JPH10127145A - Vehicle speed controller for combine harvester and the like - Google Patents

Vehicle speed controller for combine harvester and the like

Info

Publication number
JPH10127145A
JPH10127145A JP28830996A JP28830996A JPH10127145A JP H10127145 A JPH10127145 A JP H10127145A JP 28830996 A JP28830996 A JP 28830996A JP 28830996 A JP28830996 A JP 28830996A JP H10127145 A JPH10127145 A JP H10127145A
Authority
JP
Japan
Prior art keywords
grain
vehicle speed
threshing
sensor
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28830996A
Other languages
Japanese (ja)
Other versions
JP3690004B2 (en
Inventor
Harumitsu Toki
治光 十亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP28830996A priority Critical patent/JP3690004B2/en
Publication of JPH10127145A publication Critical patent/JPH10127145A/en
Application granted granted Critical
Publication of JP3690004B2 publication Critical patent/JP3690004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the distribution density of the grains leaking from a feeding net in the axial direction of a feeding drum at the time of threshing with a combine harvester, etc., and to set the max. vehicle speed in such a manner that the distribution density does not exceed the preset threshold value to a satd. state. SOLUTION: A sorting chamber 2 of a threshing device for threshing supplied grain culm is provided with a grain size distribution sensor 5 capable of detecting the distribution density of the grains leaking from the feeding net 4 along the axial direction of the feeding drum 3. When the value detected by the grain size distribution sensor 5 attains the preset threshold value, the max. vehicle speed at the time of reaping is calculated and set on the basis of this detected value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、コンバイン等の
車速制御装置に関し、脱穀されて扱網から漏下する穀粒
分布密度の検出値を基準として車速を設定するもの等の
分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle speed control device such as a combine and the like, and belongs to the field of setting a vehicle speed based on a detected value of a grain distribution density which is threshed and leaks from a handling net.

【0002】[0002]

【従来の技術、及び発明が解決しようとする課題】従来
では、コンバインの作業時に、脱穀装置の負荷状態をエ
ンジン又は脱穀装置の回転数の変動等により検出し、こ
の検出値によって車速を変速制御する方式のものが一般
的に用いられている。しかし、このような車速の変速の
みでは、脱穀する穀稈の品種,刈取時期,乾湿度合等に
よる脱粒性の難易や、作柄による脱粒量の多少等による
脱粒条件の違いに対応でないため、扱胴の軸方向に沿っ
て扱網から漏下する穀粒の分布密度が特定の位置に集中
して飽和状態となり、選別不良を起こすと共に、無理な
脱粒による枝梗付着粒の増大により穀粒の機外飛散が増
大する。また、以後の乾燥作業や調整作業においても悪
影響を及ぼすこととなる。
2. Description of the Related Art Conventionally, during a combine operation, a load state of a threshing device is detected based on a change in the number of revolutions of an engine or a threshing device, and a vehicle speed is controlled based on the detected value. In general, a method of performing the above method is used. However, such a vehicle speed change alone does not correspond to the difficulty of grain shedding due to varieties of grain culms to be threshed, mowing time, dryness and humidity, and the difference in grain shedding conditions due to the amount of grain shedding due to cropping. The distribution density of the grains leaking from the handling net along the axial direction is concentrated at a specific location and becomes saturated, causing poor sorting. Outside scattering increases. In addition, the drying operation and the adjusting operation will be adversely affected.

【0003】そこでこの発明は、脱穀されて扱網から漏
下する穀粒分布密度の検出値を基準として刈り取り時の
最高車速を設定する。
[0003] Therefore, in the present invention, the maximum vehicle speed at the time of mowing is set based on the detected value of the grain distribution density that is threshed and leaks from the handling net.

【0004】[0004]

【課題を解決するための手段】この発明は、刈取った穀
稈を脱穀する脱穀装置1の選別室2に、扱胴3の軸方向
に沿って扱網4から漏下する穀粒の分布密度を検出可能
の穀粒分布センサ5を設け、この穀粒分布センサ5によ
る検出値が予め設定される限界値Mに達したときは、こ
の検出値を基準として刈取り時の最高車速を算出設定す
ることを特徴とするコンバイン等の車速制御装置の構成
とする。
SUMMARY OF THE INVENTION According to the present invention, distribution of kernels leaking from a handling net 4 along an axial direction of a handling cylinder 3 is provided to a sorting chamber 2 of a threshing apparatus 1 for threshing a harvested grain stem. A grain distribution sensor 5 capable of detecting the density is provided, and when the detection value of the grain distribution sensor 5 reaches a preset limit value M, the maximum vehicle speed at the time of mowing is set based on the detection value. And a vehicle speed control device such as a combine.

【0005】[0005]

【作用】上記の構成によれば、脱穀装置1によって脱穀
作業を行うときに、扱胴3により脱穀されて扱網4から
漏下する穀粒の扱胴3軸方向に沿った分布密度を、例え
ば、該扱網4の入口下方側に配置した穀粒分布センサ5
による同心円状の広がりをもつ超音波によって検出する
ことにより、この検出値が、図5の線図に示す如く、予
めコントローラ等に設定される限界値Mに達したとき
は、この検出値を基準として刈取り時の最高車速を算出
設定し、この最高車速を上限としてコンバインの車速制
御を行わせる。なお、該穀粒分布センサ5による検出方
式としては、超音波のみに限らず光,圧力,衝撃等種々
の方式を使用しても上記と同様の結果を得ることができ
る。
According to the above configuration, when the threshing operation is performed by the threshing apparatus 1, the distribution density along the axial direction of the handling cylinder 3 of the grain that is threshed by the handling cylinder 3 and leaks from the handling net 4 is determined by: For example, a grain distribution sensor 5 arranged below the entrance of the handling net 4
When the detection value reaches a limit value M set in advance in a controller or the like as shown in the diagram of FIG. 5 by detecting with an ultrasonic wave having a concentric spread due to The maximum vehicle speed at the time of mowing is calculated and set, and the maximum vehicle speed is set as the upper limit to perform the vehicle speed control of the combine. The detection method by the grain distribution sensor 5 is not limited to the ultrasonic wave, and the same result as described above can be obtained by using various methods such as light, pressure, and impact.

【0006】[0006]

【発明の効果】上記作用の如く、穀粒分布センサ5によ
り扱網4から漏下する穀粒の扱胴3軸方向に沿った分布
密度を検出し、この検出値が予め設定した限界値Mに達
したときは、この検出値を基準として刈取り時の最高車
速を算出設定することにより、脱穀する穀稈の品種,刈
取時期,乾湿度合等による脱粒性の難易や、作柄による
脱粒量の多少等によって変化する脱粒条件の違いに対応
して、適正な車速で刈取作業を行うことができるから、
漏下穀粒の分布密度が限界値Mを超え飽和状態となった
ときに無理な脱粒によって発生する枝梗付着粒の増大を
抑制して、選別不良や穀粒の機外飛散の防止と共に、以
後の乾燥作業や調整作業の効率化及び高品質化を図るこ
とができる。
As described above, the distribution density of the grains leaking from the handling net 4 along the three axes of the handling cylinder is detected by the grain distribution sensor 5, and this detected value is set to a preset limit value M. When the maximum value is reached, the maximum vehicle speed at the time of harvesting is calculated and set based on this detection value. The mowing work can be performed at an appropriate vehicle speed in response to the difference in the threshing condition that changes due to
When the distribution density of the leaking kernels exceeds the limit value M and becomes saturated, the increase in the number of spike sticking particles caused by excessive shedding is suppressed, along with prevention of poor sorting and scattering of the kernels outside the machine, It is possible to improve the efficiency and quality of the subsequent drying operation and adjustment operation.

