JPH1012937A - Dielectric ultrathin film power-supply element - Google Patents

Dielectric ultrathin film power-supply element

Info

Publication number
JPH1012937A
JPH1012937A JP8193811A JP19381196A JPH1012937A JP H1012937 A JPH1012937 A JP H1012937A JP 8193811 A JP8193811 A JP 8193811A JP 19381196 A JP19381196 A JP 19381196A JP H1012937 A JPH1012937 A JP H1012937A
Authority
JP
Japan
Prior art keywords
film
dielectric
thin film
ultra
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8193811A
Other languages
Japanese (ja)
Inventor
Taro Hino
太郎 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8193811A priority Critical patent/JPH1012937A/en
Publication of JPH1012937A publication Critical patent/JPH1012937A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the diffusion constant of electrons in a dielectric ultrathin film by holding a neutral dielectric ultrathin film made of a Langmuir-Blodgett film having a specified thickness by two types of metals having different work functions. SOLUTION: Al is evaporated on a slide glass 1, thus forming a lower electrode 7. Al is automatically oxidized in the air and the upper surface of the lower electrode 7 is covered with an aluminum oxide thin film 9. One to ten layers of polyimide LB monomolecular films are accumulated on the thin film 9 by a Langmuir-Blodgett(LB) method, thus applying a polyimide LB film 11 having a neutral film thickness of the order of Angstrom. In addition, Au is evaporated as an upper electrode 15 having an upper electrode terminal 13 on the polyimide LB thin film 11. By closing the switch to form a short circuit between Al and Au electrodes on the basis of the difference in work function between Al and Au of the electrodes, electronic charges are induced on the Au electrode surface, and the potential difference generated between the Al and Au electrodes causes a conduction current to flow.

