JPH10125495A - Phase control multi-electrode type alternating current discharge device using electrode placed in control - Google Patents

Phase control multi-electrode type alternating current discharge device using electrode placed in control

Info

Publication number
JPH10125495A
JPH10125495A JP8295675A JP29567596A JPH10125495A JP H10125495 A JPH10125495 A JP H10125495A JP 8295675 A JP8295675 A JP 8295675A JP 29567596 A JP29567596 A JP 29567596A JP H10125495 A JPH10125495 A JP H10125495A
Authority
JP
Japan
Prior art keywords
electrode
wall
discharge
magnetic field
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8295675A
Other languages
Japanese (ja)
Other versions
JP3699793B2 (en
Inventor
Kazunori Matsumoto
和憲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Unicom Co Ltd
Original Assignee
Tohoku Unicom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Unicom Co Ltd filed Critical Tohoku Unicom Co Ltd
Priority to JP29567596A priority Critical patent/JP3699793B2/en
Publication of JPH10125495A publication Critical patent/JPH10125495A/en
Application granted granted Critical
Publication of JP3699793B2 publication Critical patent/JP3699793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve a cooling efficiency of an electrode, enlarge an area for electric discharge, and make easy the use of a magnet by inventing a shape and an arrangement of a phase control multi-electrode type alternating current discharge electrode which is divided into plural electrode pieces for applying a phase control polyphase alternating current voltage. SOLUTION: Six pieces of divided electrodes 2 having a circular arc shape in section are arranged circumferenctially with a few gaps 2a formed between the pieces in a longitudinal direction, and are fixed in a close contact with the inner wall of a cylindrical vacuum chamber 4 through an insulating sheet 3. The vacuum chamber 4 forms a water cooled double tube and cools the sic pieces of divided electrodes 2 placed in contact with the inner wall of the vacuum chamber 4 by supplying cooling water 5 in the tube. The six pieces of bar-shaped magnets 6 disposed with the adjacent polarities reversed to each other placed in close contact with an outer wall of the vacuum chamber 4 along the gaps 2a, and besides the outer circumference is covered with a magnetic shield pipe 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度で大容量の
弱電離低温プラズマを効率的に安定して発生する新しい
放電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new discharge device for efficiently and stably generating high-density, large-capacity weakly ionized low-temperature plasma.

【0002】[0002]

【発明が解決しようとする課題】低ガス圧力下の弱電離
低温プラズマにおいて、中性ガス温度が室温程度である
ことが、種々の材料に熱的な変形、変質を伴わせずにプ
ラズマによる処理を可能ならしめている。この特徴は、
繊維やプラスチックなどの特に熱に弱い材料の処理や表
面への被膜形成において、大変有用である。
In a weakly ionized low-temperature plasma under a low gas pressure, a neutral gas temperature of about room temperature requires that various materials be treated with plasma without causing thermal deformation and deterioration. Is made possible. This feature
It is very useful for treating heat-sensitive materials such as fibers and plastics, and for forming a film on the surface.

【0003】低温プラズマを利用するこれら被膜形成技
術において、低温プラズマの高密度化は重要な位置を占
める。高密度プラズマが得られれば、より低い圧力下で
の放電維持が可能となり、各種被膜の膜質改善や堆積速
度の向上などを図ることができるからである。
In these film forming techniques utilizing low-temperature plasma, high-density low-temperature plasma occupies an important position. If high-density plasma can be obtained, discharge can be maintained under a lower pressure, and the quality of various films can be improved, the deposition rate can be improved, and the like.

【0004】そこで従来では、マグネトロン放電装置に
見られるように、低温プラズマを高密度化するため、別
途に磁界を加えることが行われていた。マグネトロン放
電装置は、電界と直交する磁界を加えることで電子にド
リフト運動を起こさせ、ガス原子との衝突確率を上げて
イオン化効率の向上を意図するものであり、これによっ
て低圧力下でも安定して放電を維持することが可能とな
り、被膜形成の高速化と低温化を実現する。
Therefore, conventionally, a magnetic field has been separately applied in order to increase the density of low-temperature plasma as seen in a magnetron discharge device. The magnetron discharge device is intended to increase the probability of collision with gas atoms and improve ionization efficiency by applying a magnetic field perpendicular to the electric field, thereby improving the ionization efficiency. To maintain the discharge, thereby realizing high-speed and low-temperature film formation.

【0005】このマグネトロン放電装置を含め、従来の
放電装置における低温プラズマを発生させるための電極
の形状や配置は、応用対象の要求によって異なるが、形
状が平板あるいは円柱状の電極群を円周あるいは直線状
に配置するのが一般的であった。
The shape and arrangement of electrodes for generating low-temperature plasma in conventional discharge devices, including this magnetron discharge device, vary depending on the requirements of the application object. It was common to arrange them linearly.

【0006】これらの電極は、その形状や配置のために
冷却効率が低く、あまり冷却されないので大きなパワー
を投入することができず、放電面積も小さいので電極間
に高密度なプラズマを広範囲にわたって均一に発生させ
ることが困難であった。
These electrodes have a low cooling efficiency due to their shape and arrangement, and are not cooled so much that large power cannot be applied. Since the discharge area is small, a high-density plasma can be uniformly formed between the electrodes over a wide range. Was difficult to generate.

【0007】マグネトロン放電装置の場合は、電極に装
着した磁石が放電によって電極が加熱されても、磁石の
温度をキュリー温度以下に保つように冷却する必要があ
る。また、磁石を移動させて円周状に配置した電極の外
周を回転させたり、直線状に配置した電極の背後を摺動
させるとプラズマを均一化する効果があるが、従来の電
極に磁石を装着する方法では磁石を移動させることが困
難であった。
In the case of a magnetron discharge device, it is necessary to cool the magnet attached to the electrode so that the temperature of the magnet is kept below the Curie temperature even if the electrode is heated by the discharge. In addition, moving the magnet to rotate the outer periphery of the circumferentially arranged electrodes or sliding behind the linearly arranged electrodes has the effect of making the plasma uniform. It was difficult to move the magnet by the mounting method.

【0008】そこで本発明は、放電電極を複数の電極片
に分割して位相制御多出力交流電圧を印加する位相制御
多電極型交流放電電極の形状と配置を工夫することによ
り、電極の冷却効率を高めること、放電面積を大きくす
ること、磁石の利用を容易にすることなどを目的になさ
れたものである。
Accordingly, the present invention provides a method of dividing a discharge electrode into a plurality of electrode pieces and applying a phase control multi-output AC voltage to improve the cooling efficiency of the electrode by devising the shape and arrangement of the phase control multi-electrode type AC discharge electrode. The purpose of the present invention is to increase the discharge area, increase the discharge area, and facilitate the use of magnets.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention is configured as follows.

【0010】すなわち、放電室の内壁に複数の電極片を
薄膜状の絶縁体を介して密着して固定し、前記電極片を
冷却する冷却手段と、前記電極片表面に多極磁場を形成
して放電を閉じ込める多極磁場形成手段と、を前記放電
室の外周に設け、しかして各々の前記電極片に位相制御
多出力交流電源を供給してなる位相制御多電極型交流放
電装置である。
That is, a plurality of electrode pieces are fixed to the inner wall of the discharge chamber in close contact with each other via a thin-film insulator, a cooling means for cooling the electrode pieces, and a multipolar magnetic field formed on the surface of the electrode pieces. And a multi-pole magnetic field forming means for confining a discharge by providing a multi-pole magnetic field forming means on the outer periphery of the discharge chamber, thereby supplying a multi-output AC power supply to each of the electrode pieces.

【0011】[0011]

【発明の実施の形態】以下に、図面を参照して本発明の
実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1と図2に、本発明を実施した円筒形放
電装置の部分横断面図(図2のA−A´面)と部分縦断
面図(図1のB−B´面)を示す。放電装置1は、6片
の断面円弧形分割電極2を縦方向に僅かな間隙2aを空
けて円周状に配列し、絶縁シート3を介して円筒状の真
空容器4の内壁に後述する方法で密着して固定する。
FIGS. 1 and 2 are a partial cross-sectional view (AA ′ plane in FIG. 2) and a partial longitudinal cross-sectional view (BB ′ plane in FIG. 1) of a cylindrical discharge device embodying the present invention. Show. In the discharge device 1, six pieces of segmented arc-shaped divided electrodes 2 are circumferentially arranged with a slight gap 2a in the vertical direction, and are described later on the inner wall of a cylindrical vacuum vessel 4 via an insulating sheet 3. Securely adhere by the method.

【0013】真空容器4は水冷式二重管を形成し、冷却
水5を流して真空容器4の内壁に密着する6片の分割電
極2を冷却する。真空容器4の外壁には、隣り合う極性
を逆にして配列した6本の棒状磁石6を、間隙2aに沿
って密着して固定し、さらにその外周を円筒状の磁気シ
ールド管7で覆う。
The vacuum vessel 4 forms a water-cooled double tube, and the cooling water 5 is supplied to cool the six pieces of divided electrodes 2 which are in close contact with the inner wall of the vacuum vessel 4. On the outer wall of the vacuum vessel 4, six adjacent bar-shaped magnets 6 arranged in reverse polarity are closely fixed along the gap 2 a, and the outer periphery thereof is covered with a cylindrical magnetic shield tube 7.

【0014】6片の分割電極2には、位相が1/6周期
ずつずれていて振幅が同じ大きさの6個の交流電源(図
示しない)を給電線(図示しない)を介して後述する方
法で接続する。
To the six divided electrodes 2, six AC power supplies (not shown) whose phases are shifted by 6 cycle and whose amplitudes are the same are supplied via a power supply line (not shown) to a method described later. Connect with.

【0015】本発明の放電装置は以上のような構成で、
真空容器4内を排気装置(図示しない)によって真空排
気し、6片の分割電極2に1kw以下の多相交流を給電
して放電電気エネルギーを供給する。これにより、図3
に示すように、真空容器4の内壁に沿って安定な交流グ
ロー放電が生じる。
The discharge device of the present invention has the above-described configuration,
The inside of the vacuum vessel 4 is evacuated by an exhaust device (not shown), and a discharge electric energy is supplied by supplying a polyphase alternating current of 1 kW or less to the six divided electrodes 2. As a result, FIG.
As shown in (1), a stable AC glow discharge is generated along the inner wall of the vacuum container 4.