【0007】[0007]

【実施例】以下に、この発明の実施例を穀類の収穫作業
を行うコンバインについて図面に基づき説明する。コン
バインの車台6の下部側に土壌面を走行する左右一対の
走行クローラ7を有する走行装置8を配設し、該車台6
上にはフィードチェン9に挟持して供給される穀稈を脱
穀し、この脱穀された穀粒を選別回収して一時貯留する
穀粒タンク10を備えた脱穀装置1を載設する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings for a combine for harvesting cereals. A traveling device 8 having a pair of right and left traveling crawlers 7 traveling on the soil surface is disposed below the undercarriage 6 of the combine.
A threshing apparatus 1 having a grain tank 10 for threshing grain culms supplied by being sandwiched by the feed chain 9 and selectively collecting the threshed grains for temporary storage is mounted thereon.

【0008】該脱穀装置1の前方側には、前端位置から
立毛穀稈を分草する分草体11と、分草された穀稈を引
き起こす引起部12と、引き起こされた穀稈を刈り取る
刈刃部13と、この刈り取られた穀稈を後方へ搬送して
該フィードチェン9へ受け渡しする掻込搬送部14、及
びこの掻込搬送部14から搬送穀稈を引き継ぐ供給搬送
部15等を有する刈取装置16を、油圧駆動による伸縮
シリンダ17により土壌面に対して昇降自在に作用させ
るよう構成する。
At the front side of the threshing device 1, a weeding body 11 for weeding trichomes from the front end position, a raising part 12 for causing the weeded stalks, and a cutting blade for cutting the raised stalks. A mowing section 13, a scraping transporting section 14 for transporting the cut culm backward and delivering it to the feed chain 9, and a feed transport section 15 for taking over the transported grain culm from the scraping transporting section 14. The device 16 is configured to be able to move up and down on the soil surface by a telescopic cylinder 17 driven by hydraulic pressure.

【0009】該刈取装置16の一側にコンバインの操作
制御を行う操作装置18と、この操作のための操作席1
9とを設け、この操作席19の下方側にエンジン20を
搭載すると共に、後方側に該穀粒タンク10を配置す
る。このような脱穀装置1,走行装置8,刈取装置1
6,操作装置19,エンジン20等によってコンバイン
の車体21を構成する。
An operating device 18 for controlling the operation of the combine is provided on one side of the reaper 16 and an operating seat 1 for this operation.
The engine 20 is mounted below the operation seat 19, and the grain tank 10 is arranged behind the operation seat 19. Such threshing device 1, traveling device 8, reaper 1
6, the operating device 19, the engine 20 and the like constitute a combine vehicle body 21.

【0010】該刈取装置16の掻込搬送部14と供給搬
送部15とによって形成される穀稈搬送通路に、搬送穀
稈の有無を検出する穀稈センサ前22と穀稈センサ後2
3とを各々配設すると共に、該供給搬送部15には、穀
稈の穂先側を穂先送りラグ24aに保持して搬送する穂
先搬送部24と、株元側を株元送りチェン25aに挟持
して搬送する株元搬送部25とを各々上下位置に分離し
て設ける。
A cereal stalk sensor 22 for detecting the presence or absence of a transported cereal stem and a cereal stalk sensor 2 for detecting the presence or absence of a transported cereal culm in a cereal culm transport passage formed by the raking transport unit 14 and the supply transport unit 15 of the cutting device 16
In addition, the feed conveyor unit 24 is provided, and the feed conveying unit 15 holds the spike side of the grain stalk in an ear feed lug 24a and conveys the spike, and the stock side is sandwiched by a stock feed chain 25a. And the stock transport unit 25 for transporting them separately.

【0011】該供給搬送部15で搬送される穀稈を、扱
深さを深くする側と浅くする側とに自動的に制御して脱
穀装置1のフィードチェン9に引継ぎさせる扱深さ制御
装置26と、前記走行装置8の伝動経路の適宜位置に配
置した車速を検出する車速センサ27の検出値によって
車速を自動的に制御する車速制御装置28とを前記操作
装置18の一側に内装して構成する。
A handling depth control device for automatically controlling the grain culm conveyed by the supply / conveyance unit 15 to a side where the handling depth is increased and a side where the grain depth is reduced, and transferring the grain to the feed chain 9 of the threshing apparatus 1. 26, and a vehicle speed control device 28 for automatically controlling the vehicle speed based on a detection value of a vehicle speed sensor 27 that detects a vehicle speed disposed at an appropriate position on the transmission path of the traveling device 8 are provided on one side of the operation device 18. It is composed.

【0012】該脱穀装置1、上部側に脱穀室29を下部
側に選別室2を各々配置して構成する。脱穀室29に
は、扱胴3を穀稈供給口3aの入口側から出口側に向け
て軸架内装すると共に、手前側の穀稈通路に沿って穀稈
を挟持搬送するフィードチェン9とを配置して設け、扱
胴3の略下半部を包囲する扱網4及びこの扱網4の出口
側端部に脱穀排塵物を排出する脱穀排出口30を設けて
構成する。
The threshing apparatus 1 comprises a threshing chamber 29 on the upper side and a sorting chamber 2 on the lower side. In the threshing room 29, a feed cylinder 9 is provided with a handle cylinder 3 mounted on a shaft extending from the entrance side to the exit side of the grain culm supply port 3a, and a feed chain 9 for pinching and conveying the grain culm along the grain culm passage on the near side. It is arranged and provided, and is provided with a handling net 4 surrounding a substantially lower half of the handling cylinder 3 and a threshing discharge port 30 for discharging threshing dust at the outlet end of the handling net 4.

【0013】該選別室2には、脱穀処理されて扱網4か
ら漏下した脱穀物を揺動移送しながら選別を行う縦長の
揺動選別棚31を、扱胴3の軸方向に沿ってその入口側
部を上手側として出口側に向け架設する。この揺動選別
棚31の上手側下方に羽根の回転により選別風を起風す
る唐箕32を配設する。該揺動選別棚31は上手側から
脱穀物を移送するラック状の移送棚31aと、この移送
棚31aに続いて脱穀物を中選別する鎧戸状のチャフシ
ーブ31bと、このチャフシーブ31bに続いて該シー
ブ31bから漏下しない夾雑物及び脱穀排出口30から
排出される脱穀藁屑を受けて荒選別する鋸状のストロー
ラック31cと、該チャフシーブ31bから漏下した中
選別物を更に精選別する網状のグレンシーブ31dとを
設け、移送棚31aの上手端部を揺動支軸33により支
承すると共に、ストローラック31cの下部側に位置し
て二番物を流下させる二番流穀棚31eの裏面に揺動選
別棚31を偏心揺動させる揺動メタル34を装着して構
成する。
In the sorting room 2, a vertically long swinging sorting shelf 31 for sorting while threshing the thresh processed and leaked from the handling net 4 while swinging is provided along the axial direction of the handling cylinder 3. The entrance side is set as a good side and is installed toward the exit side. At the lower side of the swing sorting shelf 31 on the upper side of the swing, a Karino 32 which generates a sorting wind by the rotation of the blades is provided. The swing sorting shelf 31 is a rack-shaped transfer shelf 31a for transferring thresh from the upper side, an armor-shaped chaff sheave 31b for middle-sorting thresh following the transfer shelves 31a, and a chaff sheave 31b following the chaff sheave 31b. A saw-shaped straw rack 31c that roughly sorts by receiving contaminants that do not leak from the sheave 31b and threshing straw chips discharged from the threshing discharge port 30, and a net that further finely sorts the medium-sorted material that has leaked from the chaff sheave 31b. And the upper end of the transfer shelf 31a is supported by the swinging support shaft 33, and is located on the lower side of the straw rack 31c and on the back surface of the second grain shelves 31e for allowing the second product to flow down. A swing metal 34 for eccentrically swinging the swing sorting shelf 31 is mounted.