Description

【発明の詳細な説明】産業上の利用分野 本発明は誘電体超薄膜を用いた 金属−誘電体超薄膜−金属 の構造を持った電源素子で、素子自体が持つ熱エネルギ
ーを電気エネルギーに変換して、素子の温度が下がれば
外部から熱が素子に流入し、素子の温度を上昇させる。
このように周囲に熱がある限り永久に電力を外部に放出
する。従って本発明の素子はエネルギー源として利用出
来るものである。従来の技術 本発明は従来見出だされていない新現象に基ずくもので
ある。すなわち上に述べた構造の誘電体超薄膜として数
十〜数百オグストローム(Å)の厚さのラングミュア・
ブロジット(LB)膜を用いた結果、この構造が電源と
なることを見出したものである。誘電体超薄膜がLB膜
である必要はないが、従来の技術ではLB膜を除いては
このような誘電体の超薄膜は作ることが出来ないと考え
られる。新現象の原因 電力の発生することは電子が誘電体超薄膜の中を拡散す
るからであり、電子の熱運動のよって熱エネルギーが電
気エネルギーに変換されるものである。誘電体超薄膜の
厚さは数十〜数百オグストローム(Å)であることを必
要とする。発明において解決しようとする問題点 本発明の誘電体超薄膜電源素子は出力エネルギーが小さ
い。これを増加させることが本発明の利用面を広めると
考えられる。そのためには電子の拡散定数が大きい誘電
体超薄膜を作ることが期待される。 (実施例)次に本発明の誘電体超薄膜電源素子の実施例
について図面を参照して説明する。この実施例において
は 金属I−無極性誘電体超薄膜−金属II の構造の金属Iをアルミニューム(Al)電極とし、金
属IIを金(Au)電極として、無極性誘電体超薄膜を
ポリイミドLB膜としたものである。金属IIを金属I
と同じAl電極とし、同時に無極性誘電体超薄膜を無極
性と考えられるアラキジン酸LB膜と有極性であるTC
NQ(C15・TCNQ,2−pentadecyle
−7,7’−8,8’−cyanoquinodime
thane)とを重ねたLBヘテロ膜に変えた 金属−有極性LBヘテロ誘電体超薄膜−金属 の構造のものも同様に誘電体超薄膜電源素子となる。図
1と図2において、先ず顕微鏡スライドガラス(大きさ
は1/4)(1)の一面に約2000〜3000Åの厚
さのAlを蒸着させて下部電極端子(5)を備えた下部
電極(7)を形成する。Alは空気中において自動酸化
されて下部電極(7)の上面は酸化アルミニューム(A
)の薄膜(9)によって被覆される。該薄膜
(9)はほぼ30Åの厚さである。該薄膜(9)上にL
B方法によってポリイミドLB単分子膜1〜10層を累
積して無極性のポリイミドLB膜(11)を被覆させ
る。該ポリイミドLB膜(11)は4〜40Å程度の厚
さである。更に該ポリイミドLB膜(11)の上に上部
電極端子(13)を備えた上部電極(15)としてAu
を蒸着させることによって Al−Al膜−ポリイミドLB膜−Au の構成の本発明の誘電体超薄膜電源素子が形成される。
ポリイミド(11)を無極性のアラキジン酸のLB膜と
有極性のTCNQのLB膜を重ねたLBヘテロ膜に代え
て該上部電極(15)を蒸着Alにした Al−Al膜−LBヘテロ膜−Al の構造の実施例もあるが、上に述べた構造の実施例と同
様な電源素子の特性を示した。図3は本発明の誘電体超
薄膜電源素子試料(301)から発生する電流iと電圧
計M(305)で測定される電圧vを測る回路である。
電圧vは抵抗R(304)に生じる電圧降下による電圧
(電流iと抵抗値Rとの積=Riで表される)である。
該電圧計(305)の内部抵抗は51013Ω以上と
大きいので、該抵抗R(304)を回路に入れないとき
は電流iは零で、該試料(301)から発生する開放電
圧を測定していると見てよい。スイッチS(302)
は該電圧計(305)に内蔵されている短絡スイッチで
あり、スイッチS(303)は該抵抗R(304)を
測定回路に入れるためのものである。図4は該試料(3
01)の表面より放射される赤外線光子を真空アバラン
シェダイオードの窓(404)に入射させ、この赤外線
光子を該真空アバランシェダイオード(401)で電気
パルスに変化させ、このパルスを出力(411)を通し
てフォトカウンタ(403)に導いて、該フォトカウン
タ(403)で電気パルスの数を計数する非接触温度測
定装置の略図である。該真空アバランシェダイオード
(401)を作動させるには−10kVと4kVの高電
圧電源(402)より入力(412)を通して高電圧を
該真空アバランシェダイオード(401)に与える必要
がある。該真空アバランシェダイオード(401)と該
試料(301)は図のようにテフロン枠(413)の中
に組み込まれていて、該テフロン枠(413)はヒータ
ー(407)を備えた銅板(405)の上に置かれ、該
ヒーター(407)をヒーター電源(408)で駆動し
て該試料(301)の温度を上昇させるように作られて
いる。該テフロン枠(413)と該銅板(405)は真
空ポンプ(409)を備えた真空容器(406)に入れ
られている。また該試料(301)の温度は該テフロン
枠(413)に取り付けられた熱電対(410)によっ
て測られる。更に該試料(301)の両電極は入力抵抗
が51013Ω以上と大きい電子電圧計M(305)
に接続されて該試料(301)から発生する電圧が測定
されるようになっている。スイッチS(302)は該
試料(301)両電極を短絡するスイッチである。図5
の上半分は図3の該試料(301)から発生している電
圧を該電圧計M(305)で測定して、ほぼ一定の約9
00mVの値が得られた状態のとき、図の22分位のと
ころで該スイッチSを閉じ1分後にこれを開いて、そ
の後に発生し増加していく電圧を該電圧計M(305)
で測定した図である。60分後は約300mV電圧が発
生している。上に述べた電圧測定と同じ方法でスイッチ
を開閉したときに図3の該フォトカウンタ(40
3)で測定された電圧パルスの数nの経時変化を図5の
下半分に示す。パルス数nは30秒毎に2秒間測定さ
れ、その値が黒丸で図にお示されている。図5の上下の
図を比較して見ると、試料に一定の900mVが発生し
ている0〜22秒の間では電圧パルス数nはほぼ193
10(1/2秒)となっているが、一分間回路を短
絡して後これを開き、電圧が発生し増加していく過程で
はnが徐々に減少し、60分後の約300mVの電圧が
発生した時点では、パルス数nの減少量Δnは約10
10(1/2秒)となっている。試料に電圧が発生す
ることは、この試料がコンデンサであるを考えると、電
気的エネルギー(1/2)CV(C:試料の静電容
量、V:試料から発生する電圧)が生じたことを示し、
nの低下は図3の該試料(301)の表面から該真空ア
バランシェダイオード(401)の窓W(404)に入
射する赤外線フォトンの減少を示し、この減少は試料の
温度低下を表している。すなわち試料中では熱エネルギ
ーが電気エネルギーに変換されたことを示している。こ
の温度低下の概略を評価するために、図6に示す実験が
行なわれた。すなわち図4の非接触温度測定装置におい
て、該電源(408)で該ヒーターR(407)を熱し
て該試料(301)の温度を室温より1〜2℃高くして
おき、該電源(408)を切って該試料(301)の加
熱を停止し、該試料(301)が自然冷却する過程で、
該試料(301)の温度と該フォトカウンタ(403)
で測定された電圧パルスの数nとの経過時間依存性を測
定し図に直線L、L’として示した。直線L、L’から
該試料(301)の温度と電圧パルスの数nとの関係が
求まり、これを図6の挿入図に示す。該試料(301)
の温度は熱電対(410)で測定された。該試料(30
1)は該真空容器(406)に入っているので自然冷却
の速度は非常に遅い。図6に示した結果から図5に示し
たΔn=1010(1/2秒)の減少は約0.02
6℃の温度低下に当たる。ここで温度低下の大きさを評
価してみる。先ず図5より300mVの電圧が試料に発
生したのであるから、その電気エネルギーUは ここで試料の静電容量CはC=0.15μFである。ま
た一般にプラスチックの比熱は1[Jg−1−1]程
度であり、比重も1くらいである。ここに用いたLB膜
の体積Vは V=0.24.2107[cm] (2) である(試料の面積は0.2[cm]、LB膜は単分
子膜10層重ねて累積されていて、単分子層1層の厚さ
は4.2[Å]である)。もしもLB膜から(1)式に
示した熱エネルギーが奪われたとすると、LB膜の温度
低下ΔTは次式のように計算される。 ここでGとGはポリイミドLB膜の比熱と比重であ
り、1Jg−1−1と1とにした。LB膜の周りは熱
伝導がかなり複雑であり又蒸着電極もあり、さらに図6
の温度評価では試料全体が加熱されていることを思え
ば、(3)式で得られた評価温度低下値は実験で得られ
た0.026℃を概略的に説明している。図7は本発明
の誘電体超薄膜電源素子の試料(703)から放出され
る電力の積算値を示した実験結果である。電力の測定回
路を挿入図1に示した。11011Ωの抵抗R(70
1)が常に試料の両電極に接続されているので、電圧が
試料の両電極間に発生している限り電流iが該抵抗(7
01)に流れている。スイッチS(704)を1日に8
〜10時間閉じて電圧計M(702)で試料(703)
の電極間の電圧、つまり該抵抗R(701)に生じてい
る電圧を測定した。該電圧計M(702)の内部抵抗は
1013Ω以上と非常に大きいので、電流iは総て
該抵抗R(701)を通るとしてよい。1996年3月
の或る1日の測定例を挿入図2に示した。図に見られる
ように発生電圧は測定の初めは変動するが、やがて一定
値になる。測定は室温で行なわれているが、室温がほぼ
一定のときは発生電圧も殆ど変わらない。電圧を測定し
ていない夜間もその日測定された挿入図2に示したよう
な大きさの電圧が引き続き次の測定まで発生しているも
のとして、該抵抗R(701)に消費された積算電力を
示したグラフが図6である。約1年3ヵ月に渡る連続試
験の結果、この試料から放出された電力の積算値Wは W≒110−5[J] (4) この値は試料(703)が貯え得る値(1/2)Cv
(この試料はコンデンサであり、Cは試料の容量で約
0.14μF、vは試料からの発生開放電圧で約0.3
Vである)のほぼ1万倍に当たる。この電気エネルギー
は該抵抗R(701)で消費されて熱となる。図6で7
月〜9月は発生電力が大きいが、日本ではこの季節は夏
で気温が高く、温度が高いと発生電圧が大きくなり発生
する電力も大きくなる。電圧発生の原因はAlとAuの
仕事関数の差又は有極性誘電体超薄膜の分極電荷によっ
てAu電極に誘起された電子が誘電体超薄膜内を拡散す
るためと考えられ、温度が高くなると拡散定数が増大し
発生電圧が大きくなると考えられる。このような電気エ
ネルギーの試料からの同様な放出は現在も続いていて、
本誘電対超薄膜電源素子が破壊されない限り永久に続く
ものと考えられる。図5に関して説明したように、本発
明の誘電体超薄膜電源素子は熱エネルギーを電気エネル
ギーに変換する変換器の機能を持った素子でると考えら
れる。図8は図7の挿入図1の回路で該抵抗R(70
1)の値を変えてこの抵抗を流れた電流iと発生電圧を
測定したものである。該抵抗R(701)が10Ω、
10Ω、1010Ωのときは発生電圧が小さく電流が
一定であるので、定電流源の特性を示しているが10
11Ωのときは発生電圧が増加して電流が減少してい
る。図8の特性を図9によって説明する。図9は特許請
求範囲(3)に記した本発明の誘電体超薄膜電源素子の
薄膜として無極性のポリイミドLB膜を使用した素子の
断面図のエネルギーバンド図を示す。AlとAuの仕事
関数の差(ψ−φ、約1eV)によってスイッチS
(908)を閉じてAlとAuの電極を短絡したときに
Au電極面に電子電荷−Q(903)が誘起される。該
電子電荷−Q(903)を形成する電子がポリイミドL
B膜(901)中を拡散して拡散電流I(905)を
生じるが、一方電子の拡散によってAu電極の電位は正
となるのでAlとAuの電極間に生じた電位差によって
伝導電流I(907)が流れる。更にこの電位差によ
って抵抗R(905)にも電流I(910)が流れる
が、発生電圧が一定になると定常状態が発生し各電流間
に次の関係が生じる。 I=I+I (5) しかし発生電圧が小さい内はIを無視して I≒I (6) すなわち外部に放出される該電流I(910)は該拡
散電流I(906)にほぼ等しくなる。一方拡散は電
界に依存しない現象であって、AuとAlの仕事関数の
差によって誘起される該電子電荷−Q(903)による
ものと考えられる。よって発生電圧が小さい該抵抗R
(905)=10、10、1010Ωのときは定電
流源の性質を示す。発生電圧が大きいと、(5)式の伝
導電流Iを無視出来なくなり測定される電流I拡散
電流Iより減少する。なお図8の測定に用いた試料の
抵抗は1010〜1011Ω程度である。以上述べたよ
うに、本発明の誘電体超薄膜電源素子は数十〜数百Åの
厚さの無極性誘電体超薄膜を仕事関数が異なる金属(例
えばAlとAu)で挟んだ 金属I−無極性誘電体超薄膜−金属II の構造または有極性誘電体超薄膜を同種の金属で挟んだ
