated barium fluorobromide phosphor particles represented by the title composition formula were obtained.

【0027】[14面体型ユーロピウム賦活弗化臭化バ
リウム輝尽性蛍光体の特性評価]上記実施例と比較例の
それぞれで得られた14面体型ユーロピウム賦活弗化臭
化バリウム輝尽性蛍光体の各種特性を下記の方法で評価
した。 1)輝尽残光 a)所定量の蛍光体に80kVpのX線を300mR照
射して10秒後に、半導体レーザ光(波長680nm)
を5.9J/m2 照射して蛍光体を励起し、その蛍光体
から放射された輝尽発光光を光学フィルタ(B−41
0)を通して光電子増倍管で受光することにより、まず
励起中の輝尽発光量を測定した。 b)次に上記の励起が終了した時点から0.5秒間経過
するまでに発生した輝尽発光光を同じく光学フィルタ
(B−410)を通して光電子増倍管で受光することに
より、まず励起終了後の輝尽発光量を測定した。 c)輝尽残光は下記の式に基づいて計算して得た。 輝尽残光=log10(励起終了後の輝尽発光量/励起中
の輝尽発光量)
[Evaluation of the properties of the tetrahedral europium-activated barium fluorobromide stimulable phosphor] The tetradecahedral europium-activated barium fluorobromide stimulable phosphor obtained in each of the above Examples and Comparative Examples Were evaluated by the following methods. 1) Stimulated afterglow a) Semiconductor laser light (wavelength 680 nm) 10 seconds after irradiating a predetermined amount of phosphor with 300 mR of 80 kVp X-rays
At 5.9 J / m 2 to excite the phosphor, and the photostimulated light emitted from the phosphor is filtered by an optical filter (B-41).
First, the amount of stimulated emission during excitation was measured by receiving light through a photomultiplier tube through 0). b) Next, the photostimulated light generated during the time 0.5 seconds after the end of the above excitation is received by the photomultiplier tube through the optical filter (B-410). Was measured for the amount of stimulated emission. c) The afterglow was obtained by calculation based on the following equation. Stimulated afterglow = log 10 (Stimulated luminescence after excitation / Stimulated luminescence during excitation)

【0028】2)紫外線かぶり値 a)まず、上記1)−a)の方法で、各蛍光体について
未かぶり輝尽発光量を測定した。 b)次いで、この蛍光体に、シャープカットフィルタ
(SC−46)を通した白色蛍光灯からの光を1200
万ルックス・秒照射して、残存放射線エネルギーを消去
した。そして、この蛍光体にナトリウムランプを光源と
して紫外光を180万ルックス・秒照射した。次いで、
この蛍光体に半導体レーザ光(波長680nm)を5.
9J/m2 照射して蛍光体を励起し、その蛍光体から放
射された輝尽発光光を光学フィルタ(B−410)を通
して光電子増倍管で受光することにより、まず紫外光か
ぶり処理後の輝尽発光量を測定した。 c)紫外線かぶりは下記の式に基づいて計算して得た。 紫外線かぶり値=(紫外光かぶり後の輝尽発光量)/
(未かぶり輝尽発光量) なお、紫外線かぶりとは、輝尽性蛍光体あるいは、その
輝尽性蛍光体を用いた放射線像変換パネルを、蛍光灯や
太陽光の照射下に置いたり、そのような条件下で移動さ
せた場合に発生する「かぶり現象」であって、その紫外
線かぶりが大きいと、得られる放射線画像の画質を低下
させることになる。
2) Ultraviolet fog value a) First, the amount of unfogged stimulated emission of each phosphor was measured by the above method 1) -a). b) Then, light from a white fluorescent lamp passed through a sharp cut filter (SC-46) was applied to the phosphor for 1200 minutes.
Irradiation for 10,000 lux-seconds eliminated residual radiation energy. Then, the phosphor was irradiated with 1.8 million lux-second ultraviolet light using a sodium lamp as a light source. Then
4. Apply semiconductor laser light (wavelength 680 nm) to this phosphor.
The phosphor is excited by irradiating 9 J / m 2 and the photostimulated light emitted from the phosphor is received by a photomultiplier tube through an optical filter (B-410). The amount of stimulated emission was measured. c) Ultraviolet fog was obtained by calculation based on the following equation. UV fog value = (Stimulated luminescence after UV fog) /
(Unfogged photostimulated luminescence amount) UV fogging refers to a stimulable phosphor or a radiation image conversion panel using the stimulable phosphor placed under a fluorescent lamp or sunlight. This is a “fogging phenomenon” that occurs when the object is moved under such conditions. If the ultraviolet fogging is large, the image quality of the obtained radiographic image is degraded.