【0014】該唐箕32の底板32aの下手側端部と、
選別された一番穀粒を収容して横送り集穀する一番螺旋
35を内装した一番受樋35aの上手側端部とを接続
し、その下手側端部と、グレンシーブ31dの下方に該
シーブ31dから漏下した精選別物を流下して選別風に
よって仕上選別する一番流穀棚36の下端部とを接続し
て設ける。該一番流穀棚36の上端部近傍の裏面に、選
別された二番物を収容して横送り集積する二番螺旋37
を内装した二番受樋37aの上手側端部を接続すると共
に、その下手側端部を該二番流穀棚31eの下端部との
間に一定の隙間を設けて適宜長さ重合配設して構成す
る。
A lower end of the bottom plate 32a of the Karamin 32;
Connect the upper end of the first gutter 35a, which houses the first spiral 35 that accommodates the selected first kernel and collects the horizontal grain, and connects the lower end with the lower end of the sheave 31d. The finely sorted material leaked from the sheave 31d is flowed down, and is connected to the lower end portion of the first-flowing grain rack 36, which is to be finished and sorted by the sorting wind. On the back surface near the upper end of the first grain shelf 36, a second spiral 37 for storing the sorted second products and laterally accumulating them.
Is connected to the upper end of the second receiving trough 37a, and the lower end of the second receiving trough 37a is provided with a predetermined gap between the lower end of the second flow grain shelf 31e and an appropriate length of the lower tray 37e. And configure.

【0015】38は、前記ストローラック31cの上方
側に設けたシロッコファン等により脱穀塵埃を機外に排
出する排塵ファンで、上部カバー38aと下部ガイド3
8bにより吸塵側と排塵側を形成する。該ストローラッ
ク31cの下手端部から脱穀排塵物を機外へ排出する脱
穀装置1の三番排塵口39を配設すると共に、該上部カ
バー38aの上方側に脱穀済み排稈を機外へ搬出する排
稈搬送チェン40及びその挟持杆40aとを配設して構
成する。
Numeral 38 denotes a dust discharge fan for discharging threshing dust outside the machine by a sirocco fan or the like provided above the straw rack 31c. The upper cover 38a and the lower guide 3
8b forms a dust suction side and a dust discharge side. A third dust outlet 39 of the threshing apparatus 1 for discharging threshing dust from the lower end of the straw rack 31c to the outside of the machine is provided, and the threshed culms discharged above the upper cover 38a are disposed outside the machine. The culm transport chain 40 and the holding rod 40a are carried out.

【0016】図1及び図2に示す如く、前記扱胴3入口
側における扱網4と揺動選別棚31との間の適宜位置
に、同心円状に広がる波面をもつ超音波5aを発射しそ
の反射波によって、扱網4から漏下する穀粒の分布密度
を検出する穀粒分布センサ5を配置して構成する。な
お、この穀粒分布センサ5は、超音波5a以外にも光,
圧力,衝撃等種々の方式のものを使用してもよく、設置
箇数や設置位置についても限定する必要はなく、検出能
力に応じて選択すればよいものである。
As shown in FIGS. 1 and 2, an ultrasonic wave 5a having a concentrically spreading wavefront is emitted at an appropriate position between the handling net 4 and the swing sorting shelf 31 at the entrance side of the handling drum 3 and the ultrasonic wave 5a is emitted. A kernel distribution sensor 5 for detecting the distribution density of kernels leaking from the handling net 4 by reflected waves is arranged and configured. In addition, this grain distribution sensor 5 is not limited to the ultrasonic wave 5a,
Various types such as pressure and impact may be used, and it is not necessary to limit the number of installations and the installation positions, and they may be selected according to the detection capability.

【0017】図3に示す如く、CPUを主体として各種
の演算制御を行うと共に、穀稈の供給深さを算出設定す
る扱深さ制御装置26と、該扱網4からの漏下穀粒の分
布密度によって刈り取り時の最高車速を算出設定する車
速制御装置28とを内蔵したコントローラ41を、前記
操作装置18の一側に内装し、このコントローラ41の
入力側に、前記穀粒分布センサ5,穀稈センサ前22,
穀稈センサ後23,車速センサ27等を各々接続すると
共に、その出口側に、穀稈の供給深さを制御するアクチ
ュエータ42と車速を制御するアクチュエータ43等を
各々接続して構成する。
As shown in FIG. 3, the CPU mainly controls various arithmetic operations and calculates and sets the supply depth of the grain stalks. A controller 41 incorporating a vehicle speed control device 28 for calculating and setting the maximum vehicle speed at the time of mowing based on the distribution density is provided on one side of the operation device 18, and the grain distribution sensor 5 is provided on the input side of the controller 41. In front of grain stalk sensor 22,
The rear portion 23 of the grain stem, the vehicle speed sensor 27 and the like are connected to each other, and an actuator 42 for controlling the supply depth of the grain stem and an actuator 43 for controlling the vehicle speed are connected to the outlet side thereof.

【0018】刈取られた穀稈は掻込搬送部14から供給
搬送部15へ引き継がれ、この供給搬送部15の穂先搬
送部24による穂先側の保持と株元搬送部25による株
元側の挟持とによって、株元側をフィードチェン9に受
け渡し挟持させると共に、穂先側を穀稈供給口3aに送
り込む。このとき、穀稈センサ前22及び穀稈センサ後
23は共にON状態となる。
The harvested grain culm is passed from the scraping transport unit 14 to the supply transport unit 15, and the spike side transport unit 24 of the supply transport unit 15 holds the spike side and the stock source transport unit 25 pinches the stock side. As a result, the stock side is delivered to and sandwiched by the feed chain 9, and the tip side is fed into the grain stalk supply port 3a. At this time, both the front 22 and the rear 23 of the grain sensor are turned ON.

【0019】該フィードチェン9に挟持搬送される穀稈
は脱穀室29において扱胴3により脱穀され、この脱穀
により扱網4から漏下した脱穀物は選別室2の揺動選別
棚31上に落下し、この落下物は揺動選別棚31による
揺動移送作用と唐箕32による選別風とにより、移送棚
31aからチャフシーブ31bへ送られて選別され、チ
ャフシーブ31bから漏下した中選別物は、更にグレン
シーブ31dで選別され、グレンシーブ31dから漏下
した精選別物は、一番流穀棚36上へ落下しこの棚36
を流下する間に仕上選別されて一番受樋35aへ収容さ
れ、この収容された一番穀粒は一番螺旋35により横送
りされて穀粒タンク10へ搬送される。
The grain culm conveyed by the feed chain 9 is threshed by the handling drum 3 in the threshing room 29, and the thresh that has leaked from the handling net 4 due to the threshing is placed on the swinging sorting shelf 31 of the sorting room 2. The falling object is sent from the transfer shelf 31a to the chaff sheave 31b and sorted by the swinging transfer action by the swing sorting shelf 31 and the sorting wind by the Karamin 32, and the medium sorted material leaking from the chaff sheave 31b is Further, the selected material that has been sorted by the grain sieve 31d and leaked from the grain sieve 31d falls onto the most drifting shelves 36 and the shelves 36
While flowing down, the final grain is sorted and stored in the first gutter 35a, and the stored first grain is fed laterally by the first spiral 35 and transported to the grain tank 10.

【0020】この間、脱穀室29の脱穀排出口30から
排出されてチャフシーブ31b上に落下した扱網4から
漏下しない太い稈等による籾の混入した排塵物は、チャ
フシーブ31bから漏下しない夾雑物と共にストローラ
ック31c上へ送られ、ストローラック31cの揺動移
送により籾が混入した排塵物は三番排塵口39から機外
へ排塵される。該ストローラック31cにより選別され
た二番物と一番選別により生じた二番物は、二番流穀棚
31eを流下して二番受樋37aに収容され、二番螺旋
37により横送りされて脱穀室29へ還元処理される。
In the meantime, the dust-exhausted dust, which is discharged from the threshing discharge port 30 of the threshing chamber 29 and falls on the chaff sheave 31b and does not leak from the handling net 4 and is mixed with paddy such as thick culm, does not leak from the chaff sheave 31b. The dust that is sent to the straw rack 31c together with the material and the paddy is mixed by the swinging transfer of the straw rack 31c is discharged out of the machine from the third dust outlet 39. The second product sorted by the straw rack 31c and the second product generated by the first sorting flow down the second flow grain shelf 31e, are housed in the second receiving trough 37a, and are laterally fed by the second spiral 37. And returned to the threshing room 29.