構造 金属−有極性誘電体超薄膜−金属 のMIM(metal−insulator−meta
l)である。このように極めて薄い無極性誘電体膜や極
めて薄いばかりでなく極めて大きな分極を持つ膜は現在
ではLangmuir−Blodgett(LB)膜以
外には存在しない。将来LB膜に代わる性能の誘電体超
薄膜が作られれば、これをLB膜に替えて使用出釆る。
本発明の誘電体超薄膜電源素子は現在では放出すること
が出来るエネルギーは比較的小さいが、拡散定数を大き
くするなど改良を加えてエネルギーを増大すれば、用途
は一層に広がり人類のエネルギー問題の解決にも役立つ
と考えられる。また本発明の誘電体超薄膜電源素子は外
界から何の作用も加えずして周囲の熱エネルギーを吸収
して、電気エネルギーを永久に放出することが出来るも
のである。なお本発明の誘電体超薄膜電源素子は電流源
として動作する場合もある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply element having a metal-dielectric ultra-thin film-metal structure using a dielectric ultra-thin film, and converting thermal energy of the element itself into electric energy. Then, when the temperature of the element falls, heat flows into the element from the outside, and the temperature of the element rises.
In this way, electric power is released to the outside forever as long as the surrounding heat is present. Therefore, the device of the present invention can be used as an energy source. 2. Description of the Related Art The present invention is based on a new phenomenon that has not been discovered so far. In other words, a Langmuir layer having a thickness of several tens to several hundreds of angstroms (Å) as a dielectric ultrathin film having the structure described above.
As a result of using a Blodgit (LB) film, it has been found that this structure becomes a power source. It is not necessary that the dielectric ultrathin film is an LB film, but it is considered that such a dielectric ultrathin film cannot be formed by the conventional technology except for the LB film. The cause of the new phenomenon Electric power is generated because electrons diffuse in the dielectric ultrathin film, and thermal energy is converted into electric energy by thermal motion of the electrons. The thickness of the dielectric ultra-thin film needs to be tens to hundreds of Angstroms (Å). Problems to be Solved by the Invention The ultrathin dielectric power supply of the present invention has a small output energy. It is believed that increasing this will broaden the utility of the invention. For that purpose, it is expected to produce a dielectric ultrathin film having a large electron diffusion constant. (Embodiment) Next, an embodiment of the dielectric ultrathin film power supply element of the present invention will be described with reference to the drawings. In this embodiment, the metal I having the structure of metal I-non-polar dielectric ultra-thin film-metal II has an aluminum (Al) electrode, metal II has a gold (Au) electrode, and a non-polar dielectric ultra-thin film has a polyimide LB. It was a film. Metal II to Metal I
And the same non-polar dielectric ultra-thin film as the non-polar arachidic acid LB film and the polar TC
NQ (C 15 TCNQ, 2-pentadecyl)
-7,7'-8,8'-cyanoquinodime
Similarly, a metal-polar LB heterodielectric ultrathin film-metal structure in which the LB heterofilm is overlapped with a LB heterofilm is also a dielectric ultrathin film power supply element. In FIGS. 1 and 2, first, Al having a thickness of about 2000 to 3000 ° is deposited on one surface of a microscope slide glass (size is 1/4) (1) to provide a lower electrode (5) having a lower electrode terminal (5). 7) is formed. Al is automatically oxidized in air, and the upper surface of the lower electrode (7) is made of aluminum oxide (A).
l 2 O 3 ). The thin film (9) is approximately 30 ° thick. L on the thin film (9)
The non-polar polyimide LB film (11) is coated by accumulating 1 to 10 polyimide LB monomolecular films by the method B. The polyimide LB film (11) has a thickness of about 4 to 40 °. Further, Au is used as an upper electrode (15) having an upper electrode terminal (13) on the polyimide LB film (11).
Dielectric ultrathin film supply device of the present invention the structure of the polyimide LB film -Au is formed - Al-Al 2 O 3 film by depositing.
Polyimide (11) a nonpolar LB film and polar Al-Al 2 O were LB film instead of LB hetero film overlapping upper electrode (15) to the deposition of Al TCNQ 3 film -LB of arachidic acid Although there is an example of the structure of the hetero film-Al, the characteristics of the power supply element similar to those of the example of the structure described above are shown. FIG. 3 is a circuit for measuring a current i generated from the dielectric ultrathin film power supply element sample (301) of the present invention and a voltage v measured by a voltmeter M (305).
The voltage v is a voltage (expressed by the product of the current i and the resistance value R = Ri) due to a voltage drop generated in the resistor R (304).
Since the internal resistance of the voltmeter (305) is as large as 5 × 10 13 Ω or more, when the resistor R (304) is not put into the circuit, the current i is zero and the open-circuit voltage generated from the sample (301) is You can see that it is measuring. Switch S 1 (302)
Is a short-circuit switch that is built into the voltmeter (305), switch S 2 (303) is intended to take into measuring circuit the resistor R (304). FIG. 4 shows the sample (3
01) is incident on the window (404) of the vacuum avalanche diode, the infrared photon is converted into an electric pulse by the vacuum avalanche diode (401), and the pulse is output through the output (411). 5 is a schematic diagram of a non-contact temperature measuring device that leads to a counter (403) and counts the number of electric pulses with the photo counter (403). To operate the vacuum avalanche diode (401), it is necessary to apply a high voltage to the vacuum avalanche diode (401) through an input (412) from a high voltage power supply (402) of -10 kV and 4 kV. The vacuum avalanche diode (401) and the sample (301) are incorporated in a Teflon frame (413) as shown in the figure, and the Teflon frame (413) is made of a copper plate (405) provided with a heater (407). The heater (407) is driven by a heater power supply (408) to increase the temperature of the sample (301). The Teflon frame (413) and the copper plate (405) are placed in a vacuum vessel (406) equipped with a vacuum pump (409). The temperature of the sample (301) is measured by a thermocouple (410) attached to the Teflon frame (413). Further, both electrodes of the sample (301) have an input resistance of 5 × 10 13 Ω or more, which is an electronic voltmeter M (305).