【0029】3)各蛍光体について得られた輝尽残光と
紫外線かぶり値とを、マグネシウム添加割合を基準にし
て、添付図面の図1にグラフとして示す。図1におい
て、紫外線かぶり値(UVかぶり値)は小さい方(すな
わちグラフで下側)にあることが好ましく、また輝尽残
光(PSL残光)もまた小さい方(すなわちグラフで下
側)にあることが好ましい。この図1のグラフから、添
加量が一定の範囲内であればMgの添加が、紫外線かぶ
りを余り増加させることなく、輝尽残光の低減に有効で
あることが分る。
3) The stimulable afterglow and the UV fog value obtained for each phosphor are shown as a graph in FIG. 1 of the accompanying drawings based on the magnesium addition ratio. In FIG. 1, the ultraviolet fogging value (UV fogging value) is preferably on the smaller side (ie, the lower side in the graph), and the stimulus afterglow (PSL afterglow) is also on the smaller side (ie, the lower side in the graph). Preferably, there is. From the graph of FIG. 1, it can be seen that if the amount of addition is within a certain range, the addition of Mg is effective for reducing the afterglow afterglow without increasing ultraviolet fog much.

【0030】[実施例4]放射線像変換パネルの製造 蛍光体層形成材料として、上記のMg成分を含む14面
体型希土類賦活アルカリ土類金属弗化ハロゲン化物系輝
尽性蛍光体358g、ポリウレタン樹脂(住友バイエル
ウレタン(株)製、デスモラック4125)15.8g、ビ
スフェノールA型エポキシ樹脂2.0gをメチルエチル
ケトン−トルエン(1:1)混合溶媒に添加し、プロペ
ラミキサーによって分散し、粘度25〜30PSの塗布
液を調製した。この塗布液をドクターブレードを用いて
下塗り付ポリエチレンテレフタレートフィルム上に塗布
したのち、100℃で15分間乾燥させて、厚さ200
μmの蛍光体層を形成した。
Example 4 Manufacture of Radiation Image Conversion Panel As a phosphor layer forming material, 358 g of a tetrahedral rare earth activated alkaline earth metal fluorohalide stimulable phosphor containing the above-mentioned Mg component, a polyurethane resin 15.8 g (Desmolac 4125, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 2.0 g of bisphenol A type epoxy resin were added to a mixed solvent of methyl ethyl ketone-toluene (1: 1), dispersed by a propeller mixer, and the viscosity was 25 to 30 PS. Was prepared. This coating solution was applied on a polyethylene terephthalate film with an undercoat using a doctor blade, and then dried at 100 ° C. for 15 minutes to obtain a film having a thickness of 200 μm.
A phosphor layer of μm was formed.