【0021】この脱穀時における該扱胴3での脱粒は主
として扱胴の入口側1/3程度の領域で行われるため、
高速刈取りにより多量の穀稈が供給された場合等には、
無理な脱粒により枝梗付着粒が増大し性能上種々の悪影
響を及ぼす。従って、この状態を改善する手段として、
脱穀されて該扱網4から漏下する穀粒に対し、図4のフ
ローチャートに示す如く、穀稈センサ前22及び穀稈セ
ンサ後23のONにより、穀粒分布センサ5により超音
波5aを発射しその反射波を受信し、この受信信号のヒ
ストグラムを算出すると共に微分算出を行い、この結
果、漏下穀粒の分布密度のピークが、図5に示す如く、
予めコントローラ41に設定された限界値Mに達してい
るかどうかをチェックし、YESのときはこのときの限
界値Mを基準として最高車速の算出を行い、NOのとき
は車速を増速させる。次に、車速が算出済の最高車速を
超えているかどうかをチェックし、YESのときは減速
を行い、NOのときは再度限界値Mのチェック部位にリ
ターンさせる。なお、限界値Mを超えたときに直接減速
させてもよい。
At the time of threshing, the threshing with the handling cylinder 3 is mainly performed in a region of about 1/3 of the entrance side of the handling cylinder.
When a large amount of cereal stems are supplied by high-speed cutting,
Forcible shedding increases the number of spike sticking grains and has various adverse effects on performance. Therefore, as a means to improve this situation,
As shown in the flowchart of FIG. 4, ultrasonic waves 5 a are emitted from the grain distribution sensor 5 by turning on the grain stem sensor 22 and the grain stem sensor 23 on the grain that is threshed and leaks from the handling net 4, as shown in the flowchart of FIG. 4. Then, the reflected wave is received, a histogram of the received signal is calculated, and a differential calculation is performed. As a result, as shown in FIG.
It is checked whether or not the limit value M set in the controller 41 has been reached in advance. If YES, the maximum vehicle speed is calculated based on the limit value M at this time, and if NO, the vehicle speed is increased. Next, it is checked whether or not the vehicle speed exceeds the calculated maximum vehicle speed. If the answer is YES, the vehicle is decelerated, and if the answer is NO, the vehicle is returned to the checked portion of the limit value M again. Note that the deceleration may be directly performed when the value exceeds the limit value M.

【0022】このように、刈取り時の車速を該穀粒分布
センサ5及び車速センサ27の検出により、脱穀する穀
稈の品種,刈取時期,乾湿度合等による脱粒性の難易
や、作柄による脱粒量の多少等によって変化する脱粒条
件の違いに対応し、該コントローラ41における車速制
御装置28によって適正な車速に設定することができる
から、漏下穀粒の分布密度が限界値Mを超えて飽和状態
となり無理な脱粒によって発生する枝梗付着粒の増大を
抑制して、選別不良や穀粒の機外飛散の防止と共に、以
後の乾燥作業においては穀粒の流れを円滑にし、調整作
業においては仕上米への籾混入を防止する等、効率化及
び高品質化を図ることができる。
As described above, the vehicle speed at the time of cutting is detected by the grain distribution sensor 5 and the vehicle speed sensor 27, and it is difficult to shatter the grain by the variety of the grain culm to be threshed, the cutting time, the dryness and humidity, and the amount of threshing by the crop. Can be set to an appropriate vehicle speed by the vehicle speed control device 28 in the controller 41, and the distribution density of the leaking kernels exceeds the limit value M and becomes saturated. In addition to suppressing the increase of attached grains of branch stalks caused by excessive grain shedding, preventing poor sorting and scattering of grains outside the machine, smoothing the flow of grains in subsequent drying work, and finishing in adjustment work Efficiency and high quality can be achieved, such as by preventing paddy from being mixed into rice.

【0023】なお、このとき該穀粒分布センサ5の取付
位置を、超音波5aによる同心円状の波面(又は光の波
長)が該扱網4と揺動選別棚31との間において、該扱
胴3の軸方向に対し連続して系統的に漏下穀粒の分布密
度を検出可能な位置と向きに設定することにより、図6
に示す如く、扱胴3の軸方向位置と穀粒分布センサ5と
の距離の関係が単調な増加又は減少曲線となるから、音
波の反射時間(光の強弱)を用いる場合、検出位置の判
定を精度よく行うことができる。
At this time, the mounting position of the grain distribution sensor 5 is adjusted such that the concentric wavefront (or the wavelength of light) by the ultrasonic wave 5a is set between the handling net 4 and the swing sorting shelf 31. By setting the distribution density of the leaked kernels continuously and systematically in the axial direction of the trunk 3 so that the distribution density can be detected, FIG.
As shown in the figure, since the relationship between the axial position of the handling cylinder 3 and the distance from the grain distribution sensor 5 becomes a monotonous increase or decrease curve, when the reflection time of the sound wave (light intensity) is used, the detection position is determined. Can be performed with high accuracy.

【0024】また、前記と異なる改善手段として、図7
のフローチャートに示す如く、該穀粒分布センサ5によ
る超音波5aの発射によりその反射波を受信し、この受
信信号のヒストグラムを算出すると共に微分算出を行
い、この結果、漏下穀粒の分布密度が、図8に示す如
く、前記扱胴3の出口側終端位置において扱ぎ残りが殆
ど発生していないレベルにあるかどうかをチェックし、
NOのときは前記フィードチェン9の速度を下げ、YE
Sのときは穀粒分布が適正分布の状態であるかどうかを
チェックし、YESのときはそのままの状態とし、NO
のときは減少分布の状態であるかどうかをチェックし、
YESのときはフィードチェン9の速度を上げ、NOの
ときはフィードチェン9の速度を下げる。
FIG. 7 shows another improvement means different from the above.
As shown in the flowchart, the reflected wave is received by the emission of the ultrasonic wave 5a by the kernel distribution sensor 5, the histogram of the received signal is calculated, and the differential calculation is performed. As a result, the distribution density of the leaking kernel is obtained. However, as shown in FIG. 8, it is checked whether or not there is almost no remaining unhandled portion at the exit side end position of the handling cylinder 3.
When NO, the speed of the feed chain 9 is reduced, and YE
In the case of S, it is checked whether or not the grain distribution is in an appropriate distribution state.
In the case of, check whether it is in the state of decreasing distribution,
If YES, the speed of the feed chain 9 is increased, and if NO, the speed of the feed chain 9 is decreased.

【0025】このように、該扱胴3における脱粒状態を
検出し、部分的な脱粒作用の集中を回避して漏下穀粒の
分布密度を均等化するべく該フィードチェン9の速度を
調節制御することにより、穀稈の供給量や品種その他に
よる脱粒性等の影響を小さく抑えて枝梗付着粒の少ない
籾に仕上げることができる。なお、扱胴3の全領域で脱
粒が行われる傾向となるため扱胴3の短縮化が可能とな
る。
As described above, the speed of the feed chain 9 is controlled so as to detect the shedding state of the handling cylinder 3 and to avoid the partial concentration of the shedding action to equalize the distribution density of the leaking grains. By doing so, it is possible to minimize the effects of grain hull supply, varieties, and other factors, such as shedding, and to finish paddy with few attached grains. In addition, since there is a tendency that the particles are shed in the entire region of the handling cylinder 3, the handling cylinder 3 can be shortened.