And the voltage generated from the sample (301) is measured. Switch S 2 (302) is a switch for short-circuiting the sample (301) both electrodes. FIG.
The upper half of FIG. 3 measures the voltage generated from the sample (301) in FIG.
A state where the value of 00mV is obtained, open it to 1 minute after closing the switch S 2 at the 22-minute position in the figure, then the generator increases to a by going voltage the voltmeter M (305)
FIG. After 60 minutes, a voltage of about 300 mV is generated. The photo counter of Figure 3 when opening and closing the switch S 2 in the same manner as the voltage measurement as described above (40
The temporal change of the number n of the voltage pulses measured in 3) is shown in the lower half of FIG. The pulse number n is measured every 30 seconds for 2 seconds, and the value is indicated by a black circle in the figure. Comparing the upper and lower views of FIG. 5, the voltage pulse number n is approximately 193 during 0 to 22 seconds when a constant 900 mV is generated in the sample.
x 10 3 (1 / second), but after short-circuiting the circuit for one minute and then opening it, n gradually decreases in the process of generating and increasing voltage, and about 300 mV after 60 minutes At the point in time when the voltage is generated, the decrease amount Δn of the pulse number n is about 10 ×
10 3 (1 / second). The generation of a voltage in the sample means that the electric energy (1/2) CV 2 (C: capacitance of the sample, V: voltage generated from the sample) is generated, considering that the sample is a capacitor. Indicates that
The decrease in n indicates a decrease in infrared photons incident on the window W (404) of the vacuum avalanche diode (401) from the surface of the sample (301) in FIG. 3, and this decrease indicates a decrease in the temperature of the sample. That is, this indicates that heat energy was converted to electric energy in the sample. In order to evaluate the outline of the temperature drop, an experiment shown in FIG. 6 was performed. That is, in the non-contact temperature measuring device of FIG. 4, the heater R (407) is heated by the power supply (408) to raise the temperature of the sample (301) by 1 to 2 ° C. above room temperature, and the power supply (408) To stop heating the sample (301), and in the process of allowing the sample (301) to cool down naturally,
The temperature of the sample (301) and the photo counter (403)
The dependence of the voltage pulse on the elapsed time with the number n of the measured voltage pulses was measured and shown as straight lines L and L ′ in the figure. The relationship between the temperature of the sample (301) and the number n of voltage pulses is obtained from the straight lines L and L ', and this is shown in the inset of FIG. The sample (301)
Was measured with a thermocouple (410). The sample (30
Since 1) is contained in the vacuum vessel (406), the natural cooling rate is very slow. From the results shown in FIG. 6, the decrease of Δn = 10 × 10 3 (1 / second) shown in FIG.
This corresponds to a temperature drop of 6 ° C. Here, the magnitude of the temperature drop will be evaluated. First, as shown in FIG. 5, a voltage of 300 mV was generated in the sample. Here, the capacitance C of the sample is C = 0.15 μF. Generally, the specific heat of plastic is about 1 [Jg -1 K -1 ] and the specific gravity is also about 1. The volume V of the LB film used herein is V = 0.2 x 4.2 x 10 - 7 [cm 3] (2) a (area of the sample is 0.2 [cm 2], LB film monomolecular (The thickness of one monolayer is 4.2 [Å] since 10 films are accumulated in layers.) If the thermal energy shown in the equation (1) is taken from the LB film, the temperature drop ΔT of the LB film is calculated by the following equation. Here G s and G is the specific heat and density of the polyimide LB films, and to the 1Jg -1 K -1 1 and. The heat conduction around the LB film is quite complicated, and there are also deposition electrodes.
Considering that the entire sample is heated in the temperature evaluation, the evaluation temperature drop value obtained by the equation (3) roughly explains 0.026 ° C. obtained in the experiment. FIG. 7 is an experimental result showing an integrated value of the power emitted from the sample (703) of the dielectric ultrathin film power supply device of the present invention. The power measurement circuit is shown in FIG. 1 × 10 11 Ω resistor R (70
1) is always connected to both electrodes of the sample, so long as a voltage is generated between both electrodes of the sample, the current i
01). Set switch S (704) to 8 per day
Close the sample for 10 hours with a voltmeter M (702) (703)