【0031】次に、保護膜形成材料として、フッ素系樹
脂:フルオロオレフィン−ビニルエーテル共重合体(旭
硝子(株)製ルミフロン LF100)70g、架橋剤:イソ
シアネート(住友バイエルウレタン(株)製デスモジュ
ールZ4370)25g、ビスフェノールA型エポキシ樹脂5
g、およびシリコーン樹脂微粉末(KMP−590、信
越化学工業(株)製、粒子径1〜2μm)10gをトル
エン−イソプロピルアルコール(1:1)混合溶媒に添
加し、塗布液を作った。この塗布液を上記のようにして
予め形成しておいた蛍光体層上にドクターブレードを用
いて塗布し、次に120℃で30分間熱処理して熱硬化
させるとともに乾燥し、厚さ10μmの保護膜を設け
た。以上に記載の方法により、本発明に従う放射線像変
換パネルを得た。
Next, as a protective film forming material, a fluororesin: fluoroolefin-vinyl ether copolymer (Lumiflon LF100 manufactured by Asahi Glass Co., Ltd.) 70 g, a cross-linking agent: isocyanate (Desmodur Z4370 manufactured by Sumitomo Bayer Urethane Co., Ltd.) 25 g, bisphenol A epoxy resin 5
g and 10 g of silicone resin fine powder (KMP-590, manufactured by Shin-Etsu Chemical Co., Ltd., particle size: 1-2 μm) were added to a mixed solvent of toluene-isopropyl alcohol (1: 1) to prepare a coating solution. This coating solution is applied to the phosphor layer formed in advance as described above using a doctor blade, and then heat-treated at 120 ° C. for 30 minutes to be heat-cured and dried. A membrane was provided. The radiation image conversion panel according to the present invention was obtained by the method described above.

【0032】[0032]

【発明の効果】本発明に従って、14面体型のユーロピ
ウム賦活弗化臭化バリウム蛍光体の製造の際に、微量成
分としてMgを添加すると、得られる輝尽性蛍光体の輝
尽残光が、他の特性にあまり影響を与えることなく、低
減する。従って、その本発明の14面体型のユーロピウ
ム賦活弗化臭化バリウム蛍光体を用いた放射線像変換パ
ネルは輝尽残光が少ないという特徴を有する。
According to the present invention, when Mg is added as a trace component in the production of a tetrahedral europium-activated barium fluorobromide phosphor, the stimulable afterglow of the resulting stimulable phosphor becomes Reduce without significantly affecting other properties. Therefore, the radiation image conversion panel using the tetrahedral europium-activated barium fluorobromide phosphor of the present invention has a feature that the photostimulated afterglow is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例と比較例で製造した14面体型のユーロ
ピウム賦活弗化臭化バリウム蛍光体の輝尽残光(PSL
残光)と紫外線かぶり値(UVかぶり値)とを、マグネ
シウム添加割合を基準にして表示するグラフである。
FIG. 1 shows a photostimulable afterglow (PSL) of a tetrahedral europium-activated barium fluorobromide phosphor prepared in Examples and Comparative Examples.
It is a graph which displays afterglow) and an ultraviolet fog value (UV fog value) on the basis of a magnesium addition ratio.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基本組成式(I): Ba1-x Cax FBr1-yy :aEu,bM,cMg …(I) [ただし、Mはアルカリ金属を表わし、x、y、a、
b、そしてcはそれぞれ、0≦x≦0.03、0<y≦
0.30、0.0001≦a≦0.01、0≦b≦0.
001、そして0<c≦0.1の範囲の数値である。]
で表わされる14面体型希土類賦活アルカリ土類金属弗
化ハロゲン化物系輝尽性蛍光体。
1. A basic formula (I): Ba 1-x Ca x FBr 1-y I y: aEu, bM, cMg ... (I) [ However, M represents an alkali metal, x, y, a,
b and c are respectively 0 ≦ x ≦ 0.03, 0 <y ≦
0.30, 0.0001 ≦ a ≦ 0.01, 0 ≦ b ≦ 0.
001 and a numerical value in the range of 0 <c ≦ 0.1. ]
A tetrahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor represented by the formula:
【請求項2】 基本組成式(I)におけるx、y、a、
b、そしてcが、それぞれ、0.001≦x≦0.0
2、0.10≦y≦0.20、0.001≦a≦0.0
1、0<b≦0.0003、そして0.0001<c≦
0.03の範囲の数値である請求項1に記載の14面体
型希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽
性蛍光体。
2. The composition according to claim 1, wherein x, y, a,
b and c are respectively 0.001 ≦ x ≦ 0.0
2, 0.10 ≦ y ≦ 0.20, 0.001 ≦ a ≦ 0.0
1, 0 <b ≦ 0.0003 and 0.0001 <c ≦
The 14-hedral rare earth activated alkaline earth metal fluorinated halide stimulable phosphor according to claim 1, which has a numerical value in the range of 0.03.
【請求項3】 請求項1もしくは2に記載の14面体型
希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性
蛍光体を含む放射線像変換パネル。
3. A radiation image conversion panel comprising the tetrahedral rare earth activated alkaline earth metal fluorinated halide stimulable phosphor according to claim 1 or 2.
JP30114996A 1996-10-25 1996-10-25 Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel Withdrawn JPH10130641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30114996A JPH10130641A (en) 1996-10-25 1996-10-25 Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30114996A JPH10130641A (en) 1996-10-25 1996-10-25 Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel

Publications (1)

Publication Number Publication Date
JPH10130641A true JPH10130641A (en) 1998-05-19

Family

ID=17893382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30114996A Withdrawn JPH10130641A (en) 1996-10-25 1996-10-25 Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel

Country Status (1)

Country Link
JP (1) JPH10130641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265774A (en) * 1996-12-25 1998-10-06 Konica Corp Rare earth-activating alkaline earth metal fluorohalide system accelerated phosphorescent substance and radioactive ray image transforming panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265774A (en) * 1996-12-25 1998-10-06 Konica Corp Rare earth-activating alkaline earth metal fluorohalide system accelerated phosphorescent substance and radioactive ray image transforming panel

Similar Documents

Publication Publication Date Title
JP3258183B2 (en) Tetrahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor, method for producing the same, and radiation image conversion panel
JP3707753B2 (en) Tetrahedral rare earth activated alkaline earth metal fluoride halide stimulable phosphor and radiation image conversion panel
JPH0629412B2 (en) Fluorescent body and radiation image conversion panel using the same
JPH10130641A (en) Tetradecahedral rare-earth-activated alkaline earth metal fluoride halide-accelerated phosphor and radiation image conversion panel
JPH06287553A (en) Accelerated phosphor and its production
JP3264650B2 (en) Cerium-activated alkaline earth metal fluoride halide-based phosphor and radiation image conversion panel
JP3249947B2 (en) Rare earth fluoride based phosphor and radiographic intensifying screen
JP2727273B2 (en) Phosphor and radiation image conversion panel
JP3938820B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide phosphor, and radiation image conversion panel using rare earth activated alkaline earth metal fluoride halide phosphor obtained by the production method
JPH10130640A (en) Tetradecahedral rare-earth-activated alkaline earth netal fluoride halide-accelerated phosphor and radiation image conversion panel
JP2001011440A (en) Stimulable flluorescent substance and radiographic image-converting panel
JP2000284097A (en) Radiation image conversion panel
JP2001011439A (en) Tetradecahedral rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor and radiographic image-converting panel
JPH08120264A (en) Cerium-activated barium fluoride halide phosphor and radiation image conversion panel
JP2934108B2 (en) Cerium-activated barium fluorohalide phosphor and radiation image conversion panel
JPH09291277A (en) Cerium-activated barium fluoride halide-based fluorescent substance and radiation image-converting panel
JP2657595B2 (en) Phosphor and radiation image conversion panel
JP3959984B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor, method for producing the same, and radiation image conversion panel
JP4228550B2 (en) Method for producing rare earth activated alkaline earth metal fluoroiodide stimulable phosphor
JPH10123296A (en) Radiation image conversion panel
JPH11349939A (en) Pare earth metal oxyhalide-based phosphor and panel for converting radiation image
JP2000345151A (en) Europium-activated alkaline-earth metal fluorohalide- based phosphor and radiation image-conversion panel
JPH08120263A (en) Lithium-doped cerium-activated barium fluoride halide phosphor and radiation image conversion panel
JP2005171077A (en) Manufacturing method of photostimulable phosphor, photostimulable phosphor precursor, photostimulable phosphor and radiation image-converting panel
JP2002267800A (en) Preparation method for phosphor layer application liquid for radiological image conversion panel, and manufacturing method for radiological image conversion panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106