【0026】また、図10に示す如き全稈投入式コンバ
インの脱穀部44において、上記と同様に漏下穀粒の分
布密度を穀粒分布センサ5を配置して検出を行うとき、
この穀粒の分布密度は、螺旋状の扱歯を有する扱胴44
aの入口側と出口側の或る特定位置でピークとなり、こ
のピークは穀稈の供給量や品種その他による脱粒性等に
より助長されて限界値Mを超えるときがある。
Further, in the threshing unit 44 of the whole-culm-in type combine as shown in FIG. 10, when the distribution density of the leaking kernel is detected by arranging the kernel distribution sensor 5 in the same manner as described above,
The distribution density of the grains is determined by the handling cylinder 44 having the spiral handling teeth.
There are peaks at certain specific positions on the inlet side and the outlet side of a, and this peak sometimes exceeds the limit value M, which is promoted by the supply amount of the grain stalk, the shedding property depending on the variety, and the like.

【0027】この状態を改善する手段として、図11の
フローチャートに示す如く、該穀粒分布センサ5による
超音波5aの発射によりその反射波を受信し、この受信
信号のヒストグラムを算出すると共に微分算出を行い、
この結果、漏下穀粒の分布密度が、図12に示す如く、
該扱胴44aの出口側終端位置において扱ぎ残りが殆ど
発生していないレベルにあるかどうかをチェックし、N
Oのときは扱胴44aの回転数を下げ、YESのときは
穀粒分布が適正分布の状態であるかどうかをチェック
し、YESのときはそのままの状態とし、NOのときは
減少分布の状態であるかどうかをチェックし、YESの
ときは扱胴44aの回転数を上げ、NOのときは扱胴4
4aの回転数を下げる。
As means for improving this state, as shown in the flowchart of FIG. 11, the reflected wave is received by the emission of the ultrasonic wave 5a by the grain distribution sensor 5, the histogram of the received signal is calculated, and the differential calculation is performed. Do
As a result, as shown in FIG.
It is checked at the exit end position of the handling cylinder 44a whether or not it is at a level where little unhandled material is generated.
In the case of O, the rotation speed of the handling cylinder 44a is reduced, in the case of YES, it is checked whether or not the grain distribution is in a proper distribution state. In the case of YES, the state is maintained as it is, and in the case of NO, the state of the decreasing distribution is maintained. Is checked, and if YES, the rotation speed of the handling cylinder 44a is increased.
4a is reduced.

【0028】このように、該扱胴44aにおける脱粒状
態を検出して、部分的に集中する漏下穀粒の分布密度を
均等化するべく扱胴44aの回転数を調節制御すること
により、特定位置の漏下穀粒がピークに達し限界値Mを
超えて詰まるようなこともなく、枝梗付着粒の少ない籾
に仕上げることができる。なお、扱胴44aの全領域で
脱粒が行われる傾向となるため扱胴44aの短縮化が可
能となる。
As described above, by detecting the shedding state of the handling cylinder 44a and adjusting and controlling the rotation speed of the handling cylinder 44a so as to equalize the distribution density of the partially concentrated leaked kernels, the identification is performed. It is possible to finish the paddy with few spikestick attached grains without the leaked grain at the position reaching the peak and clogging beyond the limit value M. In addition, since there is a tendency that the particles fall in the entire region of the handling cylinder 44a, the handling cylinder 44a can be shortened.

【0029】また、上記と異なる実施例として、搬送中
の穀稈の穂部と稈部の境界を光の反射(又は透過)によ
る受光信号により検出する境界検出センサ45を適宜位
置に設け、図13に示す如く、この境界検出センサ45
の発光部aと受光部bとにより下方を通過する穀稈の穂
部と稈部を、図14に示す如く、同一画像内に収まるよ
う入力し、この画像46を、例えば、図15の画像46
aに示す如く、X軸,Y軸の画素領域による穂部エリア
G(210×155,337×282のポイント領域)
と、稈部エリアS(0×265,127×392のポイ
ント領域)と、境界エリアB(60×115,187×
242のポイント領域)とに適宜位置決めして、この各
エリアG,S,Bの画像の輝度分布の周波数分析を行
う。
As an embodiment different from the above, a boundary detection sensor 45 for detecting the boundary between the ear portion and the culm portion of the grain culm being conveyed by a light receiving signal by reflection (or transmission) of light is provided at an appropriate position. As shown in FIG.
The ear part and the culm part of the cereal culm passing below by the light emitting part a and the light receiving part b are input so as to be included in the same image as shown in FIG. 14, and this image 46 is, for example, an image shown in FIG. 46
As shown in a, the spike area G (210 × 155, 337 × 282 point area) based on the X-axis and Y-axis pixel areas.
And culm area S (point area of 0 × 265, 127 × 392) and boundary area B (60 × 115, 187 ×
242), and the frequency analysis of the luminance distribution of the image of each area G, S, B is performed.

【0030】この周波数分析を行う際に、受光部bによ
る受光を、図16に示す如く、異なる周波数帯域の周波
数を通過させる複数のバンドパスフィルタ47a,47
bにより通過させ、この通過した複数の周波数信号f
1,f2を検波回路48a,48bによって検波を行
い、この検波後の複数の信号f1,f2強度を演算回路
49によってその比率の算出(f1/f2)を行い、こ
の算出値をCPU50に送る。
When performing this frequency analysis, as shown in FIG. 16, a plurality of band-pass filters 47a and 47 for passing the light received by the light receiving section b through frequencies in different frequency bands.
b, and a plurality of passed frequency signals f
The detection circuits 48a and 48b detect the signals f1 and f2, calculate the ratios (f1 / f2) of the detected signals f1 and f2 by the arithmetic circuit 49, and send the calculated values to the CPU 50.

【0031】このように、該画像46aの各エリアG,
S,Bの周波数分析を行うことによって得られるパワー
スペクトル分布を、回転角度:20°,視点角度:20
°の条件で穀稈の搬送方向に立体表示させたものを、図
17のa,b,cの如く示すと共に、このパワースペク
トルの一次元強度分布を、図18のa,b,cの如く線
図によって示す。
As described above, each area G,
The power spectrum distribution obtained by performing the frequency analysis of S and B is represented by a rotation angle: 20 ° and a viewpoint angle: 20
The three-dimensional display in the conveying direction of the grain stalk under the condition of ° is shown as a, b, and c in FIG. 17 and the one-dimensional intensity distribution of this power spectrum is shown as a, b, and c in FIG. Shown by diagram.

【0032】この図18の線図において、穂部エリアG
と稈部エリアSでは共に周波数信号f1とf2のパワー
値の差が小さく、境界エリアBでは信号f1とf2のパ
ワー値の差が大きいことから、穂部と稈部の形態的な差
を周波数成分の差によって検出し、この検出領域中に含
まれる稈部と穂部の割合を複数の周波数領域の信号強度
の比率によって求め得るために、精度よく直接的に穂部
と稈部の境界を検出することができる。
In the diagram of FIG.
And the culm area S, the difference between the power values of the frequency signals f1 and f2 is small, and the boundary area B has a large difference between the power values of the signals f1 and f2. In order to detect the difference between the components and obtain the ratio of the culm and spikes contained in this detection area by the ratio of the signal intensities of a plurality of frequency regions, the boundary between the spike and culm is accurately and directly determined. Can be detected.