, That is, the voltage generated at the resistor R (701). Since the internal resistance of the voltmeter M (702) is as large as 5 × 10 13 Ω or more, all the current i may pass through the resistance R (701). An example of a measurement on one day in March 1996 is shown in FIG. As can be seen, the generated voltage fluctuates at the beginning of the measurement, but eventually becomes constant. Although the measurement is performed at room temperature, when the room temperature is almost constant, the generated voltage hardly changes. It is assumed that a voltage having the magnitude as shown in FIG. 2 measured continuously during the night when the voltage is not measured continues until the next measurement, and the integrated power consumed by the resistor R (701) is calculated. The graph shown is FIG. As a result of a continuous test for about one year and three months, the integrated value W of the power emitted from this sample is W ≒ 1 × 10 −5 [J] (4) This value is a value (1) that can be stored in the sample (703). / 2) Cv 2
(This sample is a capacitor, C is about 0.14 μF in the capacity of the sample, and v is about 0.3 in the open voltage generated from the sample.
V). This electric energy is consumed by the resistor R (701) and becomes heat. 7 in FIG.
Although the generated power is large from Monday to September, in Japan, the temperature is high in summer in this season, and when the temperature is high, the generated voltage increases and the generated power increases. The cause of the voltage generation is considered to be that the electrons induced at the Au electrode by the difference between the work functions of Al and Au or the polarization charge of the polar dielectric ultra-thin film diffuse in the dielectric ultra-thin film. It is considered that the constant increases and the generated voltage increases. Similar releases of such electrical energy from samples continue today.
It is considered that the dielectric-to-ultra-thin film power supply element will last forever unless destroyed. As described with reference to FIG. 5, it is considered that the dielectric ultrathin film power supply element of the present invention is an element having a function of a converter for converting thermal energy into electric energy. FIG. 8 shows the circuit of FIG.
The current i flowing through this resistor and the generated voltage were measured by changing the value of 1). The resistance R (701) is 10 8 Ω,
In the case of 10 9 Ω and 10 10 Ω, since the generated voltage is small and the current is constant, the characteristics of the constant current source are shown.
At 11 Ω, the generated voltage increases and the current decreases. 8 will be described with reference to FIG. FIG. 9 is an energy band diagram of a cross-sectional view of an element using a nonpolar polyimide LB film as a thin film of the dielectric ultra-thin film power supply element of the present invention described in claim (3). The switch S is determined by the difference between the work functions of Al and Au (ψ 1 −φ 2 , about 1 eV).
When (908) is closed and the Al and Au electrodes are short-circuited, an electron charge -Q (903) is induced on the Au electrode surface. The electrons forming the electron charge -Q (903) are polyimide L
The diffusion current I D (905) is generated by diffusing in the B film (901). On the other hand, since the potential of the Au electrode becomes positive due to the diffusion of the electrons, the conduction current I C is generated by the potential difference generated between the Al and Au electrodes. (907) flows. Further, the current I R (910) also flows through the resistor R (905) due to this potential difference, but when the generated voltage becomes constant, a steady state occurs, and the following relationship occurs between the currents. I D = I C + I R (5) but within the generated voltage is smaller ignore I C I DI R (6) i.e. said current I R that is released to the outside (910) of the diffusion current I D (906). On the other hand, diffusion is a phenomenon that does not depend on an electric field, and is considered to be due to the electron charge -Q (903) induced by a difference in work function between Au and Al. Therefore, the resistor R having a small generated voltage
When (905) = 10 8 , 10 9 , and 10 10 Ω, it indicates the property of a constant current source. When the generated voltage is high, decreases from current I R diffusion current I D to be measured is not negligible conduction current I C of the equation (5). The resistance of the sample used for the measurement in FIG. 8 is about 10 10 to 10 11 Ω. As described above, the dielectric ultra-thin film power supply device of the present invention has a metal I- in which a non-polar dielectric ultra-thin film having a thickness of several tens to several hundreds of mm is sandwiched between metals having different work functions (eg, Al and Au). Non-polar dielectric ultra-thin film-metal II structure or structure in which a polar dielectric ultra-thin film is sandwiched between the same kind of metals Metal-polar dielectric ultra-thin film-MIM (metal-insulator-meta)
l). Such a very thin nonpolar dielectric film and a film having not only a very thin but also extremely large polarization do not exist at present except for the Langmuir-Blodgett (LB) film. If a dielectric ultrathin film having performance replacing the LB film is made in the future, it will be used instead of the LB film.
Although the energy that can be emitted from the dielectric ultrathin film power supply device of the present invention is relatively small at present, if the energy is increased by making improvements such as increasing the diffusion constant, the application will be further expanded and the energy problem of humankind will be increased. It is thought to be useful for the solution. Further, the dielectric ultra-thin film power supply element of the present invention can absorb the surrounding heat energy without any action from the outside and emit electric energy permanently. Note that the dielectric ultrathin film power supply element of the present invention may operate as a current source in some cases.