【0016】図3は、本発明の円筒形放電装置の部分横
断面(図2のA−A´面)における磁力線と放電(プラ
ズマ)の閉じ込めの様子を示す。図中の矢印付き直線お
よび上下方向を示す記号は、分割電極2中央部の近傍に
おける円周方向の磁場と径方向の電場の向きを表し、a
は放電(プラズマ)領域を表す。隣り合う磁石6の極性
が反対なので、磁力線が分割電極2を覆うようにでき
る。従って、放電は各々の分割電極2表面近傍の中央部
に閉じ込められる。分割電極2近傍における交流電界の
向きは、対辺の位置にある分割電極2との電位差が最も
大きいので、分割電極2表面に略垂直な正あるいは負の
方向(径方向)になる。
FIG. 3 shows a state of magnetic field lines and discharge (plasma) confinement in a partial cross section (AA 'plane in FIG. 2) of the cylindrical discharge device of the present invention. The straight lines with arrows and the symbols indicating the vertical direction in the figure represent the directions of the magnetic field in the circumferential direction and the electric field in the radial direction in the vicinity of the center of the split electrode 2, and a
Represents a discharge (plasma) region. Since the polarities of the adjacent magnets 6 are opposite, the lines of magnetic force can cover the divided electrodes 2. Therefore, the discharge is confined in the central portion near the surface of each divided electrode 2. The direction of the AC electric field in the vicinity of the divided electrode 2 is in the positive or negative direction (radial direction) substantially perpendicular to the surface of the divided electrode 2 because the potential difference between the divided electrode 2 and the divided electrode 2 located on the opposite side is the largest.

【0017】図4と図5に、本発明を実施した他の例と
して、角筒形放電装置の部分横断面図(図5のA−A´
面)と部分縦断面図(図4のB−B´面)を示す。放電
装置1は、角筒状の真空容器4の内壁の対向する二面
(電極面)に、それぞれ4片の平板状分割電極2を僅か
な間隙2aを空けて、縦方向に直線状に配列し、絶縁シ
ート(層)3を介して真空容器4の内壁に後述する方法
で密着して固定する。
FIGS. 4 and 5 show a partial cross-sectional view (AA 'of FIG. 5) of a prismatic discharge device as another embodiment of the present invention.
4) and a partial longitudinal sectional view (BB ′ plane in FIG. 4). In the discharge device 1, four flat plate-shaped divided electrodes 2 are arranged on two opposing surfaces (electrode surfaces) of an inner wall of a rectangular cylindrical vacuum vessel 4 with a slight gap 2a therebetween, and are linearly arranged in a vertical direction. Then, it is fixed to the inner wall of the vacuum vessel 4 through the insulating sheet (layer) 3 by a method described later.

【0018】真空容器4の電極面は水冷式二重壁を形成
し、冷却水5を流して真空容器4の内壁に密着するそれ
ぞれ4片の分割電極2を冷却する。真空容器4の電極面
外壁には、隣り合う極性を逆にして配列したそれぞれ5
本の棒状磁石6を、電極面両端と間隙2aに沿って密着
して固定し、さらにその外側を磁気シールド板7で覆
う。
The electrode surface of the vacuum vessel 4 forms a water-cooled double wall, and cooling water 5 is supplied to cool the four divided electrodes 2 which are in close contact with the inner wall of the vacuum vessel 4. On the outer wall of the electrode surface of the vacuum vessel 4, adjacent 5
The bar-shaped magnet 6 is fixed in close contact with both ends of the electrode surface along the gap 2a, and the outside thereof is covered with a magnetic shield plate 7.

【0019】8片の分割電極2には、位相が1/8周期
ずつずれていて振幅が同じ大きさの8個の交流電源(図
示しない)を給電線(図示しない)を介して後述する方
法で接続する。
Eight AC power supplies (not shown) whose phases are shifted by 8 cycle and have the same amplitude are supplied to the eight pieces of divided electrodes 2 via a feeder line (not shown). Connect with.

【0020】本発明の角筒形放電装置は以上のような構
成で、真空容器4内を排気装置(図示しない)によって
真空排気し、8片の分割電極2に1kw以下の多相交流
を給電して放電電気エネルギーを供給する。これによ
り、図6に示すように、真空容器4の内壁に沿って安定
な交流グロー放電が生じる。
The prismatic discharge device of the present invention has the above-described structure, and the inside of the vacuum vessel 4 is evacuated by an exhaust device (not shown) to supply a polyphase alternating current of 1 kW or less to the eight divided electrodes 2. To supply discharge electrical energy. Thereby, a stable AC glow discharge is generated along the inner wall of the vacuum vessel 4 as shown in FIG.

【0021】図6は、本発明の角筒状放電装置の部分横
断面(図5のA−A´面)における磁力線と放電(プラ
ズマ)の閉じ込めの様子を示す。図中の矢印付き直線お
よび上下方向を示す記号は、分割電極2中央部の近傍に
おける磁場と電場の向きを表し、aは放電(プラズマ)
領域を表す。隣り合う磁石6の極性が反対なので、磁力
線が分割電極2を覆うようにできる。従って、放電は各
々の分割電極2表面近傍の中央部に閉じ込められる。分
割電極2近傍における交流電界の向きは、対辺の位置に
ある分割電極2との電位差が最も大きいので、分割電極
2表面に略垂直な正あるいは負の方向(X方向)にな
る。
FIG. 6 shows a state of magnetic field lines and discharge (plasma) confinement in a partial cross section (AA 'plane in FIG. 5) of the rectangular cylindrical discharge device of the present invention. The straight lines with arrows and the symbols indicating the up and down directions in the figure represent the directions of the magnetic field and the electric field in the vicinity of the center of the split electrode 2, and a represents discharge (plasma).
Represents an area. Since the polarities of the adjacent magnets 6 are opposite, the lines of magnetic force can cover the divided electrodes 2. Therefore, the discharge is confined in the central portion near the surface of each divided electrode 2. The direction of the AC electric field in the vicinity of the divided electrode 2 is in the positive or negative direction (X direction) substantially perpendicular to the surface of the divided electrode 2 because the potential difference between the divided electrode 2 and the opposite electrode is the largest.

【0022】以下に、放電装置の適用対象に合わせた分
割電極2の形状と配置について説明する。図7に、分割
電極2のいろいろな形状例を示す。図(a)は、薄い板
状の分割電極2で、放熱効率が良いので、放電による電
極の加熱を極力抑えるときに有効である。図(b)は、
一側を軸線に平行な平面で切除した円柱の分割電極2
で、電極の放電面積を大きくしたり、隣接する電極間の
放電を積極的に利用するときに有効である。図(c)
は、表面に多数の小突起を形成した分割電極2で、小突
起の先端に電界が集中するので、例えば雰囲気ガス圧力
がかなり低いか高いときなど、放電が発生しにくい条件
のときに有効である。
Hereinafter, the shape and arrangement of the divided electrodes 2 according to the application of the discharge device will be described. FIG. 7 shows various examples of the shape of the divided electrode 2. FIG. 5A shows a thin plate-shaped divided electrode 2 having good heat radiation efficiency, and is effective in minimizing the heating of the electrode due to discharge. FIG.
A cylindrical split electrode 2 cut on one side by a plane parallel to the axis
This is effective when the discharge area of the electrode is increased or when the discharge between adjacent electrodes is actively used. Figure (c)
Is a divided electrode 2 having a large number of small projections formed on the surface. Since the electric field concentrates on the tips of the small projections, it is effective under conditions where discharge is unlikely to occur, for example, when the atmospheric gas pressure is considerably low or high. is there.

【0023】図8に、分割電極2のいろいろな配置例を
示す。図(a)は、同形の薄い板状の分割電極2を等間
隔に配置する例で、放電およびプラズマ生成が各電極で
同じように行われるので、電極を円周状に配置するとき
に有効である。この場合、円周方向から中心に向けて一
様な放電が発生する。図(b)は、同形の薄い板状の分
割電極2を不等間隔に配置する例で、両端部が密で、中
央部を疎に配置する。電極を密に配置した部分でプラズ
マ生成が盛んになるので、電極を平面状に配置するとき
に有効である。この場合、等間隔に配置するときに比
べ、両端部におけるプラズマ密度が高くなるので、プラ
ズマが平面上に一様に分布するからである。
FIG. 8 shows various arrangement examples of the divided electrodes 2. FIG. 5A shows an example in which thin plate-like divided electrodes 2 of the same shape are arranged at equal intervals. Since discharge and plasma generation are performed in the same manner in each electrode, it is effective when the electrodes are arranged in a circumferential shape. It is. In this case, a uniform discharge is generated from the circumferential direction toward the center. FIG. 2B shows an example in which thin plate-like divided electrodes 2 of the same shape are arranged at unequal intervals. Both ends are dense and the center is sparsely arranged. Since plasma generation becomes active in a portion where electrodes are densely arranged, it is effective when the electrodes are arranged in a plane. In this case, since the plasma density at both ends is higher than when arranged at equal intervals, the plasma is uniformly distributed on a plane.

【0024】以下に、分割電極2を真空容器4の内壁に
密着して固定する方法について説明する。密着方法の第
一は、接着剤による方法である。この方法は、接着剤を
使って絶縁シート3を真空容器4の内壁に貼付し、次に
また、接着剤を使って分割電極2を絶縁シート3の上に
貼付する方法である。この方法は、制作が簡単なことが
利点であるが、接着剤の耐熱温度が高くない、減圧下や
高温下でガスを放出する、剥すのが難しいので分割電極
2や絶縁シート3の一部に不具合が生じても全部を交換
することになる、などの欠点がある。
Hereinafter, a method of fixing the divided electrode 2 in close contact with the inner wall of the vacuum vessel 4 will be described. The first of the adhesion methods is a method using an adhesive. In this method, the insulating sheet 3 is attached to the inner wall of the vacuum container 4 using an adhesive, and then the divided electrodes 2 are attached to the insulating sheet 3 using an adhesive. This method has the advantage that it is easy to manufacture, but it does not have a high heat-resistant temperature of the adhesive, emits gas under reduced pressure or high temperature, and is difficult to peel off. However, there is a drawback in that even if a problem occurs, the entire device must be replaced.

【0025】真空容器4の内壁に絶縁シート3や分割電
極2を直接貼らずに、ベースとなる薄い金属板などに一
旦貼付したものを、圧接リングなどを使って真空容器4
の内壁に密着して固定してもよい。この場合は、電極部
の着脱が可能なので、電極の数、形状、配置などが異な
るいくつかのセットを用意しておけば、用途に応じて電
極部を交換できる。
Instead of directly attaching the insulating sheet 3 and the divided electrodes 2 to the inner wall of the vacuum vessel 4, the one once attached to a thin metal plate or the like serving as a base is pressed using a pressure contact ring or the like.
May be fixed in close contact with the inner wall. In this case, since the electrode portion can be attached and detached, the electrode portion can be exchanged according to the use if several sets having different numbers, shapes, arrangements, and the like of the electrodes are prepared.