【0033】また、このような穂部と稈部の反射光の信
号に含まれる周波数成分は、搬送方向に対して直角方向
の周波数成分の強度において大きく異なるため、このよ
うな部位による周波数特性の差を利用して、前記の如
く、精度よく直接的に境界を検出することができると共
に、搬送によって生じる反射(又は透過)による受光信
号の変動を変調信号として用いることにより、自然光と
の区別のため別途に変調器等を設ける必要がないため、
簡単な構成で的確に信号検出を行うことが可能となり、
同時に低コスト化を図ることができる。(自然光は直流
であるため特定の周波数成分を抽出することにより直流
分を除去できる) また、前記境界検出センサ45を、例えば図9に示す如
く、前記刈取装置16の供給搬送部15から脱穀装置1
の穀稈供給口3aまでの穀稈搬送経路の間で、穀稈供給
口3aに穀稈を供給する際に穂部全体を基準として供給
制御可能な位置に設けることにより、従来の如く穂先を
基準として供給制御するときのように、穀稈の品種や作
柄によって的確な供給位置が得られず脱穀精度が低下す
るというようなことがなく、図19に示す如く、穀稈の
長短何れの穂部の場合でもその稈部との境界を基準とし
て、供給制御量が最も小さい状態で前記扱深さ制御装置
26により調節できるため、応答性の良い制御が可能と
なり刈取り時の高速化に対応できる。
Further, since the frequency components included in the reflected light signal of the ear portion and the culm portion greatly differ in the intensity of the frequency component in the direction perpendicular to the carrying direction, the frequency characteristics of such a portion may be reduced. By utilizing the difference, the boundary can be directly detected with high accuracy as described above, and the fluctuation of the received light signal due to the reflection (or transmission) caused by the conveyance is used as the modulation signal, whereby the distinction from the natural light can be made. Because there is no need to provide a separate modulator,
It is possible to accurately detect signals with a simple configuration,
At the same time, cost reduction can be achieved. (Since natural light is direct current, it is possible to remove a direct current component by extracting a specific frequency component.) Further, as shown in FIG. 1
Between the corn culm feed path 3a and the corn culm supply port 3a at a position where the corn culm can be supplied to the corn culm supply port 3a at a position where the supply can be controlled with reference to the entire spike portion. As in the case of supply control as a reference, there is no possibility that an accurate supply position is obtained depending on the cultivar or crop pattern and the threshing accuracy is not reduced. As shown in FIG. Even in the case of a part, since it can be adjusted by the handling depth control device 26 in a state where the supply control amount is the smallest on the basis of the boundary with the culm part, it is possible to control with good responsiveness and to cope with a high speed at the time of cutting. .

【0034】また、上記と異なる実施例として、前記脱
穀装置1の三番排塵口39の近傍位置に、この排塵口3
9から排出される稈切れ及び枝梗等による藁屑中に含ま
れる穀粒を、特定の波長を有する電磁波(例えば水分吸
収帯としての1.45マイクロメータの波長)の透過光
量の吸収量を算出して検出を行う飛散穀粒センサ51を
設けるものにおいて、この排出される藁屑部分と穀粒部
分とでは水分量が大きく異なることにより、穀粒部分を
透過する水分吸収帯の波長の透過光は藁屑部分に比べて
吸収量が大きくなることから、藁屑中に含まれる穀粒を
精度よく検出することができる。
As another embodiment different from the above, the dust outlet 3 is located near the third dust outlet 39 of the threshing apparatus 1.
Grains contained in straw wastes, such as cut stalks and branch stalks, discharged from 9 are converted into the absorption amount of the transmitted light amount of an electromagnetic wave having a specific wavelength (for example, a wavelength of 1.45 micrometers as a water absorption band). In the apparatus provided with the scattering kernel sensor 51 which performs calculation and detection, since the amount of moisture in the discharged straw chip portion and the kernel portion is largely different, the transmission of the wavelength of the moisture absorption band passing through the kernel portion is performed. Since light absorbs a larger amount of light than the straw chips, it is possible to accurately detect the grains contained in the straw chips.

【0035】この飛散穀粒センサ51において藁屑中に
含まれる穀粒を検出する際に、図20に示す如く、この
検出藁屑に対して、上方からの片側光源のみでは画像5
2aに示す如く藁屑中の穀粒の検出は不能であり、下方
からの片側光源のみでは画像52bに示す如く藁屑中の
穀粒は検出できるが、他の密度の高い稈切れ等との識別
が困難である。そこで、上方と下方からの両側光源とす
ることにより画像52cに示す如く、穀粒以外の密度の
高い部分を概ね除去することができる。(通常では藁屑
部分は低密度、穀粒部分は高密度となる) この両側からの光源配置により飛散穀粒の検出を行うと
きの構成は、図21に示す如く、ガラス板53上に存在
する藁屑に対し、上方と下方の両側位置において各々左
右側から一定角度の傾斜により光を照射する、タングス
テンランプ又はハロゲンランプ等による複数の光源54
を配置すると共に、該上方側の光源54間の中央位置
に、該飛散穀粒センサ51としてガラス窓55と、水分
吸収帯の波長(1.45マイクロメータ)を透過するバ
ンドパスフィルタ56とを介して、光を受光する受光素
子57を配置することにより、藁屑の上下方向から傾斜
した光軸により藁屑空間に光を拡散することができるか
ら、藁屑と穀粒の形態は大きく異なるため明暗の差によ
って識別が容易となり、形態的特徴の差により藁屑中に
含まれる飛散穀粒の検出精度を向上させることができ
る。
When the scattered grain sensor 51 detects grains contained in the straw waste, as shown in FIG. 20, the detected straw waste is subjected to an image 5 with only one side light source from above.
As shown in FIG. 2a, it is impossible to detect the grains in the straw waste, and only the one-sided light source from below can detect the grains in the straw waste as shown in the image 52b. Difficult to identify. Therefore, by using both sides of the light source from above and below, as shown in the image 52c, a high density portion other than the grain can be almost removed. (Usually, the straw chips have a low density and the kernels have a high density.) A configuration for detecting scattered kernels by arranging light sources from both sides is present on a glass plate 53 as shown in FIG. A plurality of light sources 54, such as tungsten lamps or halogen lamps, for irradiating light at a fixed angle from the left and right sides at both upper and lower positions with respect to straw waste
And a glass window 55 serving as the scattered grain sensor 51 and a band-pass filter 56 transmitting the wavelength of the moisture absorption band (1.45 micrometers) at a central position between the light sources 54 on the upper side. By arranging the light receiving element 57 for receiving the light through the light, the light can be diffused into the straw chip space by the optical axis inclined from the vertical direction of the straw chip, so that the forms of the straw chip and the grain are greatly different. Therefore, the difference in lightness and darkness facilitates identification, and the difference in morphological characteristics can improve the accuracy of detecting scattered grains contained in straw waste.

【0036】このように、藁屑部分と穀粒部分では、水
分量が大きく異なるため該両部分を透過する水分吸収帯
の波長(1.45マイクロメータ)の光には差が生じる
が、この光は当然のことながら透過経路の密度によって
も影響を受けるため、単一の波長のみでは穀粒による変
化なのか、密度による変化なのかを区別することができ
難い。
As described above, since the amount of moisture is greatly different between the straw waste portion and the grain portion, there is a difference in the light of the wavelength (1.45 micrometers) of the moisture absorption band transmitted through both portions. Since light is naturally affected by the density of the transmission path, it is difficult to distinguish whether the change is due to the grain or the change due to the density with only a single wavelength.

【0037】そこで、藁屑中の穀粒検出要素としての、
例えば水分以外の変動要素である密度の影響を低減する
ため、検出要素としての水分の影響を受けない別の特定
の波長を有する、例えば水分や色の影響を受け難い1.
0マイクロメータ程度の電磁波の変化を密度の変化とし
て求め、水分吸収帯の波長の透過光量との比率を算出す
ることにより、水分による変化のみを検出することがで
きる。
Therefore, as a grain detecting element in straw waste,
For example, in order to reduce the influence of density, which is a variable element other than moisture, it has another specific wavelength that is not affected by moisture as a detection element, and is hardly affected by, for example, moisture or color.
By determining a change in electromagnetic waves of about 0 micrometers as a change in density and calculating a ratio of the wavelength of the water absorption band to the amount of transmitted light, only a change due to water can be detected.