【図面の簡単な説明】 図1は本発明の誘電体超薄膜電源素子の実施例の概略平
面図、図2は図1の11−11線に依る断面図、図3は
図1の誘電体超薄膜電源素子から発生する電圧を測定す
る回路図、図4は図3の誘電体超薄膜電源素子から電圧
が発生すると同時に素子の温度低下を測定する非接触温
度測定装置の概略図、図5は図4による測定結果で本発
明の誘電体超薄膜電源素子から発生した赤外線フォトン
を測定して本発明の素子の温度低下を示す図、図6は図
5で測定された温度低下の大きさを概略的に定める図、
図7は本発明の誘電体超薄膜電源素子が1年3ヵ月にわ
たって電気エネルギーを放出し続けたことを示した図
(現在も電気エネルギーを出し続けている)、図8は本
発明の誘電体超薄膜電源素子が電流源となることを示す
図、図9は本発明の誘電体超薄膜電源素子が電流源とな
ることを説明するエネルギーバンド図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view of an embodiment of a dielectric ultra-thin film power supply device according to the present invention, FIG. 2 is a sectional view taken along line 11-11 of FIG. 1, and FIG. FIG. 4 is a circuit diagram for measuring a voltage generated from the ultra-thin film power supply element. FIG. 4 is a schematic diagram of a non-contact temperature measuring device for measuring a temperature drop of the element at the same time that a voltage is generated from the dielectric ultra-thin film power supply element in FIG. FIG. 4 is a diagram showing the temperature drop of the device of the present invention by measuring infrared photons generated from the dielectric ultra-thin film power supply device of the present invention based on the measurement results shown in FIG. 4, and FIG. 6 is a diagram showing the magnitude of the temperature drop measured in FIG. Figure that roughly defines
FIG. 7 is a view showing that the dielectric ultra-thin film power supply element of the present invention continuously emits electric energy for one year and three months (currently continues to emit electric energy), and FIG. 8 is a dielectric substance of the present invention. FIG. 9 is a view showing that the ultra-thin film power supply element serves as a current source, and FIG. 9 is an energy band diagram for explaining that the dielectric ultra-thin film power supply element of the present invention serves as a current source.