【0026】接着剤による方法の工作上の難点は、接着
剤が固まるまで所要の圧力をかけて形を保持する機械的
工夫と、これらの機械装置を含めた電極部全体を恒温槽
などに入れて接着剤の固化温度まで昇温しなければなら
ないことである。
The disadvantages of the method using the adhesive are that it is difficult to maintain the shape by applying a required pressure until the adhesive is hardened, and that the entire electrode section including these mechanical devices is placed in a thermostat. Must be raised to the solidification temperature of the adhesive.

【0027】接着剤による具体例として、厚さ0.3m
mのSUS304磨きステンレスのベース薄板の上に、
熱伝導性と電気絶縁性が共に良い厚さ0.8mmの窒化
ボロン絶縁シートを耐熱温度が350°Cの高温硬化タ
イプ(150°C、1分)エポキシ系接着剤を用いて貼
り付け、さらに、その上に厚さ0.3mmの6分割チタ
ン電極を同じ接着剤により貼り付けて、内径100m
m、長さ500mmの円筒形放電装置を構成する。
As a specific example using an adhesive, a thickness of 0.3 m
m on SUS304 polished stainless steel base sheet,
A 0.8-mm-thick boron nitride insulating sheet with good thermal conductivity and electrical insulation is attached using a high-temperature curing type (150 ° C, 1 minute) epoxy adhesive with a heat resistance temperature of 350 ° C, and Then, a titanium electrode having a thickness of 0.3 mm and having a thickness of 100 m was adhered thereon by the same adhesive.
m, a cylindrical discharge device having a length of 500 mm.

【0028】密着方法の第二は、ねじ止めによる方法で
ある。この方法は、ねじ穴あるいは取り付けフランジな
どを真空容器4の内壁にあらかじめ用意し、絶縁シート
(層)3を介して分割電極2をねじ止めして機械的に密
着して固定する。この方法の利点は、耐熱温度の高い絶
縁シートを用いれば接着剤による方法より高温で利用可
能なこと、絶縁シートと電極を一体化してパーツ化すれ
ば、一部の絶縁シートや電極の特性が劣化しても、ねじ
止めを外して一部を交換できること、などである。この
方法の欠点は、ねじ止め箇所が少ないと壁への密着が十
分でないこと、あらかじめ用意したねじ穴によって、装
着できる電極の数、形状、配置が限定されること、など
である。
The second of the contacting methods is a method by screwing. In this method, a screw hole or a mounting flange is prepared in advance on the inner wall of the vacuum vessel 4, and the divided electrodes 2 are screwed through an insulating sheet (layer) 3 and mechanically adhered and fixed. The advantage of this method is that if an insulating sheet with a high heat-resistant temperature is used, it can be used at a higher temperature than the method using an adhesive. Even if it deteriorates, it can be replaced by removing the screws. Disadvantages of this method are that if the number of screwed portions is small, the adhesion to the wall is not sufficient, and the number, shape, and arrangement of electrodes that can be mounted are limited by screw holes prepared in advance.

【0029】密着が十分でないと、電極から絶縁シート
を介して壁への熱伝導が低下して冷却効率が落ちる。ま
た、壁、絶縁シート、電極との間にガスが入り込み、減
圧下で放電するとき排気に時間が掛かるようになる。
If the adhesion is not sufficient, the heat conduction from the electrode to the wall via the insulating sheet is reduced, and the cooling efficiency is reduced. In addition, gas enters between the wall, the insulating sheet, and the electrode, and it takes time to exhaust when discharging under reduced pressure.

【0030】ねじ止めねじについて工夫する点は、ねじ
をねじ穴に挿入するときに閉じ込められるガスを抜くた
めに、ねじの軸線に沿って通孔を穿つことである。
An advantage of the screw set screw is to drill a hole along the axis of the screw to remove gas trapped when the screw is inserted into the screw hole.

【0031】ねじ止めによる具体例として、厚さ0.8
mmの6分割した窒化ボロン絶縁シートと、厚さ5mm
の6分割したグラファイト電極を、それぞれ重ねて一組
の電極を構成し、装置内壁と同じ内径の2本のテフロン
リングを装置内壁の上端部と下端部に挿嵌し、このテフ
ロンリングの内側にねじ穴を明けてねじ止めして、内径
100mm、長さ500mmの円筒形放電装置を構成す
る。
As a specific example by screwing, a thickness of 0.8
6mm boron nitride insulation sheet and thickness 5mm
Each of the 6 divided graphite electrodes is overlapped to form a set of electrodes, and two Teflon rings having the same inner diameter as the inner wall of the apparatus are inserted into the upper and lower ends of the inner wall of the apparatus, and the inside of the Teflon ring is inserted. A cylindrical discharge device having an inner diameter of 100 mm and a length of 500 mm is formed by drilling and screwing a screw hole.

【0032】密着方法の第三は、溶射による方法であ
る。この方法は、装置内壁にアルミナ・セラミックなど
を溶射して必要な電気絶縁特性を持つ層厚を形成し、さ
らに、その上にチタンなどの導電性物質を溶射して適当
な厚さの電極を形成する。あるいは、装置内壁に粘土状
の未燒結のアルミナ・セラミックなどを吹き付けて電気
絶縁層を形成し、さらに、その上に粘土状のチタンなど
の導電性物質を吹き付けて電極を形成し、装置全体を加
熱炉に入れて熱溶融処理(ホーロー引き)する。
The third of the contacting methods is a method by thermal spraying. According to this method, alumina or ceramic is sprayed on the inner wall of the device to form a layer having a required electric insulation property, and then a conductive material such as titanium is sprayed thereon to form an electrode having an appropriate thickness. Form. Alternatively, a clay-like unsintered alumina ceramic is sprayed on the inner wall of the device to form an electrical insulating layer, and a conductive material such as clay-like titanium is sprayed thereon to form an electrode. It is placed in a heating furnace and subjected to heat melting (enamelling).

【0033】溶射による方法の利点は、絶縁層の耐熱温
度が高いこと、各層間の密着度が高いので壁への熱伝導
が大きく冷却効率が良いこと、また、各層間にガスがほ
とんど残留しないこと、などである。溶射による方法の
欠点は、装置内壁や絶縁層へ溶射するときや、ホーロー
引きするときに、相当な熱負荷が装置全体に掛かるこ
と、一部の絶縁層や電極の特性が劣化しても装置全体を
交換しなければならないこと、などである。
The advantages of the thermal spraying method are that the heat resistance temperature of the insulating layer is high, the degree of adhesion between the layers is high, heat conduction to the wall is large and the cooling efficiency is good, and almost no gas remains between the layers. And so on. The disadvantages of the thermal spray method are that when applying thermal spray to the inner wall or insulating layer of the device or enameling, a considerable heat load is applied to the entire device, and even if the characteristics of some insulating layers and electrodes deteriorate, And the whole must be replaced.

【0034】以下に、分割電極2へ多相交流を給電する
方法について説明する。通常の放電は、2つの電極間で
発生させるので、2本の給電線(1つの電極をアース電
位とする場合は、1本の給電線)を装置内部に導入して
電極に接続すればよい。本発明の放電装置の分割電極2
は、多電極間で放電を発生させるので、多数の給電線を
装置内に導入し、それぞれの分割電極2に位相制御(調
整)された多出力の交流電源を接続しなければならな
い。給電線の本数が多くなるほど、電気絶縁性と減圧下
では真空気密性を保ちながら、装置内部に給電線を導入
し(ブッシング)、それらをそれぞれの電極に接続する
のが難しくなる。従って、分割電極2へ簡単に給電する
ための適当な工夫が必要になる。
Hereinafter, a method for supplying a multi-phase alternating current to the divided electrodes 2 will be described. Since normal discharge is generated between two electrodes, two power supply lines (one power supply line when one electrode is grounded) may be introduced into the device and connected to the electrodes. . Split electrode 2 of discharge device of the present invention
Generates electric discharge between the multiple electrodes. Therefore, a large number of power supply lines must be introduced into the apparatus, and a multi-output AC power source whose phase is controlled (adjusted) must be connected to each divided electrode 2. As the number of power supply lines increases, it becomes more difficult to introduce power supply lines (bushings) inside the apparatus and connect them to respective electrodes while maintaining electrical insulation and vacuum tightness under reduced pressure. Therefore, an appropriate device for easily supplying power to the divided electrodes 2 is required.

【0035】図9に、分割電極2へ多相交流を給電する
装置の断面図を示す。給電装置は、位相制御電源の出力
数と同数か、あるいはその倍数の電気絶縁性と真空気密
性を兼ね備えたブッシング8を真空容器4に取り付け、
そこからそれぞれの分割電極2へ給電線9を接続する。
従来の放電装置の電極は、装置内壁から離れて設置され
るので、装置の適当な箇所にブッシングを取り付け、そ
こから電極へ接続する給電線を導入していた。本発明の
放電装置1の分割電極2は、薄い絶縁シート3を介して
真空容器4の内壁に密着しているので、それぞれの分割
電極2の裏面からブッシング8を通して給電線9の接続
が可能である。
FIG. 9 is a cross-sectional view of a device for supplying a multi-phase alternating current to the divided electrodes 2. The power supply device attaches the bushing 8 having the same number of outputs of the phase control power supply or a multiple thereof to the vacuum vessel 4 having both electrical insulation and vacuum tightness,
From there, the power supply line 9 is connected to each divided electrode 2.
Since the electrodes of the conventional discharge device are set apart from the inner wall of the device, a bushing is attached to an appropriate portion of the device, and a feeder line is connected from the bushing to the electrode. Since the divided electrodes 2 of the discharge device 1 of the present invention are in close contact with the inner wall of the vacuum vessel 4 via the thin insulating sheet 3, the feeder line 9 can be connected from the back surface of each divided electrode 2 through the bushing 8. is there.

【0036】すなわち、セラミックなどで形成する絶縁
性外管8aと、銅などで形成する導電性内管8bを持つ
ブッシング8を、磁気シールド外套7、真空容器4外
壁、冷却水5、真空容器4内壁、および絶縁シート3で
構成する放電装置1の壁面に貫通する。そして、導電性
内管8bの一端に給電線9を接続し、導電性内管8bの
他端を分割電極2の裏面に当接して給電線9と分割電極
2を電気的に接続する。このとき、真空容器4の外壁や
内壁における防水性や気密性を保持する。また、絶縁シ
ート3を貫通するときの、導電性内管8bの電気絶縁性
を保持する。
That is, a bushing 8 having an insulating outer tube 8a formed of ceramic or the like and a conductive inner tube 8b formed of copper or the like is combined with a magnetic shield jacket 7, an outer wall of a vacuum vessel 4, cooling water 5, and a vacuum vessel 4. It penetrates through the inner wall and the wall surface of the discharge device 1 composed of the insulating sheet 3. Then, the power supply line 9 is connected to one end of the conductive inner tube 8b, and the other end of the conductive inner tube 8b is brought into contact with the back surface of the split electrode 2 to electrically connect the feed line 9 and the split electrode 2. At this time, the waterproof and airtight properties of the outer and inner walls of the vacuum container 4 are maintained. Further, the electrical insulation of the conductive inner tube 8b when penetrating the insulating sheet 3 is maintained.

【0037】分割電極2に導電性内管8bを接続する方
法は、分割電極2を真空容器4の内壁に密着して固定す
る方法によって異なる。接着剤による方法では、導電性
内管8bの先端に雄ねじ加工を施し、分割電極2の裏面
にねじ穴を明け、これに導電性内管8bの先端をねじ込
んで接続する。このとき、接着剤でねじとねじ穴の間隙
を封じるようにする。
The method of connecting the conductive inner tube 8b to the divided electrode 2 differs depending on the method of fixing the divided electrode 2 in close contact with the inner wall of the vacuum vessel 4. In the method using an adhesive, a male screw is formed on the tip of the conductive inner tube 8b, a screw hole is made on the back surface of the divided electrode 2, and the tip of the conductive inner tube 8b is screwed into the hole to connect. At this time, the gap between the screw and the screw hole is sealed with an adhesive.

【0038】ねじ止めによる方法では、後述するよう
に、給電線9を接続した導電性内管8bの先端に雌ねじ
加工を施し、このねじでおもて面からねじ止めして分割
電極2を真空容器4内壁に密着して固定する。これによ
り、1本のねじで分割電極2への給電と分割電極2の真
空容器4内壁への固定を行う。
In the method by screwing, as will be described later, a female screw is formed on the tip of the conductive inner tube 8b to which the power supply line 9 is connected, and the divided electrode 2 is evacuated with the screw from the front surface. The container 4 is fixed in close contact with the inner wall. Thus, power is supplied to the divided electrode 2 and the divided electrode 2 is fixed to the inner wall of the vacuum vessel 4 with one screw.

【0039】溶射による方法では、溶射の前にあらかじ
めブッシング8を真空容器4に取り付けておく。そし
て、真空容器4の内壁に絶縁層を吹き付け、その後で、
真空容器4の内壁に突出するブッシング8の絶縁性外管
8aを取り除いて導電性内管8bを露出し、これに導電
性の分割電極2を吹き付ける。これにより、分割電極2
と導電性内管8bを電気的に接続する。
In the thermal spraying method, the bushing 8 is attached to the vacuum vessel 4 before thermal spraying. Then, an insulating layer is sprayed on the inner wall of the vacuum vessel 4, and thereafter,
The insulating outer tube 8a of the bushing 8 protruding from the inner wall of the vacuum vessel 4 is removed to expose the conductive inner tube 8b, and the conductive split electrode 2 is sprayed on this. Thereby, the split electrode 2
And the conductive inner tube 8b are electrically connected.

【0040】以上の方法は、多芯ブッシングなどを用い
て給電線9を真空容器4内部に一旦導入して各分割電極
2に接続する場合に比べ、内部配線を省略できる実用上
の利点がある。電極の数が多く、配線数が多いほど、こ
の効果は大きい。
The above method has a practical advantage that the internal wiring can be omitted as compared with a case where the power supply line 9 is once introduced into the vacuum vessel 4 and connected to each of the divided electrodes 2 using a multi-core bushing or the like. . This effect is greater as the number of electrodes and the number of wirings are larger.

【0041】図10、図11および図12に、ねじ止め
により分割電極2の給電とその上端部の固定を行う円筒
形放電装置1を示す。図10は、装置の上側フランジ1
aの横断面図(図11のA−A´面)であり、図11
は、真空容器4の縦断面図である。図12は、ねじ止め
により分割電極2の下端部の固定を行う下側フランジ1
bの横断面図(図11のB−B´面)である。上側フラ
ンジ1aは、耐熱性の絶縁物(テフロン、セラミックな
ど)で形成し、真空容器4の内壁に密着する各分割電極
2に向けて放射状のブッシング8が真空気密性を保ちな
がら貫通する。
FIGS. 10, 11 and 12 show a cylindrical discharge device 1 for feeding the divided electrode 2 by screwing and fixing the upper end thereof. FIG. 10 shows the upper flange 1 of the device.
FIG. 11A is a cross-sectional view (AA ′ plane in FIG. 11) of FIG.
3 is a vertical sectional view of the vacuum container 4. FIG. FIG. 12 shows a lower flange 1 for fixing the lower end of the divided electrode 2 by screwing.
FIG. 12 is a cross-sectional view of FIG. The upper flange 1a is formed of a heat-resistant insulating material (Teflon, ceramic, or the like), and a radial bushing 8 penetrates toward each of the divided electrodes 2 which is in close contact with the inner wall of the vacuum vessel 4 while maintaining vacuum tightness.

【0042】上側フランジ1aと下側フランジ1bは、
Oリング(図示しない)により真空気密性を保ちながら
真空容器4の上端部と下端部に取り付ける。このとき、
上側フランジ1aと真空容器4および下側フランジ1b
の内径を厳密に同じにすると共に、ブッシング8の内壁
側先端部が内側に突出しないようにする。
The upper flange 1a and the lower flange 1b are
It is attached to the upper end and the lower end of the vacuum vessel 4 while maintaining the vacuum tightness by an O-ring (not shown). At this time,
Upper flange 1a, vacuum vessel 4 and lower flange 1b
Of the bushing 8 is not exactly protruded inward.

【0043】ブッシング8の内壁側先端部には雌ねじ8
cを形成し、雌ねじ8cにねじ10を螺合して分割電極
2の上端部を絶縁シート3を挟んで上側フランジ1aの
内壁に固定する。ここで、ブッシング8の外壁側先端部
は上側フランジ1aの外周まで伸びているので、ブッシ
ング8の外壁側先端に露出する導電性内管8bに給電線
9を接続すれば、分割電極2と給電線9は電気的に接続
されることになる。
A female screw 8 is provided at the end of the bushing 8 on the inner wall side.
The upper end of the divided electrode 2 is fixed to the inner wall of the upper flange 1a with the insulating sheet 3 interposed therebetween. Here, since the outer wall end of the bushing 8 extends to the outer periphery of the upper flange 1a, if the power supply line 9 is connected to the conductive inner tube 8b exposed at the outer wall end of the bushing 8, the divided electrode 2 and the power supply are connected. The electric wires 9 are electrically connected.

【0044】分割電極2は、真空容器4の内壁に直接ね
じで固定しないで、上端部と下端部をそれぞれ上側フラ
ンジ1aと下側フランジ1bの内壁にねじ10で固定す
る。このとき、上側フランジ1aと下側フランジ1bお
よび真空容器4の内径が同じなので、分割電極2は絶縁
シート3を介して真空容器4の内壁に密着する。
The split electrode 2 is not fixed directly to the inner wall of the vacuum vessel 4 with screws, but is fixed at its upper end and lower end to the inner walls of the upper flange 1a and the lower flange 1b with screws 10, respectively. At this time, since the inner diameters of the upper flange 1a, the lower flange 1b, and the vacuum vessel 4 are the same, the split electrode 2 is in close contact with the inner wall of the vacuum vessel 4 via the insulating sheet 3.

【0045】下側フランジ1bは、耐熱性の絶縁物で形
成し、真空容器4と同じ内径を持ち、真空容器4の下端
部をシールすると共に、中心に可動リング11を内接
し、この可動リング11の内壁に各分割電極2を取り付
けるねじ10のねじ穴を放射状に配置する。この可動リ
ング11は、放電による発熱で分割電極2が膨脹し、長
さ方向に伸びたとき、可動リング11が下降して、この
伸びを吸収することができる。
The lower flange 1b is made of a heat-resistant insulating material, has the same inner diameter as the vacuum vessel 4, seals the lower end of the vacuum vessel 4, and inscribes a movable ring 11 at the center. The screw holes of the screws 10 for attaching the divided electrodes 2 are radially arranged on the inner wall of the eleventh electrode 11. When the divided electrode 2 expands in the movable ring 11 due to heat generated by discharge and extends in the length direction, the movable ring 11 descends and can absorb this expansion.

【0046】可動リング11の外周に位置する下側フラ
ンジ1bは、可動リング11の移動空間を確保するの
と、可動リング11外周の真空気密性と電気絶縁性を保
つために設けられたもので、可動リング11より内側を
少し大きくしている。
The lower flange 1b located on the outer periphery of the movable ring 11 is provided to secure a moving space for the movable ring 11 and to maintain vacuum tightness and electrical insulation of the outer periphery of the movable ring 11. The inside of the movable ring 11 is slightly larger.

【0047】図13に、分割電極2を取り付けるねじ1
0の縦断面図を示す。ねじ10は、雌ねじ穴に挿入した
とき、ねじ穴の底に取り残されるガスを抜くために、ね
じ10の軸線に沿って通孔を穿つ。あるいは、ねじ10
の一側を軸線に平行な平面で切除してもよい。
FIG. 13 shows a screw 1 for attaching the split electrode 2.
0 shows a longitudinal sectional view. The screw 10 drills a hole along the axis of the screw 10 to remove gas left at the bottom of the screw hole when inserted into the female screw hole. Alternatively, screw 10
May be cut off in a plane parallel to the axis.

【0048】実際の装置においては、図11の上側フラ
ンジ1aと下側フランジ1bの上および下に放電予備室
や真空排気部分を取り付ける。また、複数の真空容器4
の上側フランジ1aと下側フランジ1bを連結して、適
用対象を長くすることができる。
In an actual apparatus, a preliminary discharge chamber and a vacuum exhaust portion are mounted above and below the upper flange 1a and the lower flange 1b in FIG. In addition, a plurality of vacuum vessels 4
By connecting the upper flange 1a and the lower flange 1b, the applicable object can be lengthened.

【0049】図14、図15およに図16に、ねじ止め
により分割電極2の給電と上端部の固定を行う角筒形放
電装置1を示す。図14は、上蓋部1aの横断面図(図
15のA−A´面)であり、図15は、真空容器4の縦
断面図である。図16は、ねじ止めにより分割電極2の
下端部の固定を行う下蓋部1bの横断面図(図15のB
−B´面)である。上蓋部1aは、耐熱性の厚板の絶縁
物で形成し、真空容器4の内壁に密着する各分割電極2
に向けてブッシング8が真空気密性を保ちながら貫通す
る。
FIGS. 14, 15 and 16 show the rectangular cylindrical discharge device 1 for supplying power to the divided electrode 2 and fixing the upper end by screwing. FIG. 14 is a cross-sectional view (AA ′ plane of FIG. 15) of the upper lid 1 a, and FIG. 15 is a vertical cross-sectional view of the vacuum vessel 4. FIG. 16 is a cross-sectional view of the lower lid 1b for fixing the lower end of the divided electrode 2 by screwing (B in FIG. 15).
−B ′ plane). The upper lid portion 1a is formed of a heat-resistant thick plate insulator, and each of the divided electrodes 2 is in close contact with the inner wall of the vacuum vessel 4.
The bushing 8 penetrates while maintaining vacuum tightness.

【0050】上蓋部1aと下蓋部1bは、真空気密性を
保ちながら真空容器4の上端部と下端部に取り付ける。
このとき、上蓋部1aと真空容器4および下蓋部1bの
内壁面を厳密に同一平面上に位置させると共に、ブッシ
ング8の内壁側先端部が内側に突出しないようにする。
The upper lid 1a and the lower lid 1b are attached to the upper and lower ends of the vacuum vessel 4 while maintaining the vacuum tightness.
At this time, the inner wall surfaces of the upper lid portion 1a, the vacuum vessel 4 and the lower lid portion 1b are strictly located on the same plane, and the inner wall end of the bushing 8 is prevented from protruding inward.

【0051】ブッシング8の内壁側先端部には雌ねじ8
cを形成し、雌ねじ8cにねじ10を螺合して分割電極
2の上端部を絶縁シート3を挟んで上蓋部1aの内壁に
固定する。ここで、ブッシング8の外壁側先端部は上蓋
部1aの外側まで伸びているので、ブッシング8の外壁
側先端に露出する導電性内管8bに給電線9を接続すれ
ば、分割電極2と給電線9は電気的に接続されることに
なる。
A female screw 8 is provided at the end of the bushing 8 on the inner wall side.
The upper end of the split electrode 2 is fixed to the inner wall of the upper lid 1a with the insulating sheet 3 interposed therebetween. Here, since the outer wall end of the bushing 8 extends to the outside of the upper lid 1a, if the power supply line 9 is connected to the conductive inner tube 8b exposed at the outer wall end of the bushing 8, the divided electrode 2 and the power supply are connected. The electric wires 9 are electrically connected.

【0052】分割電極2は、真空容器4の内壁に直接ね
じで固定しないで、上端部と下端部をそれぞれ上蓋部1
aと下蓋部1bの内壁にねじ10で固定する。このと
き、上蓋部1aと下蓋部1bおよび真空容器4の内壁面
が同一平面上にあるので、分割電極2は絶縁シート3を
介して真空容器4の内壁に密着する。
The divided electrode 2 is not directly fixed to the inner wall of the vacuum vessel 4 with a screw, and the upper end and the lower end are respectively formed on the upper lid 1.
a and the inner wall of the lower lid 1b with screws 10. At this time, since the upper lid portion 1a, the lower lid portion 1b, and the inner wall surface of the vacuum vessel 4 are on the same plane, the divided electrode 2 is in close contact with the inner wall of the vacuum vessel 4 via the insulating sheet 3.

【0053】下蓋部1bは、耐熱性の絶縁物で形成し、
真空容器4と同一平面上に内壁を持ち、真空容器4の下
端部をシールすると共に、中心に可動フレーム12を内
接し、この可動フレーム12の内壁に各分割電極2を取
り付けるねじ10のねじ穴を配置する。この可動フレー
ム12は、放電による発熱で分割電極2が膨脹し、長さ
方向に伸びたとき、可動フレーム12が下降して、この
伸びを吸収することができる。
The lower lid 1b is made of a heat-resistant insulating material,
The inner wall is on the same plane as the vacuum vessel 4, the lower end of the vacuum vessel 4 is sealed, the movable frame 12 is inscribed at the center, and the screw hole of the screw 10 for attaching each divided electrode 2 to the inner wall of the movable frame 12. Place. When the divided electrodes 2 expand in the movable frame 12 due to heat generated by electric discharge and extend in the length direction, the movable frame 12 is lowered and can absorb the extension.

【0054】可動フレーム12の外側に位置する下蓋部
1bは、可動フレーム12の移動空間を確保するのと、
可動フレーム12外周の真空機密性と電気絶縁性を保つ
ために設けられたもので、可動フレーム12より内側を
少し大きくしている。
The lower lid portion 1b located outside the movable frame 12 secures a space for moving the movable frame 12,
It is provided to maintain vacuum confidentiality and electric insulation on the outer periphery of the movable frame 12, and the inside of the movable frame 12 is made slightly larger.

【0055】以下に、分割電極2に位相制御多出力交流
電源を接続して、放電による電極自身をターゲットとす
るスパッタ・コーティングを行う場合、各電極の損耗を
空間的にできるだけ均一化する方法について説明する。
図3あるいは図6に示すように、放電(プラズマ)領域
は多極磁場により、各電極の一部の狭い領域に閉じ込め
られるので、スパッタによる電極の損耗はこの領域での
み大きくなる。この領域の損耗が電極の下地まで達した
とき、電極を交換しなければならないので、電極のター
ゲットとしての利用率を上げるためには、電極の損耗箇
所を移動させ、電極全体をできるだけ均一に損耗させる
工夫が必要である。
In the following, a method of connecting the phase control multi-output AC power supply to the divided electrodes 2 and performing sputter coating using the electrodes themselves as targets by electric discharge to make the wear of each electrode spatially uniform as much as possible. explain.
As shown in FIG. 3 or FIG. 6, the discharge (plasma) region is confined to a part of a narrow region of each electrode by the multi-pole magnetic field, so that the electrode wear due to sputtering increases only in this region. When the wear in this area reaches the base of the electrode, the electrode must be replaced.In order to increase the utilization rate of the electrode as a target, the worn part of the electrode is moved and the entire electrode is worn as uniformly as possible. It is necessary to devise it.

【0056】損耗箇所、すなわち、放電領域を移動させ
るには、従来のマグネトロン・スパッタ装置でもよく行
われるように、多極磁場の分布を移動させればよい。す
なわち、多極磁場を発生させる永久磁石あるいは磁場発
生コイルを空間的に動かし、電極表面における放電箇所
を移動して電極表面の損耗を均一化する。図17、図1
8および図19に、本発明の放電装置1の分割電極2の
場合の多極磁場の動かし方をモデル的に示す。ここでの
磁場は永久磁石6で発生させる。図17は、分割電極2
の表面中央に、図18と図19は、それぞれ分割電極2
の左端と右端に放電(プラズマ)領域がある場合の多極
磁場(磁力線)の配位である。真空容器4の外側に設け
た永久磁石6の位置を左右に移動させることにより、多
極磁場配位がシフトして、分割電極2の表面における放
電(プラズマ)の発生領域が移動する。この移動を適当
に調整することにより、分割電極2の表面の損耗を均一
化することができる。
In order to move the wear portion, that is, the discharge region, the distribution of the multipole magnetic field may be moved as is often done in a conventional magnetron sputtering apparatus. That is, a permanent magnet or a magnetic field generating coil for generating a multi-pole magnetic field is spatially moved to move a discharge location on the electrode surface, thereby making the wear on the electrode surface uniform. FIG. 17, FIG.
8 and FIG. 19 schematically show how to move the multipolar magnetic field in the case of the split electrode 2 of the discharge device 1 of the present invention. The magnetic field here is generated by the permanent magnet 6. FIG. 17 shows the split electrode 2
18 and FIG. 19 show the split electrode 2
Is a configuration of a multipolar magnetic field (lines of magnetic force) when there is a discharge (plasma) region at the left end and the right end. By moving the position of the permanent magnet 6 provided outside the vacuum vessel 4 to the left and right, the multipolar magnetic field configuration shifts, and the discharge (plasma) generation region on the surface of the divided electrode 2 moves. By appropriately adjusting this movement, the wear of the surface of the divided electrode 2 can be made uniform.

【0057】図20と図21に、円筒形放電装置1にお
いて多極磁場を形成する永久磁石6を真空容器4外壁に
取り付け、真空容器4の外周に沿って往復摺動させる機
械的機構の横断面図と縦断面図を示す。永久磁石6の摺
動を容易にするため、薄いテフロンシートを真空容器4
外壁に被せ、真空容器4の外周を取り囲む磁気シールド
管7に一体に取り付けた6本の棒状永久磁石6を当接す
る。磁気シールド管7には、ラック形歯車13を取り付
け、歯合する円形歯車14を正逆方向に回転させること
により、永久磁石6を真空容器4の外周に沿って往復摺
動させる。
FIGS. 20 and 21 show a cross section of a mechanical mechanism for attaching a permanent magnet 6 for forming a multi-pole magnetic field to the outer wall of the vacuum vessel 4 and sliding reciprocally along the outer circumference of the vacuum vessel 4 in the cylindrical discharge device 1. A plan view and a longitudinal sectional view are shown. To facilitate sliding of the permanent magnet 6, a thin Teflon sheet is placed on the vacuum container 4
Six rod-shaped permanent magnets 6 attached to the outer wall and integrally attached to a magnetic shield tube 7 surrounding the outer periphery of the vacuum vessel 4 are brought into contact. A rack-shaped gear 13 is attached to the magnetic shield tube 7, and a circular gear 14 meshing with the rack 13 is rotated in the forward and reverse directions so that the permanent magnet 6 is reciprocated along the outer periphery of the vacuum vessel 4.

【0058】以下に、コイルに電流を流して永久磁石と
同じ磁場を発生させる方法と、複数のコイルに流す電流
を切り換えて磁場を移動させる方法、および円筒形放電
装置において磁場を移動させる具体的な方法について説
明する。図22に示すような、磁化の強さがMで、磁化
方向の厚さがdh、面積ベクトルがdSの円柱状の微小
永久磁石を考える。これと等価な磁場を発生する電流d
i(方向およびその大きさ)は、2つの場合において磁
気モーメントが等しいので、数式1より求められる。
The following describes a method of generating a magnetic field the same as that of a permanent magnet by flowing a current through a coil, a method of moving a magnetic field by switching a current flowing through a plurality of coils, and a method of moving a magnetic field in a cylindrical discharge device. Method will be described. As shown in FIG. 22, consider a columnar micro-permanent magnet having a magnetization intensity M, a thickness in the magnetization direction dh, and an area vector dS. Current d that generates a magnetic field equivalent to this
i (direction and its magnitude) can be obtained from Equation 1 because the magnetic moments are equal in the two cases.

【数1】 ここで、左辺の・はベクトルの内積を表す。数式1よ
り、等価電流は数式2となり、永久磁石の磁化の強さ、
方向および磁化方向の磁石の長さから求められることが
分かる。
(Equation 1) Here, * on the left side represents the inner product of the vectors. From Equation 1, the equivalent current becomes Equation 2, and the magnetization strength of the permanent magnet is
It can be seen that the direction and the magnetization direction are determined from the length of the magnet.

【数2】 ここで、等価電流の流れる方向は、等価(環路)電流が
流れに沿って囲んで作る面の面積ベクトルdSの向きと
磁化ベクトルMの向きとが同じになる方向である。面積
ベクトルの向きの定義は、電流の流れる向きに沿って右
ねじを回したとき、右ねじの進む方向である。図22の
場合、等価電流は円柱状永久磁石の厚さdhの縁に沿っ
て、左回りに流れる環路電流となる。
(Equation 2) Here, the direction in which the equivalent current flows is a direction in which the direction of the area vector dS and the direction of the magnetization vector M of the surface formed by surrounding the equivalent (circular) current along the flow are the same. The direction of the area vector is defined as the direction in which the right-handed screw advances when the right-handed screw is turned along the direction in which the current flows. In the case of FIG. 22, the equivalent current is a loop current flowing counterclockwise along the edge of the thickness dh of the columnar permanent magnet.

【0059】図23に、磁化の強さがM、磁化の方向の
厚さがh、磁化されている面の面積の大きさがS(=幅
w×長さg)である棒状永久磁石に対する、磁化の等価
電流iを示す。数式2より、等価電流の大きさは、数式
3となり、その向きは等価電流が流れに沿って作る面積
ベクトルと磁化の方向が同じになる方向である。
FIG. 23 shows a bar-shaped permanent magnet whose magnetization intensity is M, thickness in the direction of magnetization is h, and the area of the magnetized surface is S (= width w × length g). , An equivalent current i of magnetization. From Equation 2, the magnitude of the equivalent current is given by Equation 3, and the direction is the direction in which the direction of magnetization is the same as the area vector created by the equivalent current along the flow.

【数3】 すなわち、磁化の等価電流は、磁化の方向と平行な厚さ
h面に沿って左回りに流れ、大きさが数式4の環路電流
となる。
(Equation 3) That is, the equivalent current of the magnetization flows counterclockwise along the thickness h plane parallel to the direction of the magnetization, and the magnitude becomes the loop current of Formula 4.

【数4】 (Equation 4)

【0060】図24と図25に、棒状永久磁石の磁化の
等価電流を流すための、等価電流コイルの実際の巻き方
を示す斜視図と横断面図を示す。等価電流コイルは、等
価電流の流れる面に沿ってコイルを巻き、等価電流の流
れる向きと同じ向きに電流Iを流す。このとき、Iの値
はコイルの巻き数をNとすると、数式5となる。
FIGS. 24 and 25 are a perspective view and a cross-sectional view showing an actual winding method of an equivalent current coil for flowing an equivalent current of magnetization of the bar-shaped permanent magnet. In the equivalent current coil, the coil is wound along the surface where the equivalent current flows, and the current I flows in the same direction as the direction in which the equivalent current flows. At this time, when the number of turns of the coil is N, the value of I is represented by Expression 5.

【数5】 (Equation 5)

【0061】図26と図27に、内径がd1 、外径がd
2 、厚さがw、磁化の方向が径方向、磁化の強さがMで
ある円筒形永久磁石の場合における、表側表面を左回り
に流れる磁化の等価電流iおよび裏側表面を右回りに流
れる同じ大きさの磁化の等価電流iをそれぞれ示す。こ
こで、磁化の強さは中心からの距離、すなわち、半径に
依存せず一様であると仮定する(実際は、このように磁
化することは難しい)。磁化の等価電流は、見かけ上、
表裏2面に分離してしまうが、これは、図28に示すよ
うに、円筒磁石の微小部分に対する磁化の等価電流を合
成してゆく過程で、表裏2面を繋ぐ電流成分が相殺され
るからである。
FIGS. 26 and 27 show that the inner diameter is d1 and the outer diameter is d.
2. In the case of a cylindrical permanent magnet having a thickness of w, a magnetization direction of a radial direction, and a magnetization intensity of M, an equivalent current i of magnetization flowing counterclockwise on the front surface and flowing clockwise on the back surface. The equivalent currents i of the same magnitude of magnetization are shown. Here, it is assumed that the magnetization intensity is uniform regardless of the distance from the center, that is, the radius (actually, it is difficult to magnetize in this way). The equivalent current of magnetization is apparently
This is because the current component connecting the front and back surfaces is offset in the process of synthesizing the equivalent current of the magnetization for the minute portion of the cylindrical magnet as shown in FIG. It is.

【0062】図26と図27における磁化の等価電流i
を、図28における微小部分に対する等価電流diから
求める。図28に、円筒磁石の下側表面の中心を原点と
する円筒座標において、円筒磁石の微小構成部分を示
す。半径方向および方位角方向に積分してゆくと、全体
の磁化の等価電流が求められる。図28より、この微小
部分における等価電流は、裏面から厚さ方向の側面を通
り表の面に達し、反対側の側面を通り、再び裏面に戻る
環路電流となる。ここで、方位角方向に積分してゆく
と、厚さ方向の側面を上下に流れる電流成分は打ち消し
合うことが分かる。従って、結果的に、表裏2面にのみ
大きさが同じで向きが反対の方位角方向に流れる環路電
流だけが残る。
Equivalent current i of magnetization in FIGS. 26 and 27
Is obtained from the equivalent current di for the minute portion in FIG. FIG. 28 shows a minute component of the cylindrical magnet in cylindrical coordinates with the origin at the center of the lower surface of the cylindrical magnet. By integrating in the radial and azimuth directions, the equivalent current of the entire magnetization is obtained. As shown in FIG. 28, the equivalent current in this minute portion is a loop current that reaches the front surface from the back surface through the side surface in the thickness direction, passes through the opposite side surface, and returns to the back surface again. Here, it can be seen that the current components flowing up and down on the side surface in the thickness direction cancel each other as the integration is performed in the azimuth direction. Therefore, as a result, only the loop current flowing in the azimuth direction in which the magnitude is the same and the directions are opposite to each other is left only on the front and back surfaces.

【0063】図28において、半径位置rにおける磁化
の等価電流の値は、磁化の強さがMであるので、数式6
より、数式7となる。両辺をrで積分すると、数式8と
なり、図26と図27における磁化の等価電流が求ま
る。
In FIG. 28, the value of the equivalent current of the magnetization at the radial position r is given by
Thus, Equation 7 is obtained. When both sides are integrated with r, Equation 8 is obtained, and an equivalent current of magnetization in FIGS. 26 and 27 is obtained.

【数6】 (Equation 6)

【数7】 (Equation 7)

【数8】 (Equation 8)

【0064】図29と図30に、円筒形永久磁石の磁化
の等価電流を流すための、等価電流コイルの実際の巻き
方を示す斜視図と横断面図を示す。ここで、円筒状磁場
コイルを2つ割りにして、円筒形放電装置に取り付ける
ことを念頭においたので、片側半分のコイルのみを示
す。コイルの巻き方は、図28に示す微小部分の等価電
流の流れ方と同じように、裏面を内側から円周に沿って
巻き、端に達したら右断面を通り、表の面を円周に沿っ
て巻き、端に達したら左断面を通り、再び裏面に戻る。
この巻き方を内側から外側に向かって繰り返し、表裏2
面一杯にコイルを巻いてゆく。半割コイルが2つ出来上
がったら、2つを合わせて円筒コイルにする。このと
き、断面の部分の電流は、2つのコイルのこの部分の電
流の向きが反対なので相殺される。コイルに流す電流I
は、コイルの巻き数をNとすると、数式9となる。
FIGS. 29 and 30 are a perspective view and a cross-sectional view showing an actual winding of an equivalent current coil for flowing an equivalent current of magnetization of a cylindrical permanent magnet. Here, since the cylindrical magnetic field coil is divided into two and attached to the cylindrical discharge device, only one half of the coil is shown. The winding method of the coil is the same as the flow of the equivalent current of the minute portion shown in FIG. 28, the back surface is wound along the circumference from the inside, and when it reaches the end, it passes through the right section and the front surface becomes the circumference. Wrap along, pass the left section when it reaches the end, and return to the back again.
Repeat this winding process from the inside to the outside,
Wrap the coil all over the surface. When two half coils are completed, the two are combined into a cylindrical coil. At this time, the current in the section of the cross section is canceled because the directions of the current in this section of the two coils are opposite. Current I flowing in coil
Is given by Equation 9 where N is the number of turns of the coil.

【数9】 (Equation 9)

【0065】図31に、同規格の4個の電流コイルを1
組とし、隣り合う組同士の電流の向きを反転しながら幾
組かを並べて構成した多極磁場を示す。ここで、実線の
磁力線は、各組の1および2番コイルにのみ電流が流れ
た場合の磁力線を示す。一方、破線の磁力線は、各組の
3および4番コイルにのみ電流が流れた場合の磁力線を
示す。
FIG. 31 shows four current coils of the same standard as one.
A multi-pole magnetic field is shown as a set, in which several sets are arranged side by side while reversing the direction of current between adjacent sets. Here, the solid lines of magnetic force indicate the lines of magnetic force when current flows only through the first and second coils of each set. On the other hand, the broken lines of magnetic force indicate the lines of magnetic force when current flows only through the third and fourth coils of each set.

【0066】図32は、永久磁石を用いて、図31と等
価な多極磁場を構成した場合の磁石の配置を示す。ここ
で、実線および破線で示す磁力線および配置図は、それ
ぞれ図31の実線および破線で示す磁力線の場合に対応
する。
FIG. 32 shows the arrangement of magnets when a multi-pole magnetic field equivalent to that of FIG. 31 is formed using permanent magnets. Here, the lines of magnetic force and the layout shown by solid lines and broken lines correspond to the cases of lines of magnetic force shown by solid lines and broken lines in FIG. 31, respectively.

【0067】図31より、1組のコイルにおいて、コイ
ルに流す電流を1および2番から3および4番へと切り
換えることにより、図32に示すように、機械的に永久
磁石を移動させなくても、磁場を移動させることができ
ることが分かる。
As shown in FIG. 31, by switching the current flowing through the coils from No. 1 and No. 2 to No. 3 and No. 4 in one set of coils, as shown in FIG. It can also be seen that the magnetic field can be moved.

【0068】図31において、コイル幅がこれと等価な
永久磁石の幅wの半分になっているが、これは、コイル
に流す電流を順番に切り換えたとき、発生する磁場をで
きるだけ滑らかに移動させるためである。コイルの分割
数を多くすればするほど移動は滑らかになるが、構成は
複雑になり、また、分割数分だけのコイル励磁用電源が
必要になる。
In FIG. 31, the coil width is half the width w of the permanent magnet equivalent to this, but this causes the generated magnetic field to move as smoothly as possible when the current flowing through the coil is switched in order. That's why. As the number of coil divisions increases, the movement becomes smoother, but the configuration becomes complicated, and a power supply for coil excitation is required for the number of divisions.

【0069】図33に、図31に示すように磁場を移動
する場合の、1組の中の4個のコイルに流す電流の時間
調整の例を示す。但し、コイルの巻き芯(コア)は空芯
あるいは非磁性体であるとする。コアが磁性体の場合
は、電流値の変化に対し発生する磁場(磁束密度)にヒ
ステリシスが生じるので、それを補正するような電流調
整をする必要がある。
FIG. 33 shows an example of time adjustment of the current flowing through four coils in one set when the magnetic field is moved as shown in FIG. However, it is assumed that the core of the coil is an air core or a non-magnetic material. When the core is a magnetic material, a hysteresis occurs in a magnetic field (magnetic flux density) generated in response to a change in current value, and therefore, it is necessary to perform current adjustment to correct the hysteresis.

【0070】図33の電流遷移図において、同時に給電
するコイルの全体の幅が、図32の永久磁石の幅wとで
きるだけ同じになるように、さらに、コイル電流により
発生する磁場が左から右、そして再び、右から左へと空
間的にできるだけ一様に移動するように、それぞれのコ
イルへの放電時間を調整する。
In the current transition diagram of FIG. 33, the overall width of the coil to be simultaneously supplied with power is made as equal as possible to the width w of the permanent magnet of FIG. 32, and the magnetic field generated by the coil current is changed from left to right. Then, the discharge time to each coil is adjusted again so as to move spatially as uniformly as possible from right to left.

【0071】図33の時刻t=t1 およびt=t2 にお
けるコイル電流状態において、図31の実線および破線
の磁力線で示す磁場が、それぞれ構成される。
In the state of the coil current at times t = t1 and t = t2 in FIG. 33, the magnetic fields indicated by the solid lines and the broken lines of magnetic force in FIG. 31 are formed, respectively.

【0072】図34に、6分割した壁密着型電極2を持
つ円筒形放電装置において、1組のコイル群が6個のコ
イルよりなる6組のコイル群を装置外周に取り付け、コ
イルに流す電流を順番に切り換えることにより、多極磁
場を円周方向に移動する装置の構成例を示す。永久磁石
と等価な磁場を幅がその半分w/2である2つのコイル
で発生するようにし、且つ、多極磁場分布と等価な磁場
を発生できるように6個のコイル群を円周方向に配置
し、それらへの給電を調整する。コイル幅を半分にした
のは、磁場が円周方向にできるだけ滑らかに移動できる
ようにするためである。
In FIG. 34, in a cylindrical discharge device having six divided wall-contact electrodes 2, six coil groups, each of which is composed of six coils, are attached to the outer periphery of the device, and the current flowing through the coils is determined. Are sequentially switched to move the multipole magnetic field in the circumferential direction. A magnetic field equivalent to a permanent magnet is generated by two coils of which width is half w / 2, and a group of six coils is arranged in a circumferential direction so as to generate a magnetic field equivalent to a multipole magnetic field distribution. Place and coordinate the power supply to them. The reason why the coil width is reduced to half is that the magnetic field can move as smoothly as possible in the circumferential direction.

【0073】図34における磁力線は、6組のコイル群
の中の3および4番のコイルにのみ、それぞれ電流を流
す場合において発生する多極磁場の磁力線を示す。
The magnetic field lines in FIG. 34 indicate the magnetic field lines of the multi-pole magnetic field generated when a current is applied to only the third and fourth coils in the six coil groups.

【0074】図35に、装置を円周方向に展開したとき
の、全てのコイルの配置を示す。ここで、矢印はコイル
に流れる電流の向きを表す。上下のコイルは、装置上下
端における放電(プラズマ)の閉じ込めを改善するため
のものである。このコイルは、発生する磁場を移動させ
る必要がないので、コイル幅を永久磁石の幅と同じにし
て、コイルに永久磁石に対応する磁化の等価電流を流
す。
FIG. 35 shows the arrangement of all coils when the device is deployed in the circumferential direction. Here, the arrow indicates the direction of the current flowing through the coil. The upper and lower coils are for improving confinement of discharge (plasma) at the upper and lower ends of the device. This coil does not need to move the generated magnetic field, so that the coil width is made the same as the width of the permanent magnet, and an equivalent current of magnetization corresponding to the permanent magnet flows through the coil.

【0075】側壁に取り付ける6個のコイル群は円周方
向へ等間隔に配置し、隣り合う組に互いに逆向きの電流
を流す。それぞれの1組のコイル群において、端から順
番に2つのコイルにのみ同時に電流が流れるように調整
する。
The six coil groups attached to the side wall are arranged at equal intervals in the circumferential direction, and currents in opposite directions flow in adjacent sets. In each set of coil groups, adjustment is made so that current flows simultaneously only to two coils sequentially from the end.

【0076】図36に、磁場を正および負の円周方向に
時間と共に移動させる場合の、1組の中の6個のコイル
に流す電流の時間調整の例を示す。但し、コイルの巻き
芯は空芯あるいは非磁性体であるとする。同時に動作す
るコイルの全体の幅が図31の永久磁石の幅wとできる
だけ同じになるように、さらに、コイル電流により発生
する磁場が左から右、そして再び、右から左へと、空間
的にできるだけ一様に移動するように、それぞれのコイ
ルへの給電時間を調整する。図34の磁力線が示す磁場
は、時刻t=t1 およびt=t2 におけるコイル電流状
態において発生する。
FIG. 36 shows an example of time adjustment of the current flowing through six coils in one set when the magnetic field is moved with time in the positive and negative circumferential directions. However, it is assumed that the winding core of the coil is an air core or a non-magnetic material. Further, the magnetic field generated by the coil current is spatially changed from left to right, and again from right to left, so that the overall width of the simultaneously operating coil is as close as possible to the width w of the permanent magnet in FIG. The power supply time to each coil is adjusted so as to move as uniformly as possible. The magnetic field indicated by the magnetic field lines in FIG. 34 is generated in the coil current state at times t = t1 and t = t2.

【0077】[0077]

【発明の効果】本発明の放電電極は以上のような構成
で、放電室の内壁に複数の電極片を薄膜状の絶縁体を介
して密着して固定する。従って、本発明によれば、電極
が放電室の内壁に密着するので、放電領域を放電室内容
量と略同じ大きさまで取ることができ、装置空間の利用
効率を最大にすることができる。また、大きな容量を持
つ壁面を外部から冷却することにより、電極で発生する
熱を効率的かつ容易に除去できる。このため、小さな電
極へ大きな電力を投入できるようになると共に、冷却装
置を装置内部に持ち込む必要がないので、装置全体の構
成を簡素でコンパクトにすることができる。さらに、電
極と装置外壁との距離が短いので、永久磁石や電磁コイ
ルを装置外壁に取り付け、容易に電極近傍に磁場を作用
させることができる。このため、冷却装置を備えた永久
磁石や電磁コイルを装置内部に持ち込む必要がないの
で、簡単な装置構成で磁場を発生させることができると
共に、機械的あるいは電気的手段により磁場の移動を容
易に行うことができる。
According to the discharge electrode of the present invention, a plurality of electrode pieces are fixed to the inner wall of the discharge chamber with a thin-film insulator interposed therebetween. Therefore, according to the present invention, since the electrode is in close contact with the inner wall of the discharge chamber, the discharge area can be set to approximately the same size as the discharge chamber capacity, and the utilization efficiency of the apparatus space can be maximized. Further, by cooling the wall surface having a large capacity from the outside, heat generated in the electrodes can be efficiently and easily removed. For this reason, a large electric power can be supplied to the small electrode, and it is not necessary to bring the cooling device into the inside of the device, so that the configuration of the entire device can be made simple and compact. Further, since the distance between the electrode and the outer wall of the device is short, a permanent magnet or an electromagnetic coil can be attached to the outer wall of the device, and a magnetic field can be easily applied near the electrode. Therefore, there is no need to bring a permanent magnet or an electromagnetic coil with a cooling device into the device, so that a magnetic field can be generated with a simple device configuration and the movement of the magnetic field can be easily performed by mechanical or electrical means. It can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒形放電装置の横断面図である。FIG. 1 is a cross-sectional view of a cylindrical discharge device of the present invention.

【図2】本発明の円筒形放電装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the cylindrical discharge device of the present invention.

【図3】円筒形放電装置の磁力線と放電の様子を示す図
である。
FIG. 3 is a diagram showing lines of magnetic force and a state of electric discharge of the cylindrical electric discharge device.

【図4】本発明の角筒形放電装置の横断面図である。FIG. 4 is a cross-sectional view of the prismatic discharge device of the present invention.

【図5】本発明の角筒形放電装置の縦断面図である。FIG. 5 is a longitudinal sectional view of the rectangular discharge device of the present invention.

【図6】角筒形放電装置の磁力線と放電の様子を示す図
である。
FIG. 6 is a diagram showing lines of magnetic force and a state of electric discharge of the rectangular cylindrical discharge device.

【図7】電極の形状例を示す図である。FIG. 7 is a diagram showing an example of the shape of an electrode.

【図8】電極の配置例を示す図である。FIG. 8 is a diagram showing an example of the arrangement of electrodes.

【図9】電極へ多相交流を給電する装置の断面図であ
る。
FIG. 9 is a cross-sectional view of a device that supplies polyphase alternating current to electrodes.

【図10】円筒形放電装置の上側フランジの横断面図で
ある。
FIG. 10 is a cross-sectional view of an upper flange of the cylindrical discharge device.

【図11】円筒形放電装置の真空容器の縦断面図であ
る。
FIG. 11 is a longitudinal sectional view of a vacuum vessel of the cylindrical discharge device.

【図12】円筒形放電装置の下側フランジの横断面図で
ある。
FIG. 12 is a cross-sectional view of a lower flange of the cylindrical discharge device.

【図13】電極を取り付けるねじの縦断面図である。FIG. 13 is a longitudinal sectional view of a screw for attaching an electrode.

【図14】角筒形放電装置の上蓋部の横断面図である。FIG. 14 is a cross-sectional view of the upper lid of the rectangular cylindrical discharge device.

【図15】角筒形放電装置の真空容器の縦断面図であ
る。
FIG. 15 is a vertical cross-sectional view of a vacuum vessel of the prismatic discharge device.

【図16】角筒形放電装置の下蓋部の横断面図である。FIG. 16 is a cross-sectional view of a lower lid portion of the prismatic discharge device.

【図17】放電領域が電極中央にある多極磁場配位を示
す図である。
FIG. 17 is a diagram showing a multipolar magnetic field configuration in which a discharge region is at the center of an electrode.

【図18】放電領域を電極左端に移動させた多極磁場配
位を示す図である。
FIG. 18 is a diagram showing a multipolar magnetic field configuration in which a discharge region is moved to the left end of an electrode.

【図19】放電領域を電極右端に移動させた多極磁場配
位を示す図である。
FIG. 19 is a diagram showing a multipolar magnetic field configuration in which a discharge region is moved to the right end of an electrode.

【図20】円筒形放電装置の永久磁石を移動する機械的
機構の横断面図である。
FIG. 20 is a cross-sectional view of a mechanical mechanism for moving a permanent magnet of the cylindrical discharge device.

【図21】円筒形放電装置の永久磁石を移動する機械的
機構の縦断面図である。
FIG. 21 is a longitudinal sectional view of a mechanical mechanism for moving a permanent magnet of the cylindrical discharge device.

【図22】円柱状永久磁石の等価電流を示す模式図であ
る。
FIG. 22 is a schematic diagram showing an equivalent current of a columnar permanent magnet.

【図23】棒状永久磁石の等価電流を示す模式図であ
る。
FIG. 23 is a schematic diagram showing an equivalent current of a bar-shaped permanent magnet.

【図24】棒状等価電流コイルの実際の巻き方を示す斜
視図である。
FIG. 24 is a perspective view showing an actual winding method of the rod-shaped equivalent current coil.

【図25】棒状等価電流コイルの実際の巻き方を示す横
断面図である。
FIG. 25 is a cross-sectional view showing an actual winding method of the rod-shaped equivalent current coil.

【図26】円筒形永久磁石の表面の等価電流を示す模式
図である。
FIG. 26 is a schematic diagram showing an equivalent current on the surface of a cylindrical permanent magnet.

【図27】円筒形永久磁石の裏面の等価電流を示す模式
図である。
FIG. 27 is a schematic diagram showing an equivalent current on the back surface of the cylindrical permanent magnet.

【図28】微小円筒磁化部分の等価電流を示す模式図で
ある。
FIG. 28 is a schematic diagram showing an equivalent current in a minute cylindrical magnetization portion.

【図29】円筒状等価電流コイルの実際の巻き方を示す
斜視図である。
FIG. 29 is a perspective view showing an actual winding method of the cylindrical equivalent current coil.

【図30】円筒状等価電流コイルの実際の巻き方を示す
横断面図である。
FIG. 30 is a cross-sectional view showing an actual winding method of the cylindrical equivalent current coil.

【図31】コイルの配列と電流調整による磁場の移動を
示す模式図である。
FIG. 31 is a schematic diagram showing an arrangement of coils and movement of a magnetic field due to current adjustment.

【図32】等価永久磁石と機械的移動による磁場の移動
を示す模式図である。
FIG. 32 is a schematic view showing the movement of a magnetic field due to an equivalent permanent magnet and mechanical movement.

【図33】磁場移動のためのコイル電流の時間調整(4
分割)を示す模式図である。
FIG. 33: Time adjustment of coil current for magnetic field movement (4
FIG.

【図34】円筒形放電装置における多極磁場構成コイル
の配置例を示す模式図である。
FIG. 34 is a schematic diagram showing an example of the arrangement of multipole magnetic field configuration coils in a cylindrical discharge device.

【図35】円周方向に展開した多極磁場構成コイルの配
置例を示す模式図である。
FIG. 35 is a schematic diagram showing an arrangement example of a multi-pole magnetic field configuration coil developed in a circumferential direction.

【図36】磁場移動のためのコイル電流の時間調整(6
分割)を示す模式図である。
FIG. 36: Time adjustment of coil current for magnetic field movement (6
FIG.

【符号の説明】[Explanation of symbols]

1 放電装置 2 分割電極 3 絶縁シート 4 真空容器 5 冷却水 6 磁石 7 磁気シールド 8 ブッシング 9 給電線 10 ねじ 11 可動リング 12 可動フレーム 13 ラック形歯車 14 円形歯車 DESCRIPTION OF SYMBOLS 1 Discharge device 2 Split electrode 3 Insulating sheet 4 Vacuum container 5 Cooling water 6 Magnet 7 Magnetic shield 8 Bushing 9 Feeding line 10 Screw 11 Movable ring 12 Movable frame 13 Rack-shaped gear 14 Circular gear

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放電室の内壁に複数の電極片を薄膜状の
絶縁体を介して密着して固定し、 前記電極片を冷却する冷却手段と、 前記電極片表面に多極磁場を形成して放電を閉じ込める
多極磁場形成手段と、を前記放電室の外周に設け、しか
して各々の前記電極片に位相制御多出力交流電源を供給
してなる位相制御多電極型交流放電装置。
1. A plurality of electrode pieces are fixed to an inner wall of a discharge chamber in close contact with each other via a thin-film insulator, a cooling means for cooling the electrode pieces, and a multipolar magnetic field formed on a surface of the electrode pieces. And a multi-pole magnetic field forming means for confining a discharge by providing a multi-pole magnetic field forming means on the outer periphery of the discharge chamber, and supplying a phase control multi-output AC power to each of the electrode pieces.
JP29567596A 1996-10-17 1996-10-17 Phase-controlled multi-electrode AC discharge device using wall-contact electrodes Expired - Lifetime JP3699793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29567596A JP3699793B2 (en) 1996-10-17 1996-10-17 Phase-controlled multi-electrode AC discharge device using wall-contact electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29567596A JP3699793B2 (en) 1996-10-17 1996-10-17 Phase-controlled multi-electrode AC discharge device using wall-contact electrodes

Publications (2)

Publication Number Publication Date
JPH10125495A true JPH10125495A (en) 1998-05-15
JP3699793B2 JP3699793B2 (en) 2005-09-28

Family

ID=17823740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29567596A Expired - Lifetime JP3699793B2 (en) 1996-10-17 1996-10-17 Phase-controlled multi-electrode AC discharge device using wall-contact electrodes

Country Status (1)

Country Link
JP (1) JP3699793B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276136A1 (en) * 2000-03-13 2003-01-15 Toyama Prefecture Phase controlled multi-electrode type ac discharge light source
JP2007193997A (en) * 2006-01-17 2007-08-02 Tateyama Machine Kk Plasma treatment device
JP2007193996A (en) * 2006-01-17 2007-08-02 Tateyama Machine Kk Polyphase ac plasma generation method and device
JP2013057095A (en) * 2011-09-07 2013-03-28 Ulvac Japan Ltd Magnetron sputter cathode
KR20170039295A (en) * 2014-08-06 2017-04-10 어플라이드 머티어리얼스, 인코포레이티드 Post-chamber abatement using upstream plasma sources
CN108269622A (en) * 2016-12-30 2018-07-10 核工业西南物理研究院 A kind of passive cooled tockmark device feeble field side the first wall component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276136A1 (en) * 2000-03-13 2003-01-15 Toyama Prefecture Phase controlled multi-electrode type ac discharge light source
US6822404B2 (en) * 2000-03-13 2004-11-23 Toyama Prefecture Phase-controlled, multi-electrode type of AC discharge light source
EP1276136A4 (en) * 2000-03-13 2006-08-30 Toyama Prefecture Phase controlled multi-electrode type ac discharge light source
JP2007193997A (en) * 2006-01-17 2007-08-02 Tateyama Machine Kk Plasma treatment device
JP2007193996A (en) * 2006-01-17 2007-08-02 Tateyama Machine Kk Polyphase ac plasma generation method and device
JP2013057095A (en) * 2011-09-07 2013-03-28 Ulvac Japan Ltd Magnetron sputter cathode
KR20170039295A (en) * 2014-08-06 2017-04-10 어플라이드 머티어리얼스, 인코포레이티드 Post-chamber abatement using upstream plasma sources
CN106575602A (en) * 2014-08-06 2017-04-19 应用材料公司 Post-chamber abatement using upstream plasma sources
JP2017526179A (en) * 2014-08-06 2017-09-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Mitigation after chamber using upstream plasma source
CN108269622A (en) * 2016-12-30 2018-07-10 核工业西南物理研究院 A kind of passive cooled tockmark device feeble field side the first wall component

Also Published As

Publication number Publication date
JP3699793B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
KR101826843B1 (en) Inductive plasma source with metallic shower head using b-field concentrator
JP3652702B2 (en) Linear arc discharge generator for plasma processing
TW382737B (en) A method to eliminate coil sputtering in an icp source
EP2553138B1 (en) Target utilization improvement for rotatable magnetrons
CA2601834C (en) Sputtering devices and methods
KR100224507B1 (en) Process and apparatus for coating subtrates by means of magnetron cathode
JP2007123008A (en) Plasma generation method and its device, and plasma processing device
JPH0778698A (en) Method and device for induction coupling high frequency discharge
JP2007149639A (en) Plasma generation method and device, and plasma treatment device
JPS62205619A (en) Method of heating semiconductor and susceptor used therein
JP2011179120A (en) Apparatus and method of physical vapor deposition with multi-point clamp
JP2011179119A (en) Apparatus and method of physical vapor deposition with heat diffuser
JP3699793B2 (en) Phase-controlled multi-electrode AC discharge device using wall-contact electrodes
JPH09104977A (en) Appatatus for coating substrate
US10582604B2 (en) Device and method for the heating and confinement of plasma
US5182001A (en) Process for coating substrates by means of a magnetron cathode
EP0448098B1 (en) Method of generating a heat-plasma and coating apparatus employing said method
JP2002241928A (en) Electric discharge type plasma film deposition apparatus and its method
JP3742866B2 (en) Multi-pole magnetic field generator for multi-electrode type discharge device
US5533567A (en) Method and apparatus for uniform heating and cooling
JP2007314842A (en) Plasma-generating device and sputtering source using the same
JPH01180977A (en) Magnetron sputtering device
JP7369411B1 (en) Sputtering deposition source and deposition equipment
JP3823069B2 (en) Magnetic neutral discharge plasma processing equipment
JP2000239839A (en) Sputtering device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5