【0038】この複数の波長により飛散穀粒の検出を行
うときは、図22に示す如く、前記ガラス板53上に存
在する藁屑に対し、光源として前記複数の光源54を配
置すると共に、飛散穀粒センサ58としては、前記ガラ
ス窓55に対し水分吸収帯の波長(1.45マイクロメ
ータ)を透過する前記バントパスフィルタ56を斜設
し、このフィルタ56の透過位置に水分吸収波長用の前
記受光素子57を配置すると共に、該フィルタ56によ
る反射位置に参照用の波長(1.0マイクロメータ)を
透過するバンドパスフィルタ59と参照波長用の受光素
子60を配置構成する。
When detecting the scattered grains using the plurality of wavelengths, as shown in FIG. 22, the plurality of light sources 54 are arranged as light sources for the straw chips existing on the glass plate 53, and the scattered grains are scattered. As the grain sensor 58, the band pass filter 56 that transmits the wavelength of the moisture absorption band (1.45 micrometers) is obliquely provided with respect to the glass window 55, and the transmission position of the filter 56 for the moisture absorption wavelength is provided. The light receiving element 57 is arranged, and a band-pass filter 59 that transmits a reference wavelength (1.0 μm) and a light receiving element 60 for a reference wavelength are arranged at the reflection position of the filter 56.

【0039】このような構成によって、図20に示す画
像52cの特定位置に透過光量の検出領域を、図23に
示す画像の如く設定し、この領域において、透過光の波
長:1.45マイクロメータ,マトリックス:50×5
0画素,移動:10画素の条件による水分吸収波長の受
光量変化を、マトリックス移動に対する平均輝度とし
て、図24に示す如き図表により求めると共に、この図
表と同一条件における比率処理による信号変化(シミュ
レーション)を、マトリックス移動に対する比率値とし
て、図25に示す如き図表により求めることにより、水
分による変化のみを検出することができる。従って、精
度の高い藁屑中の穀粒検出を行うことができる。
With such a configuration, a detection area of the amount of transmitted light is set at a specific position of the image 52c shown in FIG. 20 as shown in the image of FIG. 23. In this area, the wavelength of the transmitted light is 1.45 micrometers. , Matrix: 50 × 5
The change in the amount of received light of the water absorption wavelength under the condition of 0 pixel, movement: 10 pixels is obtained as a mean luminance with respect to the movement of the matrix from a chart as shown in FIG. 24, and the signal change by ratio processing under the same conditions as this chart (simulation). Is obtained from the chart as shown in FIG. 25 as a ratio value to the matrix movement, whereby only the change due to moisture can be detected. Therefore, it is possible to perform highly accurate detection of grains in straw waste.

【0040】また、上記と異なる実施例として、穀粒つ
まり籾に付着している枝梗をカメラ61による画像によ
り検出を行うときは、図26に示す如く、透明板62上
の枝梗付着粒(静止又は移動状態の何れでも可)を、そ
の下側から照明ランプ63により照射し、この照射され
た状態の枝梗付着粒を上方に位置するカメラ61により
撮像して画像入力を行う。
Further, as an embodiment different from the above, when a branch 61 attached to a grain, that is, a paddy is detected by an image using the camera 61, as shown in FIG. (Either in a stationary or moving state) is illuminated from below by an illumination lamp 63, and the illuminated branch branch attached particles are imaged by a camera 61 located above to input an image.

【0041】この画像入力時に、図27のフローチャー
ト及び図28に示す如く、該カメラ61の絞りを予めI
S・ILの2種類に設定し、この絞りIS(絞り小)で
は籾のみの画像64を、絞りIL(絞り大)では籾と枝
梗を含む画像65を各々入力する。次に、画像64を2
値化した後、膨張処理とノイズ除去を行った画像64a
を、画像65を2値化とノイズ除去を行った画像65a
から減じて枝梗のみの画像66を抽出し、この画像66
からノイズを除去した後、反転を行い枝梗量の算出を行
う。(画像64aについては、絞りが小さいため全体と
して小さい画像となることから膨張処理を行う) このように、籾は太く枝梗は細いと言う形態的な差異に
より、該カメラ61に入る光量を変化させて画像入力す
ると細いものは見えなくなるため、この現象を利用して
枝梗量の算出を行うことができるから、複雑な抽出手段
を用いる必要がなく処理の高速化を図ることができる。
また、この枝梗量の算出により、前記脱穀装置1の回転
数や走行装置8の車速の制御を行うことも可能である。
なお、該カメラ61による画像入力時に、絞りの代わり
に前記照明ランプ63の照度、又はシャッタ速度を変化
させても、略同様の結果を得ることが可能である。
At the time of this image input, as shown in the flow chart of FIG. 27 and FIG.
Two types of S / IL are set, and an image 64 of only the paddy is input with the aperture IS (small aperture), and an image 65 including the rice and branch spikes is input with the aperture IL (large aperture). Next, image 64
After the binarization, the image 64a is subjected to dilation processing and noise removal.
Is an image 65a obtained by binarizing the image 65 and removing noise.
, An image 66 of only the branch spike is extracted, and this image 66
After removing the noise from, the inversion is performed to calculate the amount of branch infarct. (For the image 64a, the dilation process is performed because the aperture is small and the whole image is small.) As described above, the light amount entering the camera 61 is changed due to the morphological difference that the paddy is thick and the branch is thin. When the image is input in such a manner, a thin object becomes invisible. Therefore, the amount of the branch vein can be calculated using this phenomenon. Therefore, it is not necessary to use a complicated extraction unit, and the processing speed can be increased.
Further, by calculating the amount of the branch vein, it is possible to control the rotation speed of the threshing device 1 and the vehicle speed of the traveling device 8.
It should be noted that substantially the same result can be obtained even when the illuminance of the illumination lamp 63 or the shutter speed is changed instead of the aperture at the time of image input by the camera 61.

【図面の簡単な説明】[Brief description of the drawings]

【図1】穀粒分布センサにより漏下穀粒の分布密度を検
出する状態を示す斜視図。
FIG. 1 is a perspective view showing a state in which a distribution density of leaking kernels is detected by a kernel distribution sensor.

【図2】脱穀装置の全体を示す側断面図。FIG. 2 is a side sectional view showing the entire threshing apparatus.

【図3】自動制御のための電気回路を示すブロック図。FIG. 3 is a block diagram showing an electric circuit for automatic control.

【図4】漏下穀粒の分布密度を検出して車速を制御する
手順を示すフローチャート。
FIG. 4 is a flowchart showing a procedure for detecting the distribution density of leaking kernels and controlling the vehicle speed.

【図5】扱胴の入口側から出口側の間における漏下穀粒
の分布密度を示す線図。
FIG. 5 is a diagram showing the distribution density of leaked kernels between the entrance side and the exit side of the handling drum.

【図6】扱胴の軸方向位置と穀粒分布センサとの距離の
関係を示す線図。
FIG. 6 is a diagram showing a relationship between an axial position of a handling cylinder and a distance between a grain distribution sensor.

【図7】漏下穀粒の分布密度を検出してフィードチェン
の速度を制御する手順を示すフローチャート。
FIG. 7 is a flowchart showing a procedure for detecting the distribution density of leaking kernels and controlling the speed of the feed chain.

【図8】扱胴の入口側から出口側の間における漏下穀粒
の分布密度を示す線図。
FIG. 8 is a diagram showing the distribution density of leaked kernels between the inlet side and the outlet side of the handling cylinder.

【図9】コンバインの全体を示す側面図。FIG. 9 is a side view showing the whole combine.

【図10】全稈投入式の脱穀部を示す側断面図。FIG. 10 is a side sectional view showing a threshing unit of an all-culm input type.

【図11】漏下穀粒の分布密度を検出して扱胴の回転数
を制御する手順を示すフローチャート。
FIG. 11 is a flowchart showing a procedure for detecting the distribution density of leaking kernels and controlling the rotation speed of the handling cylinder.