Claims (1)

【特許請求の範囲】 (1)厚さがオグストローム(Å)のオーダーの無極性
誘電体超薄膜を仕事関数の異なる二種類の金属で挟んだ 金属I−無極性誘電体超薄膜−金属II の構造を有する誘電体超薄膜電源素子。 (2)厚さがオグストロームのオーダーの無極性誘電体
超薄膜と有極性誘電体超薄膜とを重ねたヘテロ誘電体超
薄膜を同種の金属で挟んだ 金属−ヘテロ誘電体超薄膜−金属 の構造を有する誘電体超薄膜電源素子。 (3)特許請求の範囲第1項又は2項に記載する誘電体
超薄膜電源素子において、無極性誘電体超薄膜又はヘテ
ロ誘電体超薄膜としてラングミュア・ブロジェット膜を
用いた誘電体超薄膜電源素子。
Claims: (1) Metal I-Non-polar dielectric ultra-thin film-Metal II in which a non-polar dielectric ultra-thin film having a thickness on the order of Angstroms (Å) is sandwiched between two metals having different work functions. Ultra-thin dielectric power supply element having the structure described above. (2) Metal-heterodielectric ultrathin film-metal thin film in which a heterodielectric ultrathin film obtained by laminating a nonpolar dielectric ultrathin film and a polar dielectric ultrathin film having a thickness on the order of angstrom is sandwiched by the same kind of metal Ultra-thin dielectric power supply device having a structure. (3) The ultra-thin dielectric thin film power supply device according to claim 1 or 2, wherein the non-polar ultra-thin dielectric film or the ultra-thin hetero dielectric thin film uses a Langmuir-Blodgett film. element.
JP8193811A 1996-06-20 1996-06-20 Dielectric ultrathin film power-supply element Pending JPH1012937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8193811A JPH1012937A (en) 1996-06-20 1996-06-20 Dielectric ultrathin film power-supply element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8193811A JPH1012937A (en) 1996-06-20 1996-06-20 Dielectric ultrathin film power-supply element

Publications (1)

Publication Number Publication Date
JPH1012937A true JPH1012937A (en) 1998-01-16

Family

ID=16314165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8193811A Pending JPH1012937A (en) 1996-06-20 1996-06-20 Dielectric ultrathin film power-supply element

Country Status (1)

Country Link
JP (1) JPH1012937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036662A1 (en) * 2003-10-07 2005-04-21 Matsushita Electric Industrial Co., Ltd. Thermoelectric transducer, its manufacturing method, cooling apparatus using same, and method for controlling the cooling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036662A1 (en) * 2003-10-07 2005-04-21 Matsushita Electric Industrial Co., Ltd. Thermoelectric transducer, its manufacturing method, cooling apparatus using same, and method for controlling the cooling apparatus
US7003962B2 (en) 2003-10-07 2006-02-28 Matsushita Electric Industrial Co., Ltd. Thermoelectric transducer, a manufacturing method thereof, a cooling device using the same, and a method for controlling the cooling device
CN100424905C (en) * 2003-10-07 2008-10-08 松下电器产业株式会社 Thermoelectric transducer, a manufacturing method thereof, a cooling device using the same, and a method for controlling the cooling device

Similar Documents

Publication Publication Date Title
Hagen et al. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material
Chen et al. Visible light driven hot‐electron injection by pd nanoparticles: fast response in metal–semiconductor photodetection
US20090195961A1 (en) Method and device for storing electricity in quantum batteries
O'Hayre et al. The influence of TiO2 particle size in TiO2/CuInS2 nanocomposite solar cells
Bernard et al. Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes
Gencer Imer et al. Interface controlling study of silicon based Schottky diode by organic layer
Cheng et al. Integration of an electronic thermoelectric material with ionogels to harvest heat from both temperature gradient and temperature fluctuation
Nandi et al. Understanding modes of negative differential resistance in amorphous and polycrystalline vanadium oxides
Kron et al. Electrical characterisation of dye sensitised nanocrystalline TiO2 solar cells with liquid electrolyte and solid-state organic hole conductor
Mardi et al. Interfacial Effect Boosts the Performance of All‐Polymer Ionic Thermoelectric Supercapacitors
JPH1012937A (en) Dielectric ultrathin film power-supply element
Chen et al. Analyzing interfacial carrier charging in pentacene/C60 double-layer organic solar cells by optical electric field induced second-harmonic generation measurement
Erbilen Tanrıkulu Variation of electrical and dielectric characteristics of Schottky diodes (SDs) depending on the existence of PVC and carbon-nanotube (CNT)-doped PVC interlayers
Qasrawi et al. Yb/Se/WO3/Yb Thin Film Transistors as Rectifiers, N‐Channel Metal Oxide Semiconductor Capacitors, Laser Sensors, and Microwave Bandstop Filters
Al-Obaidi et al. Investigation And Study Of Electronic Transition Current For Au Metal Contact With Pentacene Molecule
Sharma et al. Charge transfer and photogeneration process in device consisting of safranine O dye and TiO2 nano-particles
Matsushita et al. Photovoltaic Effect of Amorphous InxSe1-x Film–SnO2 Structure
WO2022150473A1 (en) Enhanced quantum vacuum energy devices
Hazra et al. Vertical limits of resistive memory scaling: The detrimental influence of interface states
Prevenslik Quantum mechanics and nanoelectronics
US20120180853A1 (en) Photovoltaic Cells
Niikura et al. Contact of ZnO thin films with Rhodamine B dye
Bhatt et al. Terahertz detectors (THzDs): Bridging the gap for energy harvesting
Reucroft et al. Photovoltaic properties of polymer films
JP2000156292A (en) Electric element