【図12】扱胴の入口側から出口側の間における漏下穀
粒の分布密度を示す線図。
FIG. 12 is a diagram showing the distribution density of leaked kernels between the entrance side and the exit side of the handling drum.

【図13】別実施例として境界検出センサにより穀稈の
穂部と稈部の境界を検出する状態を示す斜視図。
FIG. 13 is a perspective view showing a state where a boundary between a spike portion and a culm portion of a grain culm is detected by a boundary detection sensor as another embodiment.

【図14】境界検出センサによる穀稈の撮像状態を示す
画像図。
FIG. 14 is an image diagram showing an imaging state of a grain culm by a boundary detection sensor.

【図15】境界検出センサによる穀稈の周波数分析によ
るパワースペクトル分布状態を示す画像図。
FIG. 15 is an image diagram showing a power spectrum distribution state by frequency analysis of a cereal culm by a boundary detection sensor.

【図16】境界検出センサによる複数の周波数信号の比
率算出回路を示すブロック図。
FIG. 16 is a block diagram showing a circuit for calculating a ratio of a plurality of frequency signals by a boundary detection sensor.

【図17】パワースペクトル分布の穀稈搬送方向への立
体表示を示す斜視図。
FIG. 17 is a perspective view showing a stereoscopic display of the power spectrum distribution in the grain culm transport direction.

【図18】パワースペクトルの穀稈搬送方向への一次元
強度分布を示す線図。
FIG. 18 is a diagram showing a one-dimensional intensity distribution of a power spectrum in a grain conveying direction.

【図19】脱穀装置への穀稈の稈身方向に対する供給位
置を示す概略平面図。
FIG. 19 is a schematic plan view showing a supply position of a grain culm to a threshing device with respect to the culm body direction.

【図20】別実施例として飛散穀粒センサによる排出藁
屑検出時の光源を変化させた状態を示す画像図。
FIG. 20 is an image diagram showing a state in which a light source is changed at the time of detection of discharged straw by a scattered grain sensor as another embodiment.

【図21】排出藁屑検出時の飛散穀粒センサと光源の配
置状態を示す概略側面図。
FIG. 21 is a schematic side view showing an arrangement state of a scattered grain sensor and a light source when detecting discharged straw chips.

【図22】排出藁屑検出時の飛散穀粒センサと光源の配
置状態を示す概略側面図。
FIG. 22 is a schematic side view showing an arrangement state of a scattered grain sensor and a light source when detecting discharged straw chips.

【図23】排出藁屑の画像における透過光量の検出領域
を示す画像図。
FIG. 23 is an image diagram showing a detection area of a transmitted light amount in an image of discharged straw waste.

【図24】図23の検出による水分吸収波長の受光量の
変化状態を示す線図。
FIG. 24 is a diagram showing a change state of a received light amount of a water absorption wavelength by the detection of FIG. 23;

【図25】図23の検出による比率処理による信号の変
化状態を示す線図。
FIG. 25 is a diagram showing a change state of a signal by the ratio processing based on the detection of FIG. 23;

【図26】別実施例として籾の枝梗付着粒を撮像するカ
メラと照明の配置状態を示す概略側面図。
FIG. 26 is a schematic side view showing an arrangement state of a camera and an illumination for imaging a grain attached to a branch stalk of rice as another embodiment.

【図27】カメラの絞りを変化させた画像から籾の枝梗
量を算出する手順を示すフローチャート。
FIG. 27 is a flowchart showing a procedure for calculating the amount of branch stalk of rice from an image obtained by changing the aperture of a camera.

【図28】カメラの絞りを変化させた枝梗付着粒の比較
とその処理状態を示す画像図。
FIG. 28 is an image diagram showing a comparison between the attached particles of branch infarct with the aperture of the camera changed and a processing state thereof.

【符号の説明】[Explanation of symbols]

1. 脱穀装置 2. 選別室 3. 扱胴 4. 扱網 5. 穀粒分布センサ 1. Threshing device 2. Sorting room 3. Handling cylinder 4. Handling network 5. Grain distribution sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 刈取った穀稈を脱穀する脱穀装置1の選
別室2に、扱胴3の軸方向に沿って扱網4から漏下する
穀粒の分布密度を検出可能の穀粒分布センサ5を設け、
この穀粒分布センサ5による検出値が予め設定される限
界値Mに達したときは、この検出値を基準として刈取り
時の最高車速を算出設定することを特徴とするコンバイ
ン等の車速制御装置。
1. A grain distribution capable of detecting the distribution density of grains leaking from a handling net 4 along an axial direction of a handling cylinder 3 into a sorting chamber 2 of a threshing apparatus 1 for threshing a harvested grain culm. A sensor 5 is provided,
When the detection value of the grain distribution sensor 5 reaches a preset limit value M, the maximum vehicle speed at the time of cutting is calculated and set based on the detection value, and a vehicle speed control device such as a combine.
JP28830996A 1996-10-30 1996-10-30 Boundary detection method between head and heel of cereal Expired - Fee Related JP3690004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28830996A JP3690004B2 (en) 1996-10-30 1996-10-30 Boundary detection method between head and heel of cereal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28830996A JP3690004B2 (en) 1996-10-30 1996-10-30 Boundary detection method between head and heel of cereal

Publications (2)

Publication Number Publication Date
JPH10127145A true JPH10127145A (en) 1998-05-19
JP3690004B2 JP3690004B2 (en) 2005-08-31

Family

ID=17728514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28830996A Expired - Fee Related JP3690004B2 (en) 1996-10-30 1996-10-30 Boundary detection method between head and heel of cereal

Country Status (1)

Country Link
JP (1) JP3690004B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211045A (en) * 2004-02-02 2005-08-11 National Agriculture & Bio-Oriented Research Organization Combine harvester
JP2019004797A (en) * 2017-06-26 2019-01-17 株式会社クボタ Combine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211045A (en) * 2004-02-02 2005-08-11 National Agriculture & Bio-Oriented Research Organization Combine harvester
JP2019004797A (en) * 2017-06-26 2019-01-17 株式会社クボタ Combine

Also Published As

Publication number Publication date
JP3690004B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US10660268B2 (en) Harvester with electromagnetic plane crop material flow sensor
US8086378B2 (en) Method for monitoring the quality of crop material
US7367880B2 (en) Method and apparatus for monitoring characteristics of a flow path having solid components flowing therethrough
JPH10127145A (en) Vehicle speed controller for combine harvester and the like
JP3713889B2 (en) Lodging determination device such as combine
US20230320273A1 (en) Crop Stream Analysis System in a Combine Harvester
JP2016140282A (en) Harvesting system of combine
JP2008237134A (en) Thresher
RU2340155C2 (en) Threshing-centrifuging system and operation mode of threshing-centrifuging system and harvester-threasher
JP3814210B2 (en) Combine second processing equipment
JP3728795B2 (en) Shattered paddy detection equipment for threshing equipment
US11605178B2 (en) White cap detection device
JPH1175514A (en) Screening control apparatus for thresher
BR102022011273A2 (en) DEVICE FOR ANALYZING A GRAIN SAMPLE, COMBINED HARVESTER, METHOD FOR ANALYZING A GRAIN SAMPLE AND COMPUTER READABLE MEDIA
CN114745944B (en) Combine harvester, grain sorting method, grain sorting system, program, and recording medium
JP4117853B2 (en) Combine speed control device
JP3214167B2 (en) Threshing machine culm processing equipment
JP2006067814A (en) Recovery apparatus of free grain over rack for thresher
JP3328021B2 (en) 2nd reduction device for normal combine
WO2024036401A1 (en) Grain loss detectors for a combine harvester
JP3654209B2 (en) Combine threshing sorter
JP3282213B2 (en) Combine threshing wind separator
JP2005229830A (en) Thresher
JP2005198619A (en) Threshing machine
JP2000060273A (en) Combine harvester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees