JPH10123421A - Zoom optical system - Google Patents

Zoom optical system

Info

Publication number
JPH10123421A
JPH10123421A JP8297308A JP29730896A JPH10123421A JP H10123421 A JPH10123421 A JP H10123421A JP 8297308 A JP8297308 A JP 8297308A JP 29730896 A JP29730896 A JP 29730896A JP H10123421 A JPH10123421 A JP H10123421A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
zoom
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8297308A
Other languages
Japanese (ja)
Other versions
JP4013268B2 (en
Inventor
Yoshinori Hamanishi
芳徳 浜西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP29730896A priority Critical patent/JP4013268B2/en
Publication of JPH10123421A publication Critical patent/JPH10123421A/en
Application granted granted Critical
Publication of JP4013268B2 publication Critical patent/JP4013268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom optical system where high variable power is made possible, aberration fluctuation is reduced through conjugate length by focusing is changed and also high performance is secured at each zooming arrangement. SOLUTION: As for the zoom optical system where a whole system is constituted of five or more lens groups and zooming is performed by mutually despondently moving three or more variable power lens groups in the direction of an optical axis; magnifications which two or more variable lens groups out of the variable power lens groups G2 , G3 bear are respectively made almost unmagnified at a specified zooming position, and a first lens group G1 is constituted of two or more low-order lens groups G11 and G12 , and focusing is performed by moving one or more low-order lens groups out of low-order lens groups at different speed in the direction of the optical axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高変倍ズームレンズ
に関する。
The present invention relates to a high-magnification zoom lens.

【0002】[0002]

【従来の技術】従来、画像の入出力において、光学系に
よる撮影、投影を必要とする各種電子画像装置に有限光
学系が多く採用されている。具体的には有限光学系はデ
ジタルスチルカメラ用レンズ系、近接撮影光学系、拡大
引伸し用光学系、縮小光学系その他、液晶ビデオプロジ
ェクター用投写レンズ等に使用されている。特に、有限
系単焦点レンズは汎用性が乏しく、それぞれ目的に応じ
て専用の光学系が使用されている。これに対し有限系ズ
ームレンズは単焦点レンズより汎用性は高いが、レンズ
の種類が少ない。このため35mmスチルカメラ用、1
6mmシネ用、TV用レンズ系がよく使用されていた。
特に電子画像機器の小型で高画質の像入力用として低倍
率(1/50X−1/30X程度)で広画角の撮像ズー
ム光学系が求められていた。特公平3−71686は高
変倍化が困難なズーム方式でズーム軌道も複雑である。
また、測定投影機用の光学系でありテレセン性を強く要
求している。ズーム比は5倍程度であり、さらに実効F
ナンバーはF/3.5〜F/6.5程度で暗い。照明条
件によっては、絵柄が黒くて暗い被写体を撮影するとき
不十分である。これに対し明るくて広角、高変倍比を有
し、しかも撮影距離の変化に対しも安定な高性能の光学
系が求められていた。
2. Description of the Related Art Heretofore, a finite optical system has been often used in various electronic image apparatuses which require photographing and projection by an optical system in inputting and outputting an image. Specifically, the finite optical system is used for a digital still camera lens system, a close-up photographing optical system, an enlargement / expansion optical system, a reduction optical system, and a projection lens for a liquid crystal video projector. In particular, a finite single focus lens is poor in versatility, and a dedicated optical system is used for each purpose. On the other hand, a finite zoom lens has higher versatility than a single focus lens, but has few types of lenses. For this reason, for 35mm still cameras, 1
Lens systems for 6 mm cine and TV were often used.
In particular, there has been a demand for a low-magnification (approximately 1 / 50X-1 / 30X) wide-angle imaging zoom optical system for small and high-quality image input of electronic imaging equipment. Japanese Patent Publication No. 3-71686 is a zoom system in which it is difficult to increase the zoom ratio, and has a complicated zoom trajectory.
In addition, it is an optical system for a measurement projector, and strongly demands telecentricity. The zoom ratio is about 5 times, and the effective F
The number is F / 3.5-F / 6.5 and dark. Depending on the lighting conditions, it is not sufficient when photographing a dark and dark subject. On the other hand, there has been a demand for a high-performance optical system that is bright, has a wide angle, a high zoom ratio, and is stable against a change in shooting distance.

【0003】[0003]

【発明が解決しようとする課題】電子画像機器等に利用
される光学系は非常に多くの目的に対応する仕様を要求
されている。いろいろの目的に応じて専用光学系の提供
がなされている。このため目的の数に比例して光学系を
設計する必要が生じている。このことは非常に非効率的
であり、不経済でもある。本発明はこれらの問題点を解
消するため、高性能、高変倍率のズームレンズを提供し
て、広範な利用目的に適う光学システム系を容易に提供
するものである。高解像力を必要とする撮像系などに利
用可能な光学系とするため、明るくて広画角を有し、し
かも倍率の色収差が補正され、ズーム変倍において歪曲
収差が少ない光学系が求められていた。さらに、シェー
ディングを少なくするため画面周辺で充分な周辺光量を
確保した光学系が求められていた。本発明の課題はこれ
らの要求を同時に満足する光学系を提供することにあ
る。特に、高変倍が可能で、合焦による共役長を変化さ
せても収差変動が少なく、しかも各ズーム配置において
高性能を確保したズーム光学系を提供することを課題と
する。
An optical system used for an electronic image device or the like is required to have specifications corresponding to a very large number of purposes. Dedicated optical systems have been provided for various purposes. For this reason, it is necessary to design an optical system in proportion to the target number. This is very inefficient and uneconomical. In order to solve these problems, the present invention provides a high-performance, high-magnification zoom lens and easily provides an optical system suitable for a wide range of applications. There is a need for an optical system that is bright, has a wide angle of view, corrects chromatic aberration of magnification, and has little distortion at zoom magnification in order to make it an optical system that can be used for imaging systems that require high resolution. Was. Further, there has been a demand for an optical system that secures a sufficient amount of peripheral light around the screen in order to reduce shading. An object of the present invention is to provide an optical system that satisfies these requirements simultaneously. In particular, it is an object of the present invention to provide a zoom optical system which enables high zooming, has small aberration fluctuation even when the conjugate length is changed by focusing, and has high performance in each zoom arrangement.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、すなわち、5群以上の
レンズ群によって全系を構成し、3群以上の変倍レンズ
群を、互いに異なる軌道にて光軸方向に移動することに
よってズーミングを行うズーム光学系において、2群以
上の変倍レンズ群の担う倍率が、特定のズーミング位置
においていずれもほぼ等倍となり、第1レンズ群は2群
以上の下位レンズ群からなり、該下位レンズ群の全部又
は一部よりなる2群以上の下位レンズ群を、互いに異な
る速度にて光軸方向に移動することによって合焦を行う
ことを特徴とするズーム光学系である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem. That is, the entire system is constituted by five or more lens units, and three or more variable power lens units are provided. In a zoom optical system that performs zooming by moving in different optical paths in the optical axis direction, the magnifications of the two or more zoom lens groups are almost equal at specific zooming positions, and the first lens group Is composed of two or more lower lens groups, and performs focusing by moving two or more lower lens groups, which are all or a part of the lower lens groups, at different speeds in the optical axis direction. The zoom optical system is a feature.

【0005】本発明では、3群以上の変倍レンズ群のう
ち、2群以上の変倍レンズ群の担う倍率が、特定のズー
ミング位置においていずれもほぼ等倍となるように形成
されている。すなわち、3群以上の変倍レンズ群のすべ
てが、特定のズーミング位置においていずれもほぼ等倍
となる「全変倍レンズ群同時等倍」に形成してもよい
し、あるいは、3群以上の変倍レンズ群のうちの一部よ
りなる2群以上の変倍レンズ群(コンペンセータ群を除
く)が、特定のズーミング位置においていずれもほぼ等
倍となる「変倍レンズ群部分同時等倍」に形成してもよ
い。変倍レンズ群のすべてが同時に等倍となる構成が、
最も変倍効率がよい。部分的同時等倍では、過度に高ズ
ーム比を得ようとすると各群の屈折力が強くなり、収差
補正が困難となる。さらにペッツバール和も負に過大と
なりやすく、像面湾曲の補正も困難になる。しかし、部
分的な同時等倍すら含まない構成に比べると、部分にで
も同時等倍を含む構成の方が変倍効率は良い。ズーム比
5倍程度のズームレンズでは、部分的同時等倍による変
倍方式でも十分に実用性がある。
In the present invention, of the three or more zoom lens groups, the magnifications of the two or more zoom lens groups are formed such that the magnifications at the specific zooming positions are substantially the same. In other words, all of the three or more zoom lens groups may be formed in “simultaneous magnification of all zoom lens groups” in which all the zoom lenses are at substantially the same magnification at a specific zooming position. Two or more variable power lens groups (excluding the compensator group), which are part of the variable power lens groups, are all "substantially the same magnification" at a specific zooming position, and all become approximately the same magnification. It may be formed. The configuration in which all the variable power lens groups are at the same magnification at the same time,
It has the best zooming efficiency. In the case of partial simultaneous magnification, if an attempt is made to obtain an excessively high zoom ratio, the refractive power of each group becomes strong, and it becomes difficult to correct aberrations. Further, the Petzval sum tends to be excessively negative, and it becomes difficult to correct the field curvature. However, compared to a configuration that does not even include partial simultaneous magnification, a configuration that includes simultaneous equal magnification even in a portion has better zooming efficiency. In a zoom lens having a zoom ratio of about 5 times, a variable magnification method using partial simultaneous magnification is sufficiently practical.

【0006】ここで最も変倍効率のよい全変倍レンズ群
が同時に等倍をみたす方式を例に説明することにする。
図1に本発明の代表的な基本構成における基準合焦配置
でのズーミング中の各レンズ群の移動軌道を示し、図2
に至近合焦配置でのズーミング中の各レンズ群の移動軌
道を示す。この構成では全系を全5群によって構成して
おり、このうち第2〜第5レンズ群によってズーム変倍
部を構成している。合焦レンズ群である第1レンズ群
は、図1と図2に示す例では、前群と後群との2つの下
位レンズ群からなる。
Here, a description will be given of an example of a system in which all the variable power lens units having the highest variable power efficiency simultaneously achieve the same magnification.
FIG. 1 shows a movement trajectory of each lens group during zooming in a reference focusing arrangement in a typical basic configuration of the present invention.
2 shows the movement trajectory of each lens group during zooming in the close focus arrangement. In this configuration, the entire system is composed of a total of five groups, of which the second to fifth lens groups constitute a zoom magnification unit. In the examples shown in FIGS. 1 and 2, the first lens group, which is a focusing lens group, includes two lower lens groups, a front group and a rear group.

【0007】各レンズ群の横倍率をβi(i=1〜5)
とし、全系の合成撮影倍率をβとし、ズーム変倍部の倍
率をβzとすると、 β=β1β2β3β4β5 βz=β2β3β4β5 と表されるが、全変倍レンズ群同時等倍の方式では、特
定のズーミング位置cにおいて、いずれの変倍レンズ群
i(i=2〜5)の倍率も、 |βc2|≒1、|βc3|≒1、|βc4|≒1、|βc5|≒1 (A) となるように構成される。なお、この結果、この同時等
倍ズーミング位置cでは、 |βcz|=|βc2βc3βc4βc5|≒1 である。
The lateral magnification of each lens group is β i (i = 1 to 5)
Assuming that the synthetic photographing magnification of the entire system is β and the magnification of the zoom magnification part is β z , β = β 1 β 2 β 3 β 4 β 5 β z = β 2 β 3 β 4 β 5 However, in the system of simultaneous magnification of all the variable power lens units, at a specific zooming position c, the magnification of any of the variable power lens groups i (i = 2 to 5) is | β c2 | ≒ 1, | β c3 | ≒ 1, | β c4 | ≒ 1, | β c5 | ≒ 1 (A). As a result, | β cz | = | β c2 β c3 β c4 β c5 | ≒ 1 at the simultaneous equal-magnification zooming position c.

【0008】一般にズーム方程式を満たす解のうち、全
バリエータ群の倍率が等倍(−1X)のときに、すなわ
ちコンペンセータ群の倍率も等倍となるようにすれば、
コンペンセータ群の2つの移動曲線(ズーム軌道の解曲
線)が等倍の配置で繋がるから、相互に軌道の乗換が可
能となる。本発明はこの軌道の乗換を積極的に利用し
て、ズーム変倍部を構成するすべての変倍レンズ群の倍
率を特定のズーミング位置において、同時等倍としたも
の又は2群以上の一部の変倍レンズ群の倍率が、部分的
同時等倍となるように構成したものである。この結果、
全ズーム領域にわたり確実に採用可能なズーム軌道(ズ
ーム方程式解)を安定的に得ることができる。特に全変
倍レンズ群同時等倍の方式では、高変倍比を確保するこ
とができる。また上記(A)式が成立するズーミング位
置cが、広角端wと望遠端tとの間にある場合には、製
造公差に対する感度が低く、結像性能の確保が容易であ
る。
In general, among the solutions satisfying the zoom equation, if the magnification of all the variator groups is the same (−1 ×), that is, if the magnification of the compensator group is also the same,
Since the two movement curves (the solution curve of the zoom trajectory) of the compensator group are connected in the same size arrangement, the trajectory can be changed mutually. The present invention positively utilizes this transfer of the orbit to make the magnification of all the variable power lens units constituting the zoom magnification unit at the same zooming position at the same magnification or a part of two or more groups. Are configured such that the magnification of the variable magnification lens unit is partially simultaneous and equal. As a result,
A zoom trajectory (zoom equation solution) that can be reliably adopted over the entire zoom region can be stably obtained. In particular, in a system of simultaneous magnification of all zoom lens groups, a high zoom ratio can be secured. Further, when the zooming position c at which the above equation (A) holds is between the wide-angle end w and the telephoto end t, the sensitivity to manufacturing tolerance is low, and it is easy to secure the imaging performance.

【0009】このように本発明によれば変倍効率が高い
ズームレンズが得られるが、第1レンズ群を合焦レンズ
群とすることにより、ズーム変倍にて撮影距離の変化及
びピントズレを容易に抑制できることとなる。またズー
ム倍率を大きくしたり、大口径比化を実現すると、合焦
による結像性能の劣化が起きやすく、特に、望遠側で著
しい収差変動による性能劣化が起きる。これを補正する
ために、本発明では合焦レンズ群である第1レンズ群
を、2群以上の下位レンズ群からなるように多群化し、
フローティングなどの各種の近距離補正が可能な構造と
して、収差補正の自由度を確保している。また第1レン
ズ群を2群以上の下位レンズ群から構成することによ
り、基準撮影距離配置と異なる共役長にてズーム変倍に
よる性能劣化の補正の自由度の確保が可能である。
As described above, according to the present invention, a zoom lens having a high zooming efficiency can be obtained. However, by using the first lens group as a focusing lens group, it is easy to change the shooting distance and defocus by zooming. Can be suppressed. If the zoom magnification is increased or the aperture ratio is increased, the imaging performance is likely to be degraded due to focusing, and the performance is particularly degraded on the telephoto side due to significant aberration fluctuation. In order to correct this, in the present invention, the first lens group, which is a focusing lens group, is multi-grouped to include two or more lower lens groups,
As a structure capable of correcting various short distances such as floating, the degree of freedom of aberration correction is ensured. In addition, since the first lens group includes two or more lower lens groups, it is possible to secure a degree of freedom in correcting performance degradation due to zoom magnification at a conjugate length different from the reference shooting distance arrangement.

【0010】なお、本発明では最も物側の第1レンズ群
を合焦レンズ群としているが、ズーム変倍部に合焦機能
を付与することもできる。しかし合焦レンズ群の担う倍
率は等倍となる領域を避ける必要がある。また、このよ
うに構成すると、ズーム変倍にて撮影距離が変化する量
が大きくなるのでその対策が必要となり、特に無限遠系
ではズーム軌道の選び方によっては望ましくない場合が
ある。また、第1レンズ群は2つ以上の下位レンズ群か
らなるが、合焦に際して移動する下位レンズ群は1つだ
けであっても良いし、2つ以上の下位レンズ群を相互依
存的に移動することによって合焦しても良い。いずれに
しろ合焦による収差変動を抑制する必要があり、第1レ
ンズ群の合焦移動によって第1レンズ面における主光線
の入射高が光軸から大きく隔たることを避ける合焦方式
と屈折力配分を採用する必要がある。
In the present invention, the first lens group closest to the object is the focusing lens group. However, a focusing function can be provided to the zoom magnification varying unit. However, it is necessary to avoid a region where the magnification of the focusing lens unit is equal. In addition, with such a configuration, the amount of change in the photographing distance due to zoom magnification becomes large, so that it is necessary to take a countermeasure. In particular, in an infinite system, it may not be desirable depending on how to select a zoom trajectory. The first lens group includes two or more lower lens groups, but only one lower lens group that moves during focusing may be moved, or two or more lower lens groups may be moved in an interdependent manner. Focusing may be performed by doing. In any case, it is necessary to suppress the fluctuation of aberration due to focusing, and a focusing method and a refracting power for avoiding that the incident height of the principal ray on the first lens surface is largely separated from the optical axis by the focusing movement of the first lens group. You need to adopt distribution.

【0011】本発明においては、図1と図2に示すよう
に、上記(A)式が成立するズーミング位置cが、広角
端wと望遠端tとの間にあることが好ましい。但し
(A)式が成立する特定のズーミング位置cが、広角端
wよりも低倍率側、あるいは望遠端tよりも高倍率側に
ある場合も、本発明に含まれる。
In the present invention, as shown in FIGS. 1 and 2, it is preferable that the zooming position c satisfying the above-mentioned equation (A) is between the wide-angle end w and the telephoto end t. However, the present invention includes a case where the specific zooming position c at which the expression (A) is established is on the lower magnification side than the wide-angle end w or on the higher magnification side than the telephoto end t.

【0012】また本発明の全変倍レンズ群同時等倍にお
いては、ズーム変倍部の倍率が縮小倍率のときに、各変
倍レンズ群の担う倍率がいずれも縮小倍率であることが
好ましく、同様に、ズーム変倍部の倍率が拡大倍率のと
きに、各変倍レンズ群の担う倍率がいずれも拡大倍率で
あることが好ましい。図1と図2に示す例では、広角端
wと望遠端tとの間の特定のズーミング位置cで、 |βci|≒1 (i=2〜5、したがって|βcz|≒
1) となるように構成している。したがって広角端wと望遠
端tとでは、 |βwi|≦1 (i=2〜5、したがって|βwz|≦
1) |βti|≧1 (i=2〜5、したがって|βtz|≧
1) となるように構成することが好ましい。
In the same magnification of all the variable power lens units according to the present invention, when the zoom power of the zoom power unit is the reduction power, it is preferable that each of the powers of the variable power lens units is a reduction power. Similarly, when the magnification of the zoom magnification unit is an enlargement magnification, it is preferable that all magnifications carried by each of the variable magnification lens groups are enlargement magnifications. In the example shown in FIGS. 1 and 2, at a particular zooming position c between the wide-angle end w and the telephoto end t, | β ci | ≒ 1 (i = 2 to 5, thus | β cz | ≒
1) It is configured to be as follows. Therefore, at the wide-angle end w and the telephoto end t, | β wi | ≦ 1 (i = 2 to 5, and therefore | β wz | ≦
1) | β ti | ≧ 1 (i = 2 to 5, thus | β tz | ≧
1) It is preferable to configure the following.

【0013】なお既述のように、(A)式が成立する特
定のズーミング位置cが広角端wよりも低倍率側にある
場合も、本発明に含まれるが、この構成のときには、|
βti|>|βwi|>|βci|≒1 (i=2〜5、したがって|βtz|>|βwz|>|βcz
|≒1) となるように構成することが好ましい。同様に、(A)
式が成立する特定のズーミング位置cが望遠端tよりも
高倍率側にある場合も、本発明に含まれるが、この構成
のときには、 |βwi|<|βti|<|βci|≒1 (i=2〜5、したがって|βwz|<|βtz|<|βcz
|≒1) となるように構成することが好ましい。
As described above, the case where the specific zooming position c satisfying the expression (A) is on the lower magnification side than the wide-angle end w is also included in the present invention.
β ti |> | β wi |> | β ci | ≒ 1 (i = 2 to 5, thus | β tz |> | β wz |> | β cz
| ≒ 1) is preferable. Similarly, (A)
The present invention includes a case where the specific zooming position c where the expression is satisfied is on the higher magnification side than the telephoto end t. In this configuration, | β wi | <| β ti | <| β ci | ≒ 1 (i = 2 to 5, therefore | β wz | <| β tz | <| β cz
| ≒ 1) is preferable.

【0014】これらの構成により、非常に変倍効率の良
いズームパワー配置を選択することができるから、高変
倍比を確保することができ、すなわちズーム比の大きい
光学系を達成できる。図1と図2に示す例では、ズーム
変倍部を4群のレンズ群によって構成しており、しかも
変倍レンズ群のすべてが同時等倍を満たすので、この効
果が加速される。
With these arrangements, it is possible to select a zoom power arrangement with very high zooming efficiency, so that a high zooming ratio can be secured, that is, an optical system with a large zoom ratio can be achieved. In the examples shown in FIGS. 1 and 2, the zoom magnification varying unit is constituted by four lens groups, and all the variable magnification lens groups satisfy the same magnification at the same time, so that this effect is accelerated.

【0015】また本発明においては、各レンズ群の屈折
力の符号が、物側から配置されたレンズ群と像側から配
置されたレンズ群との間で対称であることが好ましい。
すなわち全系の構成を全N群とすると、第1レンズ群と
第Nレンズ群との屈折力の符号を同一とし、同様に第2
レンズ群と第N−1レンズ群との屈折力の符号を同一と
することが好ましい。歪曲収差を少なくする方法とし
て、開口絞りに関し、レンズ形状、屈折力配置の対称性
の高いレンズ構成が考えられる。この様な対称性を有す
る光学系の中央には、Nが偶数の場合のように、必ずし
もレンズ群が存在しなくともよい。完全対称性を構成す
るレンズ群が移動するズームレンズでは、歪曲収差の変
動補正は望むべきもない。しかし、ズーミングにて歪曲
収差の少ない光学系を得るには、基本として各レンズ群
の屈折力配分の構成が、開口絞りないしはレンズ群に関
し、ある程度の対称性を有することが好ましい。
In the present invention, it is preferable that the sign of the refractive power of each lens unit is symmetric between the lens unit arranged from the object side and the lens unit arranged from the image side.
That is, assuming that the configuration of the entire system is all N groups, the first lens group and the N-th lens group have the same sign of the refractive power, and likewise the second lens group.
It is preferable that the sign of the refractive power of the lens group is the same as that of the (N-1) th lens group. As a method of reducing distortion, a lens configuration with high symmetry in lens shape and refractive power arrangement regarding an aperture stop can be considered. At the center of an optical system having such a symmetry, a lens group does not necessarily have to exist, as in the case where N is an even number. In a zoom lens in which a lens group forming perfect symmetry moves, correction of fluctuation of distortion should not be desired. However, in order to obtain an optical system with little distortion by zooming, it is preferable that the refractive power distribution of each lens group has a certain degree of symmetry with respect to the aperture stop or the lens group.

【0016】例えば、正の屈折力を有する合焦のための
第1レンズ群、負の屈折力を有する第2レンズ群、正の
屈折力を有する第3レンズ群、負の屈折力を有する第4
レンズ群、及び正の屈折力を有する第5レンズ群を備
え、最も高変倍が可能なズーム方式として、第2レンズ
群、第3レンズ群、第4レンズ群、及び第5レンズ群の
担う倍率が同時にほぼ等倍率(−1X)となるズームレ
ンズ系を例にすることにする。このズーム光学系の歪曲
収差の発生状況を解析するとき、ズーム光学系を全体と
して3分割して考察することが望ましい。
For example, a first lens group for focusing having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a third lens group having a negative refractive power. 4
A second lens group, a third lens group, a fourth lens group, and a fifth lens group are provided as a zoom method that includes a lens group and a fifth lens group having a positive refractive power and enables the highest zoom ratio. A zoom lens system in which the magnification is substantially the same (-1X) will be taken as an example. When analyzing the state of occurrence of distortion in the zoom optical system, it is desirable to consider the zoom optical system as a whole divided into three parts.

【0017】すなわち開口絞りを含むレンズ群を中群と
し、中群の物側を前群とし、中群の像側を後群とする
と、前群と後群のそれぞれの内部で、かなりの程度まで
歪曲収差の補正が可能な屈折力構成、及びレンズ構成で
ある必要がある。これらの前群、後群での未補正分、及
び前群と後群で相殺できなかった成分は、中群にて補正
することとして、役割分担をさせる。このようなレンズ
構成を有する光学系とすることによって、ズーミングに
て移動するレンズ群を有する光学系においても、歪曲収
差に対し、変動の少ない構成となりうることが理解でき
る。一方、歪曲収差を非常に少なくするためには、前群
と後群のそれぞれの内部での屈折力配分も、正、負又は
負、正として、収差のキャンセルが可能なレンズ構成、
屈折力配分とすることが好ましい。
That is, if the lens group including the aperture stop is the middle group, the object side of the middle group is the front group, and the image side of the middle group is the rear group, the interior of each of the front and rear groups has a considerable degree. It is necessary to have a refractive power configuration and a lens configuration that can correct distortion up to this point. These uncorrected components in the front group and the rear group, and the components that could not be offset in the front group and the rear group, are corrected in the middle group and assigned to roles. By using an optical system having such a lens configuration, it can be understood that even an optical system having a lens group that moves during zooming can have a configuration with little variation with respect to distortion. On the other hand, in order to greatly reduce the distortion, the refractive power distribution inside each of the front group and the rear group is also positive, negative or negative, positive, a lens configuration capable of canceling the aberration,
It is preferable to use a refractive power distribution.

【0018】この様な理由により、対称性の高いレンズ
配列を基本としつつ、合焦レンズ群である第1レンズ群
の内部構造を多群の下位レンズ群で構成することによ
り、合焦範囲とズーム変倍範囲を拡張しても、合焦によ
る収差変動及びズーミングによる歪曲収差変動を容易に
補正できると同時に、他の収差変動の補正も容易とな
る。また各レンズ群の屈折力の符号を物側と像側とで対
称となるように配置し、且つ合焦レンズ機構を有するこ
とにより、いわゆるマイクロズーム光学系を実現でき
る。
For such a reason, while the internal structure of the first lens unit, which is the focusing lens unit, is composed of a plurality of lower lens units based on a highly symmetric lens arrangement, the focusing range and Even if the zoom magnification range is extended, it is possible to easily correct aberration fluctuation due to focusing and distortion fluctuation due to zooming, and also to easily correct other aberration fluctuations. Further, a so-called micro-zoom optical system can be realized by arranging the sign of the refractive power of each lens group symmetrically between the object side and the image side and having a focusing lens mechanism.

【0019】また全系を全5群で構成する場合、最も高
変倍が得られるように、第2〜第4レンズ群のほか、第
5レンズ群も変倍レンズ群とすることもできるし、また
第5レンズ群を、ズーミング中も像面に対して固定され
たリレーレンズ群とすることもできる。前者の場合に
は、ズーム比の大きい光学系が得られると同時に、各レ
ンズ群の変倍による移動量を軽減できるから、第1レン
ズ面における主光線の入射高を小さくでき、レンズ径を
小さくすることが可能である。
In the case where the entire system is composed of all five groups, the fifth lens group may be a variable power lens group in addition to the second to fourth lens groups so as to obtain the highest magnification. Alternatively, the fifth lens group may be a relay lens group fixed to the image plane even during zooming. In the former case, an optical system having a large zoom ratio can be obtained, and at the same time, the amount of movement of each lens unit due to zooming can be reduced. Therefore, the incident height of the principal ray on the first lens surface can be reduced, and the lens diameter can be reduced. It is possible to

【0020】また本発明においては、第1レンズ群を、
正の屈折力を有する前群と、正の屈折力を有する後群と
によって構成することができる。その際、前群の移動量
が後群の移動量よりも大きくなるようにしつつ、両群を
共に物体側へ繰り出すこともできるし、前群の移動量が
後群の移動量よりも小さくなるようにしつつ、両群を共
に物体側へ繰り出すこともできる。このような合焦移動
により、至近距離においても球面収差、コマ収差の他、
倍率及び軸上の色収差の変動のバランスを基準撮影距離
配置との関係で最適にとることができる。その結果、所
望の撮影距離やズーム変倍倍率の領域などを変えても、
第1レンズ群の全体を一体に繰り出す方式のものより、
広い範囲にわたり安定した結像性能を保持することが可
能である。第1レンズ群の前群の移動量を後群の移動量
よりも大きくすると、特に望遠側の結像性能に効果的で
ある。逆に前群の移動量を後群の移動量よりも小さくす
ると、特に広角側の結像性能に効果的であり、至近にお
いて合焦群の焦点距離が短くなり周辺光量を充分確保し
て合焦が可能である。
In the present invention, the first lens group is
It can be constituted by a front group having a positive refractive power and a rear group having a positive refractive power. At this time, both the groups can be extended to the object side while the movement amount of the front group is larger than the movement amount of the rear group, and the movement amount of the front group is smaller than the movement amount of the rear group. In this way, both groups can be extended to the object side. By such a focusing movement, in addition to spherical aberration and coma even at a close distance,
The balance between the magnification and the variation of the axial chromatic aberration can be optimized in relation to the reference shooting distance arrangement. As a result, even if the desired shooting distance or zoom magnification area is changed,
Compared to the system in which the entire first lens group is fed out,
It is possible to maintain stable imaging performance over a wide range. If the amount of movement of the front group of the first lens group is larger than the amount of movement of the rear group, it is particularly effective for imaging performance on the telephoto side. Conversely, if the amount of movement of the front group is smaller than the amount of movement of the rear group, it is particularly effective for image forming performance on the wide-angle side. Scorching is possible.

【0021】更に、より望ましい各種の条件を以下に述
べる。先ず、合焦レンズ群である第1レンズ群が前群と
後群とからなるときには、以下の条件を満たすことが望
ましい。 1.2<f12/f1<3.5 (1) 但し、f1:基準合焦配置での第1レンズ群の焦点距離 f12:基準合焦配置での第1レンズ群後群の焦点距離 である。(1)式の上限を越えると、前群の屈折力が強
くなり過ぎ、広角端における変倍群と合焦群との空気間
隔を十分確保することが困難であり不適当である。下限
を越えると、前群の屈折力が弱くなり過ぎ、多群化した
機能を喪失するので不適当である。
Further, various more desirable conditions will be described below. First, when the first lens unit, which is the focusing lens unit, includes a front unit and a rear unit, it is desirable that the following conditions be satisfied. 1.2 <f 12 / f 1 <3.5 (1) where f 1 is the focal length of the first lens unit in the reference in-focus position f 12 is the focal length of the rear lens unit in the reference in-focus position The focal length. When the value exceeds the upper limit of the expression (1), the refractive power of the front unit becomes too strong, and it is difficult and unsuitable to secure a sufficient air space between the zooming unit and the focusing unit at the wide-angle end. Below the lower limit, the refractive power of the front group becomes too weak, and the multi-group function is lost, which is not appropriate.

【0022】次に、 Δx11:基準合焦配置から最至近合焦配置までの前群の
移動量 Δx12:基準合焦配置から最至近合焦配置までの後群の
移動量 とすると、 K≡Δx12/Δx11 は、後群と前群との平均移動量比を表す。この平均移動
量比Kは、以下の条件を満たすことが望ましい。 0≦K<1 (2a)、又は、 1<K≦4.5 (2b)
Next, Δx 11 : the movement amount of the front group from the reference in-focus position to the closest focus position Δx 12 : the movement amount of the rear group from the reference in-focus position to the closest focus position K ≡Δx 12 / Δx 11 represents the average moving amount ratio between the rear group and the front group. This average moving amount ratio K desirably satisfies the following condition. 0 ≦ K <1 (2a) or 1 <K ≦ 4.5 (2b)

【0023】(2a)式の下限は、前群のみの移動にて
合焦することを意味する。したがって前群の移動量が大
きくなり過ぎ、広角端での至近距離で光量不足となるの
で余り好ましくはない。即ち、下限に近くなると前群の
移動量が大きくなり過ぎ、至近距離で前群の屈折力が弱
く、主光線の入射高が光軸より大きく隔たり光量不足に
なりやすく余り好ましくない。(1a)式の上限に近づ
くと、前群と後群の移動速度差が少なくなり過ぎ、近距
離補正の効果と収差補正の自由度が喪失するので余り好
ましくはない。(2b)式の下限に近づいても同様に近
距離補正の効果がなくなるので、余り好ましくはない。
K=1は、第1レンズ群の一体繰り出しによる合焦を意
味し、本発明には含まれない。(2b)式の上限を越え
ると、前群と後群が干渉しやすくなり不適当である。同
時に、干渉を避けるために前群と後群の空気間隔を充分
確保すると、基準配置での周辺光量不足が発生し、やは
り不適当である。
The lower limit of the expression (2a) means that focusing is performed by moving only the front group. Therefore, the amount of movement of the front group becomes too large, and the light quantity becomes insufficient at a close distance at the wide-angle end, which is not preferable. That is, when the distance is close to the lower limit, the amount of movement of the front group becomes too large, the refractive power of the front group becomes weak at a short distance, the incident height of the principal ray is largely separated from the optical axis, and the amount of light tends to be insufficient. When approaching the upper limit of the expression (1a), the difference between the moving speeds of the front group and the rear group becomes too small, and the effect of the short distance correction and the degree of freedom of the aberration correction are lost. It is not so preferable that the effect of the short distance correction is similarly lost even if the lower limit of the equation (2b) is approached.
K = 1 means focusing by integral extension of the first lens group, and is not included in the present invention. When the value exceeds the upper limit of the expression (2b), the front group and the rear group easily interfere with each other, which is inappropriate. At the same time, if the air gap between the front group and the rear group is sufficiently ensured to avoid interference, the peripheral light quantity becomes insufficient in the reference arrangement, which is also inappropriate.

【0024】また本発明においては、光学系のコンパク
ト性と大口径比を確保するために、次式を満たすことが
好ましい。 0.3<|φ/f3|<0.9 (3) 但し、φ:広角端における第3レンズ群の最も物側のレ
ンズ面の最大有効径 fi:第iレンズ群の焦点距離 である。
In the present invention, it is preferable that the following formula is satisfied in order to secure compactness and a large aperture ratio of the optical system. 0.3 <| φ / f 3 | <0.9 (3) where, phi: maximum lens surface on the most object side of the third lens group at the wide-angle end effective diameter f i: focal length of the i-th lens unit is there.

【0025】(3)式の上限を越えると、不必要に明る
く光学系の大型化を招き、レンズ枚数も極端に増加する
ので不適当である。また、第3レンズ群の屈折力が強く
なり過ぎ、球面収差をはじめとする諸収差の補正が困難
となり不適当である。(3)式の下限を越えると、第3
レンズ群の屈折力が弱くなり過ぎ、全系のペッツバール
和が負に過大となり不適当である。また、暗い光学系と
なり暗い被写体を撮影するとき、照明が必要となる頻度
が増すのであまり望ましくない。照明をするときはこの
限りでは無い。光学系の明るさのみを考慮すると、回折
による解像力の限界まで暗くてもよく、 |φ/f3|<0.35 としてもよい。暗い光学系においては、第2レンズ群や
第3レンズ群のレンズ枚数のさらなる削減を容易に実施
できる。
When the value exceeds the upper limit of the expression (3), the size of the optical system is unnecessarily bright, and the size of the optical system is unnecessarily increased. In addition, the refractive power of the third lens group becomes too strong, and it becomes difficult to correct various aberrations including spherical aberration, which is inappropriate. If the lower limit of the expression (3) is exceeded, the third
The refractive power of the lens group is too weak, and the Petzval sum of the entire system is negatively excessive, which is inappropriate. Also, when a dark optical system is used to photograph a dark subject, illumination is required more frequently, which is not desirable. This is not the case when lighting. Considering only the brightness of the optical system, it may be as dark as the resolution limit by diffraction, and | φ / f 3 | <0.35. In a dark optical system, the number of lenses in the second lens group and the third lens group can be further easily reduced.

【0026】また本発明においては、合焦レンズ群以外
の各レンズ群が担う倍率β2〜β5は、(A)式のように
同時等倍配置を満足するほか、更に以下の範囲とするこ
とがより望ましい。 −1.7<β2<−0.3 (4) −1.6<β3<−0.4 (5) −1.6<β4<−0.5 (6) −1.5<β5<−0.5 (7)
Further, in the present invention, the magnifications β 2 to β 5 carried by each lens unit other than the focusing lens unit satisfy the simultaneous equal-magnification arrangement as shown in the equation (A), and further fall within the following ranges. It is more desirable. −1.7 <β 2 <−0.3 (4) −1.6 <β 3 <−0.4 (5) −1.6 <β 4 <−0.5 (6) −1.5 < β 5 <−0.5 (7)

【0027】(4)式の上限を越えると、第1レンズ面
を通過する画面最周辺の主光線の入射高が光軸より著し
く隔たり、レンズ径の大型化を招くと同時に、第1レン
ズ群と第2レンズ群とが干渉し不適当である。さらに、
広角端での主光線の下側光束の外コマ収差の補正が困難
である。下限を越えると、第2レンズ群と第3レンズ群
が干渉し不適当である。(5)式の上限を越えると、広
角端で第1レンズ面を通過する画面最周辺の主光線の入
射高が光軸より著しく隔たり、レンズ径の大型化を招く
と同時に、第2レンズ群と第3レンズ群とが干渉し不適
当である。下限を越えると、望遠端での球面収差の補正
が困難となると同時に、第3レンズ群と策4レンズ群が
干渉し不適当である。(6)式の上限を越えると、広角
端で第1レンズ面を通過する画面最周辺の主光線の入射
高が光軸より著しく隔たり、レンズ径の大型化を招くと
同時に、第3レンズ群と第4レンズ群とが干渉し不適当
である。下限を越えると、主光線の上側光束の外コマ収
差の補正が困難であると同時に、第4レンズ群と第5レ
ンズ群が干渉し不適当である。(7)式の上限を越える
と、広角端で第3レンズ群と第4レンズ群とが干渉し不
適当である。下限を越えると、望遠端で第4レンズ群と
第5レンズ群とが干渉し不適当である。また、第5レン
ズ群の屈折力が過剰に強くなり、主光線の上コマのズー
ミング変動の補正が困難となる。更に広角端での第1レ
ンズ面を横切る主光線の入射高が光軸より大きく隔た
り、レンズ前玉径の大型化を招き不適当である。
When the value exceeds the upper limit of the expression (4), the incident height of the principal ray at the outermost periphery of the screen passing through the first lens surface is significantly separated from the optical axis, which causes an increase in the lens diameter. And the second lens group interfere with each other and are inappropriate. further,
It is difficult to correct the outer coma aberration of the lower beam of the principal ray at the wide angle end. Below the lower limit, the second lens group and the third lens group interfere with each other and are inappropriate. When the value exceeds the upper limit of the expression (5), the incident height of the principal ray at the outermost periphery of the screen passing through the first lens surface at the wide-angle end is significantly separated from the optical axis, resulting in an increase in the lens diameter. And the third lens group interfere with each other and are inappropriate. If the lower limit is exceeded, it becomes difficult to correct spherical aberration at the telephoto end, and at the same time, the third lens group and the fourth lens group interfere with each other, which is inappropriate. When the value exceeds the upper limit of the expression (6), the incident height of the principal ray at the outermost periphery of the screen passing through the first lens surface at the wide-angle end is remarkably separated from the optical axis, resulting in an increase in the lens diameter. And the fourth lens group interfere with each other and are inappropriate. If the lower limit is exceeded, it is difficult to correct the outer coma aberration of the upper beam of the principal ray, and at the same time, the fourth lens unit and the fifth lens unit interfere with each other, which is inappropriate. When the value exceeds the upper limit of the expression (7), the third lens unit and the fourth lens unit interfere with each other at the wide angle end, which is inappropriate. If the lower limit is exceeded, the fourth lens unit and the fifth lens unit interfere with each other at the telephoto end, which is inappropriate. Further, the refractive power of the fifth lens group becomes excessively strong, and it becomes difficult to correct the zooming fluctuation of the upper frame of the principal ray. Further, the incident height of the principal ray crossing the first lens surface at the wide-angle end is largely separated from the optical axis, and the diameter of the front lens of the lens is increased, which is inappropriate.

【0028】また本発明においては、既述のように、全
変倍レンズ群の倍率が特定のズーミング位置において同
時に等倍となるように形成してもよいし、また、2群以
上の一部の変倍レンズ群の倍率が特定のズーミング位置
において同時に等倍となるように形成してもよい。全変
倍レンズ群又は一部の変倍レンズ群が同時に等倍を満た
すレンズ配置とは、数学的な厳密性を要求されるもので
はなく、この同時等倍配置近傍のレンズ配置であっても
よい。即ち、丸めの誤差、製造公差など結像面における
焦点深度程度のピントズレを起こす倍率誤差範囲、およ
び調整による誤差範囲は当然に許容される。それ故、許
容範囲内で近似的に同時等倍となるズーム配置領域をも
含む。同時等倍配置近傍でズーム解が存在しない領域が
発生したとしても、像面でのピントの跳びを起こすズー
ム領域が小さいならば、実用上問題がないからである。
Further, in the present invention, as described above, the magnification of all the variable power lens units may be formed so as to be the same magnification at a specific zooming position at the same time. May be formed such that the magnifications of the variable magnification lens groups at the same zooming position become the same magnification at the same time. The lens arrangement in which all the variable power lens groups or some of the variable power lens groups satisfy the same magnification at the same time does not require mathematical strictness. Good. That is, a rounding error, a magnification error range that causes a defocus such as a depth of focus on the image forming plane such as a manufacturing tolerance, and an error range due to adjustment are naturally allowed. Therefore, it also includes a zoom arrangement area that is approximately the same size at the same time within the allowable range. This is because even if an area where no zoom solution exists near the same-magnification arrangement occurs, there is no practical problem as long as the zoom area that causes a jump in focus on the image plane is small.

【0029】望ましい許容範囲の目安として、いずれか
の変倍レンズ群jの倍率βcjが等倍(−1X)となるズ
ーミング位置において、他のいずれかの変倍レンズ群i
(i≠j)の倍率βciが次式の範囲内にあれば、変倍レ
ンズ群iと変倍レンズ群jとは、本発明でいう同時等倍
の条件を満たしている。 0.9<|βci|<1.1 (8) 全変倍レンズ群同時等倍のとき(8)式の上限を越える
と、望遠端からズーム解が存在しない領域が増加し、変
倍でピントの固定している領域が狭まるので不適当であ
る。下限を越えると、広角端からズーム解が存在しない
領域が増加し、変倍でピントの固定している領域が狭ま
るので不適当である。これらズーム解の無い領域が広が
ると、連続変倍を達成できない領域が増え、実用性が著
しく低下するので不適当である。しかし変倍レンズ群が
部分的同時等倍となるタイプではこの限りでない。
As a guide of a desirable allowable range, at any zooming position where the magnification β cj of one of the variable power lens groups j becomes the same magnification (−1X), any other variable power lens group i
If the magnification β ci of (i ≠ j) is within the range of the following expression, the variable power lens group i and the variable power lens group j satisfy the condition of simultaneous magnification of the present invention. 0.9 <| βci | <1.1 (8) In the case of simultaneous magnification of all zoom lens groups, when the value exceeds the upper limit of the expression (8), the area where no zoom solution exists from the telephoto end increases, and the magnification is changed. In this case, the area where the focus is fixed becomes narrow, which is inappropriate. If the lower limit is exceeded, the area where the zoom solution does not exist increases from the wide-angle end, and the area where the focus is fixed by zooming becomes narrow, which is inappropriate. If the area without the zoom solution is widened, the area where continuous zooming cannot be achieved increases, and the practicability is remarkably reduced. However, this does not apply to the type in which the variable power lens unit has a partially simultaneous magnification.

【0030】また本発明においては、次式を満たすこと
が好ましい。 0.02<β1/β5<1.0 (9) (9)式の上限を越えると、バックフォーカスが短くな
り、物点までの作動距離が短くなる。有限系として所望
の倍率、作動距離を確保できにくくなるので不適当であ
る。下限を越えると不必要に作動距離が長くなり、有限
系として利用するには不適当である。また、第5レンズ
群の倍率β5が大きいと、バックフォーカスが長くなり
光学系が大きくなるので不適当である。しかし無限遠系
として使用するとき、広角端を抑制し無限遠系となるよ
うに合焦レンズ群を配置することは容易である。このと
き下限は0とすることができる。
In the present invention, it is preferable that the following expression is satisfied. 0.02 <β 1 / β 5 <1.0 (9) When the value exceeds the upper limit of the expression (9), the back focus becomes short, and the working distance to the object point becomes short. It is not suitable because it is difficult to secure desired magnification and working distance as a finite system. If the lower limit is exceeded, the working distance becomes unnecessarily long, which is unsuitable for use as a finite system. Further, when the magnification beta 5 of the fifth lens group is large, it is inappropriate since the optical system back focus becomes longer increases. However, when used as an infinity system, it is easy to suppress the wide-angle end and arrange the focusing lens groups so as to be an infinity system. At this time, the lower limit can be set to 0.

【0031】また本発明においては、次式を満たすこと
が好ましい。 0.7<f2/f4<1.3 (10) (10)式の上限を越えると、第2レンズ群の移動量が
増大し他のレンズ群に干渉し変倍効率が低下するので、
高変倍ズームを得るには不適当である。また第4レンズ
群の屈折力が強くなり過ぎ、第5レンズ群への負荷が増
大し主光線の上側のコマ収差の補正困難となり不適当で
ある。下限を越えると、第2レンズ群の屈折力が強くな
り過ぎ、望遠端を広げることができ高倍率化が可能であ
るが、広角端で第1レンズ面を通過する画面最周辺の主
光線の入射高が光軸より著しく隔たり、レンズ径の大型
化を招くので不適当である。また球面、コマ収差等の諸
収差の補正が困難となる。
In the present invention, it is preferable to satisfy the following expression. 0.7 <f 2 / f 4 <1.3 (10) When the value exceeds the upper limit of the expression (10), the moving amount of the second lens unit increases, interferes with other lens units, and the zooming efficiency decreases. ,
It is not suitable for obtaining a high zoom ratio. In addition, the refracting power of the fourth lens group becomes too strong, and the load on the fifth lens group increases, making it difficult to correct coma aberration above the chief ray, which is inappropriate. If the lower limit is exceeded, the refracting power of the second lens group becomes too strong, so that the telephoto end can be widened and high magnification can be achieved. This is inappropriate because the incident height is significantly different from the optical axis and the lens diameter is increased. Also, it becomes difficult to correct various aberrations such as spherical aberration and coma.

【0032】[0032]

【発明の実施の形態】本発明の実施の形態を説明する。
図3、図10、図17及び図24は、それぞれ本発明に
よるズーム光学系の第1、第2、第3及び第4実施例の
レンズ構成図である。全ての実施例は、物側から順に正
の屈折力を有する第1レンズ群G1、負の屈折力を有す
る第2レンズ群G2、正の屈折力を有する第3レンズ群
3、負の屈折力を有する第4レンズ群G4、及び正の屈
折力を有する第5レンズ群G5からなるズームレンズで
ある。また第1レンズ群G1は、正の屈折力を有する前
群G11と、正の屈折力を有する後群G12とからなる。し
たがって第1レンズ群の前群G11と後群G12を、第2〜
第5レンズ群と同等の扱いで数えると、6群構成のズー
ムレンズであるということもできる。
Embodiments of the present invention will be described.
FIGS. 3, 10, 17, and 24 are lens configuration diagrams of first, second, third, and fourth embodiments of the zoom optical system according to the present invention, respectively. In all the embodiments, in order from the object side, a first lens group G 1 having a positive refractive power, a second lens group G 2 having a negative refractive power, a third lens group G 3 having a positive refractive power, a negative lens group Is a zoom lens including a fourth lens group G 4 having a positive refractive power and a fifth lens group G 5 having a positive refractive power. The first lens group G 1 includes a front group G 11 having a positive refractive power and a rear group G 12 having a positive refractive power. Thus the rear group G 12 and the front group G 11 of the first lens group, the second to
If counted in the same manner as the fifth lens group, it can be said that the zoom lens has a six-group configuration.

【0033】第1レンズ群の前群G11と後群G12は、合
焦に際して相互依存的に物体側に繰り出され、撮影距
離、ズーム変倍倍率の領域などを変えている。このうち
第1〜第3実施例では、前群G11の移動量の方が後群G
12の移動量よりも大きく、第4実施例では、前群G11
移動量の方が後群G12の移動量よりも小さい。また第1
実施例では、第2〜第5レンズ群G2〜G5がズーミング
に際して光軸方向に相互依存的に移動するズーム変倍部
となっている。他方、第2〜第4実施例では、第2〜第
4レンズ群G2〜G4がズーム変倍部となっており、第5
レンズ群G5は像面に対して固定されている。第5レン
ズ群G5は、バックフォーカスの長さや射出瞳位置を決
定づける主要なレンズ群である。開口絞りSは、いずれ
の実施例でも第3レンズ群G3の物側1mmの所に配置
してある。いずれの実施例も、広角端で実効F値がF/
2.0程度と非常に明るく、基準撮影距離において周辺
光量も充分確保されており、撮影距離が変化しても収差
変動が少ない非常に高性能なズーム光学系である。
The first lens group G 12 rear and front group G 11 of the group, fed to interdependently object side for focusing, Range, is changed and area of the zooming magnification. Among the first to third embodiment, the moving amount of it is the rear group of the front group G 11 G
Greater than the amount of movement of 12, in the fourth embodiment, smaller than the movement amount in the direction of movement amount rear group G 12 of the front group G 11. Also the first
In the embodiment, the second to fifth lens groups G 2 to G 5 are zoom magnification units that move in the optical axis direction in a dependent manner during zooming. On the other hand, in the second to fourth embodiments, the second to fourth lens groups G 2 ~G 4 has a zoom magnification unit, fifth
Lens group G 5 is fixed with respect to the image plane. The fifth lens group G 5 is the main lens group which determines the length and the exit pupil position of the back focus. The aperture stop S is, in any embodiment is disposed at the third object side 1mm lens group G 3. In any of the embodiments, the effective F value at the wide-angle end is F /
This is a very high-performance zoom optical system that is very bright at about 2.0, has a sufficient peripheral light amount at the reference shooting distance, and has little aberration variation even when the shooting distance changes.

【0034】第1〜第4実施例の諸元を表1〜表4に示
す。各表の[全体諸元]中、ωは半画角を表す。[レン
ズ諸元]中、第1欄は物側からのレンズ面の番号、第2
欄rは各レンズ面の曲率半径、第3欄dは各レンズ面の
間隔、第4欄νdは各レンズの輝線スペクトルd線(基
準波長λ=587.6nm)を基準としたアッベ数、第
5欄ndはd線に対す屈折率、第6欄はレンズ番号を表
す。[変倍における可変間隔]中、d0は物点距離、R
は撮影距離を表す。また各表の[各レンズ群の焦点距離
と倍率]と[条件対応値]に示されるように、各実施例
とも前記各条件式(1)〜(10)を満たすように形成
されている。
Tables 1 to 4 show the specifications of the first to fourth embodiments. In the [Overall Specifications] of each table, ω represents a half angle of view. In [Lens Specifications], the first column is the number of the lens surface from the object side,
Column r is the radius of curvature of each lens surface, third column d is the distance between each lens surface, fourth column ν d is the Abbe number based on the bright line spectrum d line (reference wavelength λ = 587.6 nm) of each lens, refractive index column 5 n d to against the d line, column 6 represents the lens number. In [variable interval in zooming], d 0 is the object point distance, R
Represents the shooting distance. Further, as shown in [Focal Length and Magnification of Each Lens Group] and [Condition Corresponding Value] in each table, each embodiment is formed so as to satisfy the above conditional expressions (1) to (10).

【0035】第1実施例はズーム比10倍で、フィルタ
ーを除き12群18枚のレンズ構成である。ズーム変倍
部は第2レンズ群G2から第5レンズ群G5であり、この
ズーム変倍部は4群同時等倍配置を満たす。また第1レ
ンズ群の前群G11の移動量は、後群G12の移動量よりも
大きい。この実施例のその他の特徴は、第2レンズ群G
2と第4レンズ群G4の強めの屈折力配分、及び第3レン
ズ群G3のレンズ形状と配列である。更に、これらのレ
ンズ配置とレンズ形状により、主光線の下側コマ収差の
ズーム変動が補正されている。すなわち第1実施例は、
物側に平行平面のフィルターL1を有し、次いで各レン
ズ群G1〜G5を有する。第1レンズ群の前群G11は、物
側に曲率の弱い凸面を向けた負メニスカスレンズ成分L
2と物側に曲率の強い凸面を向けた正レンズ成分L3との
貼り合わせ正レンズL23から成り、後群G12は、物側
に曲率の強い凸面を向けた正メニスカスレンズ成分L4
からなる。第2レンズ群G2は、物側に曲率の弱い凸面
を向けた負メニスカスレンズ成分L5と、空気間隔を隔
て物側に曲率の弱い凸面を向けた負メニスカスレンズ成
分L6と、空気間隔を隔て物側に曲率の弱い凹面を向け
た正メニスカスレンズ成分L7と物側に曲率の強い凹面
を向けた負メニスカスレンズL8との貼り合わせ負レン
ズL78とからなる。第3レンズ群G3は、物側に曲率
の弱い凹面を向けた正メニスカスレンズ成分L9と物側
に曲率の強い凹面を向けた負メニスカスレンズ成分L10
との貼り合わせ正レンズL910と、物側に曲率の強い
凸面を向けた両凸レンズ成分L11からなる。第4レンズ
群G4は、像側に曲率の強い凸面を向けた正メニスカス
レンズ成分L12と両凹レンズ成分L13との貼り合わせ負
レンズL1213と、空気間隔を隔て、両凹レンズ成分L
14と物側に曲率の強い凸面を向けた正レンズ成分L15
の貼り合わせ正レンズL1415とからなる。第5レンズ
群G5は、物側に曲率の弱い凹面を向けた正メニスカス
レンズ成分L16と、像側に曲率の強い凸面を向けた正レ
ンズ成分L17と物側に曲率の強い凹面を向けた負メニス
カスレンズ成分L18との貼り合わせ正レンズL17
18と、物側に曲率の強い凸面を向けた正レンズ成分L19
からなる。
The first embodiment has a zoom ratio of 10 times and a lens configuration of 18 elements in 12 groups excluding a filter. The zoom scaling unit is a fifth lens group G 5 from the second lens group G 2, the zoom scaling unit satisfies the simultaneous magnification arranged four groups. The movement of the first lens group of the front group G 11 is larger than the moving amount of the rear group G 12. Another feature of this embodiment is that the second lens group G
2 the refractive power distribution of the strengthening of the fourth lens group G 4, and a lens shape and arrangement of the third lens group G 3. Further, the zoom fluctuation of the lower coma of the principal ray is corrected by the lens arrangement and the lens shape. That is, in the first embodiment,
Having filter L 1 parallel plane at the object side, then have a G 1 ~G 5 each lens. Front group G 11 of the first lens group, a negative meniscus lens component curvature directed weak convex surface facing the object side L
2 and objects made of cemented positive lens L 2 L 3 between the positive lens component L 3 having a strong convex surface facing the curvature side, the rear group G 12 is a positive meniscus lens component having its stronger curvature convex surface facing the object side L 4
Consists of The second lens group G 2 is composed of a negative meniscus lens component L 5 toward a weak convex of curvature at the object side, a negative meniscus lens component L 6 toward a weak convex with curvature across product side air gap, the air gap bonding of a negative meniscus lens L 8 with its stronger curvature concave surface facing the separating material positive meniscus lens component L 7 and the object side toward the curvature weak concave surface facing the side a negative lens L 7 L 8 Prefecture. The third lens group G 3 is a positive meniscus lens component curvature directed weak concave surface facing the object side L 9 and goods negative meniscus lens component with its stronger curvature concave surface facing the side L 10
The cemented positive lens L 9 L 10 with, a biconvex lens component L 11 with its stronger curvature convex surface facing the object side. The fourth lens group G 4 is composed of a negative lens L 12 L 13 bonded between the positive meniscus lens component L 12 with its stronger curvature convex surface facing the image side and a biconcave lens component L 13, an air space, a biconcave lens component L
14 and a positive lens L 14 L 15 bonded to a positive lens component L 15 having a convex surface having a strong curvature on the object side. The fifth lens group G 5 includes a positive meniscus lens component L 16 having a concave surface having a weak curvature toward the object side, a positive lens component L 17 having a convex surface having a strong curvature toward the image side, and a concave surface having a strong curvature toward the object side. Lens L 17 L bonded with negative meniscus lens component L 18
18 and a positive lens component L 19 having a convex surface with a strong curvature directed to the object side.
Consists of

【0036】第2実施例はズーム比6倍で、フィルター
を除き12群17枚のレンズ構成である。ズーム変倍部
は第2レンズ群G2から第4レンズ群G4であり、このズ
ーム変倍部は3群同時等倍配置を満たす。また第1レン
ズ群の前群G11の移動量は、後群G12の移動量よりも大
きい。この実施例のその他の特徴は、第2レンズ群G2
のレンズ配列とレンズL11の形状である。すなわち第2
実施例は、物側に平行平面のフィルターL1を有し、次
いで各レンズ群G1〜G5を有する。第1レンズ群の前群
11は、物側に曲率の弱い凸面を向けた負メニスカスレ
ンズ成分L2と物側に曲率の強い凸面を向けた正レンズ
成分L3の貼り合わせ正レンズL23から成り、後群G
12は、物側に曲率の強い凸面を向けた正メニスカスレン
ズ成分L4からなる。第2レンズ群G2は、物側に曲率の
弱い凸面を向けた負メニスカスレンズ成分L5と、空気
間隔を隔て両凹レンズ成分L6と、空気間隔を隔て両凸
レンズ成分L7と両凹レンズ成分L8との貼り合わせ正レ
ンズL78とからなる。第3レンズ群G3は、物側に凸
面を向けた正レンズ成分L9と物側に曲率の強い凹面を
向けた負メニスカスレンズ成分L10との貼り合わせ正レ
ンズL910と、両凸レンズ成分L11からなる。第4レ
ンズ群G4は、像側に曲率の強い凹面を向けた負レンズ
成分L12と、空気間隔を隔て両凹レンズ成分L13と物側
に曲率の強い凸面を向けた正レンズ成分L14との貼り合
わせ負レンズL1314とからなる。第5レンズ群G
5は、物側に曲率の弱い凹面を向けた正メニスカスレン
ズ成分L15と、像側に曲率の強い凸面を向けた正レンズ
成分L16と物側に曲率の強い凹面を向けた負メニスカス
レンズ成分L17との貼り合わせ正レンズL1617と、両
凸レンズ成分L18からなる。
The second embodiment has a zoom ratio of 6 and a lens configuration of 17 elements in 12 groups, excluding filters. The zoom scaling unit is a fourth lens group G 4 from the second lens group G 2, the zoom scaling unit satisfies the simultaneous magnification arrangement 3 group. The movement of the first lens group of the front group G 11 is larger than the moving amount of the rear group G 12. Another feature of this embodiment is that the second lens group G 2
In the shape of the lens array and the lens L 11. That is, the second
Embodiment has a filter L 1 parallel plane at the object side, then have a G 1 ~G 5 each lens. Front group G 11 of the first lens group to an object curvatures positive lens component L 3 bonding of with its stronger curvature convex surface facing the negative meniscus lens component L 2 and the object side toward a weak convex surface on the side positive lens L 2 It consists of L 3, after the group G
12 is composed of a positive meniscus lens component L 4 with its stronger curvature convex surface facing the object side. The second lens group G 2 is composed of a negative meniscus lens component L 5 toward a weak convex of curvature at the object side, a biconcave lens component L 6 an air space, a biconvex lens component L 7 an air space biconcave lens component bonding a positive lens L 7 L 8 Metropolitan of the L 8. The third lens group G 3 includes a cemented positive lens L 9 L 10 of the negative meniscus lens component L 10 with its stronger curvature concave surface facing the positive lens component L 9 and the object side with a convex surface facing the object side, both comprising a convex lens component L 11. The fourth lens group G 4 includes a negative lens component L 12 having a concave surface with a strong curvature on the image side, a biconcave lens component L 13 with a space between the air, and a positive lens component L 14 having a convex surface with a strong curvature on the object side. And negative lenses L 13 and L 14 bonded together. Fifth lens group G
5, a positive meniscus lens component L 15 having its curvature weak concave surface facing the object side, a negative meniscus lens with its stronger curvature concave surface facing the positive lens component L 16 and the object side toward the stronger curvature convex surface facing the image side It comprises a positive lens L 16 L 17 bonded to the component L 17 and a biconvex lens component L 18 .

【0037】第3実施例はズーム比5倍で、フィルター
を除き13群19枚のレンズ構成である。ズーム変倍部
は第2レンズ群G2から第4レンズ群G4であるが、全3
群のズーム変倍部のうち、第2レンズ群G2と第3レン
ズ群G3との2群だけが同時等倍配置を満たす。しかも
この部分的同時等倍となるズーミング位置は、望遠端よ
りも更に高倍率側にある。また第1レンズ群の前群G11
の移動量は、後群G12の移動量よりも大きい。この実施
例のその他の特徴は、結像性能を確保のため、第2レン
ズ群G2のレンズ配列と第3レンズ群G3のレンズL11
状である。更に、これらのレンズ配置とレンズ形状によ
り主光線の上側と下側のコマ収差のズーム変動が補正さ
れている。すなわち第3実施例は、物側に平行平面のフ
ィルターL1を有し、次いで各レンズ群G1〜G5を有す
る。第1レンズ群の前群G11は、物側に曲率の弱い凸面
を向けた負メニスカスレンズ成分L2と物側に曲率の強
い凸面を向けた正レンズ成分L3との貼り合わせ正レン
ズL23から成る。後群G12は、物側に曲率の強い凸面
を向けた正メニスカスレンズ成分L4からなる。第2レ
ンズ群G2は、物側に曲率の弱い凸面を向けた負メニス
カスレンズ成分L5と、空気間隔を隔て物側に曲率の弱
い凸面を向けた負メニスカスレンズ成分L6と、空気間
隔を隔て物側に曲率の弱い凹面を向けた正メニスカスレ
ンズ成分L7と物側に曲率の強い凹面を向けた負メニス
カスレンズL8との貼り合わせ負レンズL78とからな
る。第3レンズ群G3は、両凸レンズ成分L9と物側に曲
率の強い凹面を向けた負メニスカスレンズ成分L10との
貼り合わせ正レンズL910と、両凸レンズ成分L11
らなる。第4レンズ群G4は、像側に曲率の強い凸面を
向けた正メニスカスレンズ成分L12と両凹レンズ成分L
13との貼り合わせ負レンズL1213と、空気間隔を隔
て、両凹レンズ成分L14と物側に曲率の強い凸面を向け
た正レンズ成分L15との貼り合わせ正レンズL1415
からなる。第5レンズ群G5は、物側に曲率の弱い凹面
を向けた正メニスカスレンズ成分L16と、物側に曲率の
弱い凹面を向けた両凹レンズ成分L17と物側に曲率の強
い凸面を向けた両凸レンズ成分L18との貼り合わせ負レ
ンズL1718と、両凸レンズ成分L19と、物側に曲率の
強い凸面を向けた両凸レンズ成分L20からなる。
The third embodiment has a lens configuration of 19 elements in 13 groups, excluding filters, with a zoom ratio of 5 times. While zooming unit is the fourth lens group G 4 from the second lens group G 2, all three
Among the zoom magnification of the group, only two groups of the second lens group G 2 and the third lens group G 3 satisfies the simultaneous magnification arrangement. In addition, the zooming position at which the partial simultaneous magnification is at a higher magnification side than at the telephoto end. Also, the front group G 11 of the first lens group
Movement amount of is greater than the movement amount of the rear group G 12. Other features of this embodiment, to secure the imaging performance, a lens array of the second lens group G 2 and the lens L 11 form the third lens group G 3. Further, zoom fluctuation of coma aberration on the upper side and the lower side of the principal ray is corrected by the lens arrangement and the lens shape. That third embodiment has a filter L 1 parallel plane at the object side, then have a G 1 ~G 5 each lens. Front group G 11 of the first lens group, a positive cemented lens of a positive lens component L 3 having a strong convex surface facing the curvature a negative meniscus lens component L 2 and the object side toward the weak convex of curvature at the object side L consisting of 2 L 3. Rear group G 12 includes a positive meniscus lens component L 4 with its stronger curvature convex surface facing the object side. The second lens group G 2 is composed of a negative meniscus lens component L 5 toward a weak convex of curvature at the object side, a negative meniscus lens component L 6 toward a weak convex with curvature across product side air gap, the air gap bonding of a negative meniscus lens L 8 with its stronger curvature concave surface facing the separating material positive meniscus lens component L 7 and the object side toward the curvature weak concave surface facing the side a negative lens L 7 L 8 Prefecture. The third lens group G 3 includes a cemented positive lens L 9 L 10 of the negative meniscus lens component L 10 with its stronger curvature concave surface facing the biconvex lens component L 9 and the object side, a biconvex lens component L 11. The fourth lens unit G 4 includes a positive meniscus lens component L 12 having a convex surface having a strong curvature on the image side and a biconcave lens component L
A negative lens L 12 L 13 bonded to a positive lens L 14 L 15 bonded to a biconcave lens component L 14 and a positive lens component L 15 having a convex surface with a strong curvature on the object side at an air gap. Consists of The fifth lens group G 5 includes a positive meniscus lens component L 16 having its curvature weak concave surface facing the object side, a biconcave lens component L 17 and goods strong curvature side convex curvature directed weak concave surface facing the object side It is composed of a negative lens L 17 L 18 bonded to a bi-convex lens component L 18 , a bi-convex lens component L 19, and a bi-convex lens component L 20 with a convex surface having a strong curvature facing the object side.

【0038】第4実施例はズーム比7倍で、フィルター
を除き12群17枚のレンズ構成であり、ズーム変倍部
は第2レンズ群G2から第4レンズ群G4であり、このズ
ーム変倍部は3群同時等倍配置を満たす。また第1レン
ズ群の前群G11の移動量は、後群G12の移動量よりも小
さい。この実施例のその他の特徴は、第2レンズ群G2
のレンズ配列とレンズL11の形状である。すなわち第3
実施例は、物側に平行平面のフィルターL1を有し、次
いで各レンズ群G1〜G5を有する。第1レンズ群の前群
11は、物側に曲率の弱い凸面を向けた負メニスカスレ
ンズ成分L2と物側に曲率の強い凸面を向けた正レンズ
成分L3との貼り合わせ正レンズL23から成る。後群
12は、空気間隔を隔て物側に曲率の強い凸面を向けた
正メニスカスレンズ成分L4からなる。第2レンズ群G2
は、物側に曲率の弱い凸面を向けた負メニスカスレンズ
成分L5と、空気間隔を隔て物側に曲率の弱い凸面を向
けた負メニスカスレンズ成分L6と、空気間隔を隔て物
側に曲率の弱い凹面を向けた正メニスカスレンズ成分L
7と物側に曲率の強い凹面を向けた負メニスカスレンズ
成分L8との貼り合わせ負レンズL78とからなる。第
3レンズ群G3は、物側に凸面を向けた正レンズ成分L9
と物側に曲率の強い凹面を向けた負メニスカスレンズ成
分L10との貼り合わせ正レンズL910と、物側に凸面
を向けた正レンズ成分L11からなる。第4レンズ群G4
は、像側に曲率の強い凹面を向けた負レンズ成分L
12と、空気間隔を隔て両凹レンズ成分L13と物側に曲率
の強い凸面を向けた正レンズ成分L14との貼り合わせ負
レンズL1314とからなる。第5レンズ群G5は、物側
に曲率の弱い凹面を向けた正メニスカスレンズ成分L15
と、像側に曲率の強い凸面を向けた正レンズ成分L16
物側に曲率の強い凹面を向けた負メニスカスレンズ成分
17との貼り合わせ正レンズL1617と、両凸レンズ成
分L18からなる。
[0038] In the fourth embodiment has a zoom ratio of 7 times, a 12 group 17 lenses configuration except for the filter, zoom magnification unit is the fourth lens group G 4 from the second lens group G 2, the zoom The zoom unit satisfies the three-unit simultaneous equal-size arrangement. The movement of the first lens group of the front group G 11 is smaller than the moving amount of the rear group G 12. Another feature of this embodiment is that the second lens group G 2
In the shape of the lens array and the lens L 11. That is, the third
Embodiment has a filter L 1 parallel plane at the object side, then have a G 1 ~G 5 each lens. Front group G 11 of the first lens group, a positive cemented lens of a positive lens component L 3 having a strong convex surface facing the curvature a negative meniscus lens component L 2 and the object side toward the weak convex of curvature at the object side L consisting of 2 L 3. Rear group G 12 includes a positive meniscus lens component L 4 having a strong convex surface facing the curvature across product side air gap. Second lens group G 2
Is composed of a negative meniscus lens component L 5 toward a weak convex of curvature at the object side, a negative meniscus lens component L 6 toward a weak convex with curvature across product side an air space, the curvature on the object side an air space Meniscus lens component L with a weak concave surface
Bonding a negative lens L 7 L 8 Metropolitan of curvature directed strong concave surface 7 and the object side and a negative meniscus lens component L 8. The third lens group G 3 is a positive lens component a convex surface facing the object side L 9
And cemented positive lens L 9 L 10 of the negative meniscus lens component L 10 with its stronger curvature concave surface facing the object side, a positive lens component L 11 having a convex surface directed toward the object side. Fourth lens group G 4
Is a negative lens component L having a concave surface with a strong curvature directed to the image side.
A negative lens L 13 L 14 is formed by bonding a bi-concave lens component L 13 with a positive lens component L 14 having a convex surface having a strong curvature to the object side at an air interval. The fifth lens group G 5 includes a positive meniscus lens component L 15 having a concave surface with a weak curvature directed to the object side.
A positive lens component L 16 having a convex surface having a strong curvature on the image side and a negative meniscus lens component L 17 having a concave surface having a strong curvature on the object side, and a positive lens L 16 L 17 and a biconvex lens component L Consists of eighteen .

【0039】[0039]

【表1】 [全体諸元] F/2.0〜F/4.5 1/5x〜1/50x 2ω=39.68°〜3.74° f=15.243〜165.735 [レンズ諸元] No r d νdd 1 ∞ 2.000 64.1 1.51680 L1 2 ∞ 1.000 3 52.282 1.600 25.3 1.80518 L2 4 32.482 9.000 60.2 1.51835 L3 5 844.031 (d5) 6 43.375 6.000 53.5 1.54739 L4 7 363.126 (d7) 8 60.978 1.400 49.5 1.77279 L5 9 18.150 3.900 10 268.375 1.350 49.5 1.77279 L6 11 51.622 3.000 12 -23.337 3.500 25.3 1.80518 L7 13 -13.700 1.350 49.5 1.77279 L8 14 -44.295 (d14) 15 -132.125 4.500 82.5 1.49782 L9 16 -16.000 1.300 33.9 1.80384 L10 17 -26.136 0.200 18 34.000 4.000 82.5 1.49782 L11 19 -62.143 (d19) 20 -41.516 2.500 29.5 1.71736 L12 21 -15.500 1.200 55.6 1.69680 L13 22 156.882 2.500 23 -23.900 1.200 53.9 1.71300 L14 24 18.500 3.500 29.5 1.71736 L15 25 199.281 (d25) 26 -76.599 5.500 58.5 1.65160 L16 27 -22.396 0.200 28 169.243 8.500 82.5 1.49782 L17 29 -21.000 1.400 25.3 1.80518 L18 30 -58.655 0.200 31 33.154 6.000 82.5 1.49782 L19 32 -192.838 (d32) [基準合焦配置での変倍における可変間隔] 位置1 位置2 位置3 位置4 位置5 位置6 β -0.0200 -0.0400 -0.0600 -0.1000 -0.1400 -0.2000 d0 705.0847 705.0847 705.0847 705.0847 705.0847 705.0847 d5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 d7 2.8003 12.7987 16.7368 20.6362 22.8835 24.7653 d14 45.8177 30.2716 22.6052 13.5234 7.4751 1.3959 d19 7.6319 14.2001 19.0318 25.8317 30.5834 36.1520 d25 11.8480 9.7180 7.8688 5.2149 3.5039 1.2933 d32 42.1564 43.2659 44.0117 45.0481 45.8084 46.6478 R 893.1390 893.1390 893.1389 893.1390 893.1390 893.1390 [至近合焦配置での変倍における可変間隔] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ β -0.0300 -0.0600 -0.0900 -0.1500 -0.2100 -0.3000 d0 492.7370 492.7361 492.7375 492.7358 492.7356 492.7372 d5 4.5942 4.5943 4.5942 4.5943 4.5943 4.5942 d7 5.1965 15.1949 19.1330 23.0324 25.2797 27.1615 d14 45.8177 30.2716 22.6052 13.5234 7.4751 1.3959 d19 7.6319 14.2001 19.0318 25.8317 30.5834 36.1520 d25 11.8480 9.7180 7.8688 5.2149 3.5039 1.2933 d32 42.1564 43.2659 44.0116 45.0481 45.8084 46.6476 R 686.7817 686.7809 686.7821 686.7805 686.7804 686.7817 [基準合焦配置での各レンズ群の焦点距離と倍率] 位置1 位置2 位置3 位置4 位置5 位置6 f βw βc βt1 60.000 -0.09203 -0.09203 -0.09203 -0.09203 -0.09203 -0.09203 G11 163.6832 -0.30194 -0.30194 -0.30194 -0.30194 -0.30194 -0.30194 G12 89.3953 0.30479 0.30479 0.30479 0.30479 0.30479 0.30479 G2 -17.5000 -0.50518 -0.71014 -0.84521 -1.04132 -1.20207 -1.38051 G3 32.0000 -0.59271 -0.76137 -0.87129 -1.02969 -1.14935 -1.28589 G4 -17.5000 -0.80956 -0.85594 -0.91473 -1.00573 -1.06206 -1.14542 G5 26.0000 -0.89612 -0.93877 -0.96743 -1.00721 -1.03632 -1.06833 [至近合焦配置での各レンズ群の焦点距離と倍率] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ f βw βc βt1 60.8975 -0.13801 -0.13801 -0.13801 -0.13801 -0.13801 -0.13801 G11 163.6832 -0.49639 -0.49639 -0.49639 -0.49639 -0.49639 -0.49639 G12 89.3953 0.27803 0.27803 0.27803 0.27803 0.27803 0.27803 G2 -17.5000 -0.50523 -0.71025 -0.84536 -1.04155 -1.20237 -1.38092 G3 32.0000 -0.59270 -0.76133 -0.87123 -1.02956 -1.14913 -1.28552 G4 -17.5000 -0.80957 -0.85598 -0.91482 -1.00597 -1.06251 -1.14630 G5 26.0000 -0.89611 -0.93875 -0.96737 -1.00704 -1.03600 -1.06766 [条件対応値] φ=17.9 φ/f3=0.559 K=0.400 β1/β5=0.1027 f12/f1=1.49 f2/f4=1.0[Table 1] [Overall specifications] F / 2.0 to F / 4.5 1 / 5x to 1 / 50x 2ω = 39.68 ° to 3.74 ° f = 15.243 to 165.735 [Lens specifications] Nord ν dn d 1 ∞ 2.000 64.1 1.51680 L 1 2 ∞ 1.000 3 52.282 1.600 25.3 1.80518 L 2 4 32.482 9.000 60.2 1.51835 L 3 5 844.031 (d 5) 6 43.375 6.000 53.5 1.54739 L 4 7 363.126 (d 7) 8 60.978 1.400 49.5 1.77279 L 5 9 18.150 3.900 10 268.375 1.350 49.5 1.77279 L 6 11 51.622 3.000 12 -23.337 3.500 25.3 1.80518 L 7 13 -13.700 1.350 49.5 1.77279 L 8 14 -44.295 (d 14 ) 15 -132.125 4.500 82.5 1.49782 L 9 16 -16.000 1.300 33.9 1.80384 L 10 17 -26.136 0.200 18 34.000 4.000 82.5 1.49782 L 11 19 -62.143 (d 19 ) 20 -41.516 2.500 29.5 1.71736 L 12 21 -15.500 1.200 55.6 1.69680 L 13 22 156.882 2.500 23 -23.900 1.200 53.9 1.71300 L 14 24 18.500 3.500 29.5 1.71736 L 15 25 199.281 (d 25 ) 26 -76.599 5.500 58.5 1.65 160 L 16 27 -22.396 0.200 28 169.243 8.500 82.5 1.49782 L 17 29 -21.000 1.400 25.3 1.80518 L 18 30 -58.655 0.200 31 33.154 6.000 82.5 1.49782 L 19 32 -192.838 (d 32) Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 [variable spaces at zooming in the reference focusing arrangement] β -0.0200 -0.0400 -0.0600 -0.1000 -0.1400 -0.2000 d 0 705.0847 705.0847 705.0847 705.0847 705.0847 705.0847 d 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 d 7 2.8003 12.7987 16.7368 20.6362 22.8835 24.7653 d 14 45.8177 30.2716 22.6052 13.5234 7.4751 1.3959 d 19 7.6319 14.2001 19.0318 25.8317 30.5834 36.1520 d 25 11.8480 9.7180 7.8688 5.2149 3.5039 1.2933 d 32 42.1564 43.2659 44.0117 45.0481 45.8084 46.6478 R 893.1390 893.1390 893.1389 893.1390 893.1390 893.1390 position [variable spaces at zooming at close focus arrangement] 1 'position 2' position 3 'position 4' position 5 'Position 6' β -0.0300 -0.0600 -0.0900 -0.1500 -0.2100 -0.3000 d 0 492.7370 492.7361 492.7375 492.7358 492.7356 492.7372 d 5 4.5942 4.5943 4.5942 4.5943 4.5943 4.5942 d 7 5.1965 15.1949 19.1330 23.0324 25.2797 27.1615 d 14 45.8177 30.2716 22.6052 13.5234 7.4751 1.3959 d 19 7.6319 14.2001 19.0318 25.8317 30.5834 36.1520 d 25 11.8480 9.7180 7.8688 5.2149 3.5039 1.2933 d 32 42.1564 43.2659 44.0116 45.0 676 686.867 Focal length and magnification of each lens group in focal arrangement] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 f β w β c β t G 1 60.000 -0.09203 -0.09203 -0.09203 -0.09203 -0.09203 -0.09203 G 11 163.6832 -0.30194 -0.30194 -0.30194 -0.30194 -0.30194 -0.30194 G 12 89.3953 0.30479 0.30479 0.30479 0.30479 0.30479 0.30479 G 2 -17.5000 -0.50518 -0.71014 -0.84521 -1.04132 -1.20207 -1.38051 G 3 32.0000 -0.59271 -0.76137 -0.87129 -1.02969 -1.14935 -1.28589 G 4 -17.5000 -0.80956 -0.85594 -0.91473 -1.00573 -1.06206 -1.14542 G 5 26.0000 -0.89612 -0.93877 -0.96743 -1.00721 -1.03632 -1.06833 [ focal point of each lens group at close focusing arrangement Away and the magnification] position 1 'position 2' position 3 'position 4' position 5 'position 6' f β w β c β t G 1 60.8975 -0.13801 -0.13801 -0.13801 -0.13801 -0.13801 -0.13801 G 11 163.6832 -0.49639 - 0.49639 -0.49639 -0.49639 -0.49639 -0.49639 G 12 89.3953 0.27803 0.27803 0.27803 0.27803 0.27803 0.27803 G 2 -17.5000 -0.50523 -0.71025 -0.84536 -1.04155 -1.20237 -1.38092 G 3 32.0000 -0.59270 -0.76133 -0.87123 -1.02956 -1.14913 -1.28552 G 4 -17.5000 -0.80957 -0.85598 -0.91482 -1.00597 -1.06251 -1.14630 G 5 26.0000 -0.89611 -0.93875 -0.96737 -1.00704 -1.03600 -1.06766 [ condition correspondence value] φ = 17.9 φ / f 3 = 0.559 K = 0.400 β 1 / β 5 = 0.1027 f 12 / f 1 = 1.49 f 2 / f 4 = 1.0

【0040】[0040]

【表2】 [全体諸元] F/2.1〜F/3.9 1/8.33x〜1/50x 2ω=40.54°〜6.56° f=14.850〜101.114 [レンズ諸元] No r d νdd 1 ∞ 2.000 64.1 1.51680 L1 2 ∞ 1.000 3 84.814 1.500 25.4 1.80518 L2 4 38.000 6.900 53.8 1.69350 L3 5 711.998 (d5) 6 34.914 4.500 57.6 1.67025 L4 7 84.294 (d7) 8 44.392 1.200 52.3 1.74810 L5 9 17.923 5.300 10 -80.515 1.100 52.3 1.74810 L6 11 39.416 0.200 12 33.395 5.000 25.4 1.80518 L7 13 -55.000 1.000 49.4 1.77279 L8 14 40.347 (d14) 15 85.366 2.700 82.6 1.49782 L9 16 -26.000 1.000 25.4 1.80518 L10 17 -45.897 0.200 18 35.440 2.600 82.6 1.49782 L11 19 -98.669 (d19) 20 40.094 1.100 60.3 1.62041 L12 21 19.460 3.600 22 -15.929 1.100 54.0 1.61720 L13 23 22.151 2.600 25.4 1.80518 L14 24 -24812.402 (d24) 25 -120.081 3.500 45.4 1.79668 L15 26 -27.887 0.200 27 1148.998 5.500 82.6 1.49782 L16 28 -17.500 1.000 25.4 1.80518 L17 29 -42.177 0.200 30 45.122 4.000 82.6 1.49782 L18 31 -57.782 37.387 [基準合焦配置での変倍における可変間隔] 位置1 位置2 位置3 位置4 位置5 位置6 β -0.0200 -0.0400 -0.0500 -0.0800 -0.1000 -0.1200 d0 693.6641 693.6641 693.6641 693.6641 693.6641 693.6641 d5 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 d7 0.4502 9.9375 12.3643 16.6791 18.5758 19.4169 d14 47.6096 31.2219 26.2969 16.1963 11.0704 8.1311 d19 2.8744 11.6378 14.8106 22.1585 25.8642 29.5441 d24 10.5323 8.6693 7.9947 6.4326 5.9561 4.3744 R 851.7421 851.7420 851.7420 851.7421 851.7421 851.7421 [至近合焦配置での変倍における可変間隔] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ β -0.0300 -0.0600 -0.0750 -0.1200 -0.1500 -0.1800 d0 484.4738 484.4727 484.4742 484.4728 484.4729 484.4738 d5 3.4157 3.4158 3.4157 3.4158 3.4157 3.4157 d7 2.9051 12.3924 14.8192 19.1340 21.0307 21.8718 d14 47.6096 31.2219 26.2969 16.1963 11.0704 8.1311 d19 2.8744 11.6378 14.8106 22.1585 25.8642 29.5441 d24 10.5323 8.6693 7.9947 6.4326 5.9561 4.3744 R 648.1980 648.1969 648.1983 648.1971 648.1971 648.1979 [基準合焦配置での各レンズ群の焦点距離と倍率] 位置1 位置2 位置3 位置4 位置5 位置6 f βw βc βt1 58.8368 -0.09193 -0.09193 -0.09193 -0.09193 -0.09193 -0.09193 G11 177.3830 -0.34220 -0.34220 -0.34220 -0.34220 -0.34220 -0.34220 G12 85.7854 0.26864 0.26864 0.26864 0.26864 0.26864 0.26864 G2 -19.3000 -0.56927 -0.79048 -0.87772 -1.09200 -1.22327 -1.29216 G3 33.0726 -0.63435 -0.82645 -0.89929 -1.07339 -1.17199 -1.24289 G4 -21.0963 -0.83666 -0.92509 -0.95715 -1.03156 -1.05449 -1.12988 G5 24.2097 -0.71906 -0.71901 -0.71897 -0.71880 -0.71865 -0.71846 [至近合焦配置での各レンズ群の焦点距離と倍率] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ f βw βc βt1 59.5719 -0.13779 -0.13779 -0.13779 -0.13779 -0.13779 -0.13779 G11 177.3830 -0.57375 -0.57375 -0.57375 -0.57375 -0.57375 -0.57375 G12 85.7854 0.24015 0.24015 0.24015 0.24015 0.24015 0.24015 G2 -19.3000 -0.56946 -0.79083 -0.87816 -1.09268 -1.22412 -1.29311 G3 33.0726 -0.63431 -0.82631 -0.89908 -1.07293 -1.17131 -1.24204 G4 -21.0963 -0.83671 -0.92528 -0.95745 -1.03232 -1.05568 -1.13160 G5 24.2097 -0.71904 -0.71892 -0.71883 -0.71846 -0.71812 -0.71769 [条件対応値] φ=15.5 φ/f3=0.469 K=0.435 β1/β5=0.128 f12/f1=1.458 f2/f4=0.915[Table 2] [Overall specifications] F / 2.1 to F / 3.9 1 / 8.33x to 1 / 50x 2ω = 40.54 ° to 6.56 ° f = 14.801 to 110.114 [Lens specifications] Nord ν dn d 1 ∞ 2.000 64.1 1.51680 L 1 2 ∞ 1.000 3 84.814 1.500 25.4 1.80518 L 2 4 38.000 6.900 53.8 1.69350 L 3 5 711.998 (d 5) 6 34.914 4.500 57.6 1.67025 L 4 7 84.294 (d 7) 8 44.392 1.200 52.3 1.74810 L 5 9 17.923 5.300 10 -80.515 1.100 52.3 1.74810 L 6 11 39.416 0.200 12 33.395 5.000 25.4 1.80518 L 7 13 -55.000 1.000 49.4 1.77279 L 8 14 40.347 (d 14) 15 85.366 2.700 82.6 1.49782 L 9 16 -26.000 1.000 25.4 1.80518 L 10 17 - 45.897 0.200 18 35.440 2.600 82.6 1.49782 L 11 19 -98.669 (d 19 ) 20 40.094 1.100 60.3 1.62041 L 12 21 19.460 3.600 22 -15.929 1.100 54.0 1.61720 L 13 23 22.151 2.600 25.4 1.80518 L 14 24 -248 12.402 (d 24 ) 25- 120.081 3.500 45.4 1.79668 L 15 26 -27.887 0.200 27 1148.998 5.500 82.6 1.49782 L 16 28 -17.500 1.000 25.4 1.80518 L 17 29 -42.177 0.20 0 30 45.122 4.000 82.6 1.49782 L 18 31 -57.782 37.387 [Variable interval in zooming in the reference focusing position] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 β -0.0200 -0.0400 -0.0500 -0.0800 -0.1000 -0.1200 d 0 693.6641 693.6641 693.6641 693.6641 693.6641 693.6641 d 5 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 d 7 0.4502 9.9375 12.3643 16.6791 18.5758 19.4169 d 14 47.6096 31.2219 26.2969 16.1963 11.0704 8.1311 d 19 2.8744 11.6378 14.8106 22.1585 25.8642 29.5441 d 24 10.5323 8.6693 7.9947 6.4326 5.9561 4.3744 R 851.7421 851.7420 851.7420 851.7421 851.7421 851.7421 [Variable spacing in zooming in close focus arrangement] Position 1 'Position 2' Position 3 'Position 4' Position 5 'Position 6' β -0.0300 -0.0600 -0.0750 -0.1200 -0.1500 -0.1800 d 0 484.4738 484.4727 484.4742 484.4728 484.4729 484.4738 d 5 3.4157 3.4158 3.4157 3.4158 3.4157 3.4157 d 7 2.9051 12.3924 14.8192 19.1340 21.0307 21.8718 d 14 47.6096 31.2219 26.2969 16.1963 11.070 4 8.1311 d 19 2.8744 11.6378 14.8106 22.1585 25.8642 29.5441 d 24 10.5323 8.6693 7.9947 6.4326 5.9561 4.3744 R 648.1980 648.1969 648.1983 648.1971 648.1971 648.1979 [ focal length and magnification of each lens group at the reference focus Alignment Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 f β w β c β t G 1 58.8368 -0.09193 -0.09193 -0.09193 -0.09193 -0.09193 -0.09193 G 11 177.3830 -0.34220 -0.34220 -0.34220 -0.34220 -0.34220 -0.34220 G 12 85.7854 0.26864 0.26864 0.26864 0.26864 0.26864 0.26864 2 -19.3000 -0.56927 -0.79048 -0.87772 -1.09200 -1.22327 -1.29216 G 3 33.0726 -0.63435 -0.82645 -0.89929 -1.07339 -1.17199 -1.24289 G 4 -21.0963 -0.83666 -0.92509 -0.95715 -1.03156 -1.05449 -1.12988 G 5 24.2097 - 0.71906 -0.71901 -0.71897 -0.71880 -0.71865 -0.71846 [Focal length and magnification of each lens group in close focus arrangement] Position 1 'Position 2' Position 3 'Position 4' Position 5 'Position 6' f β w β c β t G 1 59.5719 -0.13779 -0.13779 -0.137 79 -0.13779 -0.13779 -0.13779 G 11 177.3830 -0.57375 -0.57375 -0.57375 -0.57375 -0.57375 -0.57375 G 12 85.7854 0.24015 0.24015 0.24015 0.24015 0.24015 0.24015 G 2 -19.3000 -0.56946 -0.79083 -0.87816 -1.09268 -1.22412 -1.29311 G 3 33.0726 -0.63431 -0.82631 -0.89908 -1.07293 -1.17131 -1.24204 G 4 -21.0963 -0.83671 -0.92528 -0.95745 -1.03232 -1.05568 -1.13160 G 5 24.2097 -0.71904 -0.71892 -0.71883 -0.71846 -0.71812 -0.71769 [ condition correspondence value] phi = 15.5 φ / f 3 = 0.469 K = 0.435 β 1 / β 5 = 0.128 f 12 / f 1 = 1.458 f 2 / f 4 = 0.915

【0041】[0041]

【表3】 [全体諸元] F/2.35〜F/3.37 1/10x〜1/50x 2ω=38.32°〜7.34° f=15.768〜82.588 [レンズ諸元] No r d νdd 1 ∞ 2.000 64.1 1.51680 L1 2 ∞ 2.000 3 69.090 1.600 25.3 1.80518 L2 4 38.500 6.800 60.1 1.62041 L3 5 -1771.924 (d5) 6 35.124 4.000 60.1 1.62041 L4 7 67.290 (d7) 8 37.960 1.050 55.6 1.69680 L5 9 16.167 4.000 10 198.026 1.050 52.3 1.74810 L6 11 46.692 2.600 12 -33.688 2.500 25.3 1.80518 L7 13 -19.000 1.000 55.6 1.69680 L8 14 -502.634 (d14) 15 46.282 3.800 49.0 1.53172 L9 16 -17.500 1.000 25.3 1.80518 L10 17 -30.656 0.200 18 31.774 2.500 82.5 1.49782 L11 19 -97.113 (d19) 20 -48.170 2.000 25.3 1.80518 L12 21 -17.090 1.000 57.0 1.62280 L13 22 49.377 2.300 23 -15.140 1.000 54.0 1.61720 L14 24 18.500 2.400 27.6 1.75520 L15 25 103.742 (d25) 26 -237.357 2.800 49.5 1.77279 L16 27 -22.682 0.200 28 -97.109 1.200 25.3 1.80518 L17 29 21.060 4.500 82.5 1.49782 L18 30 -58.138 0.200 31 90.831 2.800 82.5 1.49782 L19 32 -69.580 0.200 33 34.462 4.000 82.5 1.49782 L20 34 -99.744 36.596 [基準合焦配置での変倍における可変間隔] 位置1 位置2 位置3 位置4 位置5 位置6 β -0.0200 -0.0250 -0.0400 -0.0500 -0.0800 -0.1000 d0 744.8694 744.8694 744.8694 744.8694 744.8694 744.8694 d5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 d7 1.4123 5.3706 12.4149 15.3014 20.2753 22.6436 d14 37.0109 31.9054 22.1439 17.6269 9.2107 5.5892 d19 0.6391 2.1877 5.8558 7.8076 12.4721 14.4313 d25 4.5253 4.1238 3.1728 2.8516 1.6294 0.9234 R 886.7530 886.7529 886.7529 886.7530 886.7529 886.7530 [至近合焦配置での変倍における可変間隔] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ β -0.0300 -0.0375 -0.0600 -0.0750 -0.1200 -0.1500 d0 520.7008 520.7007 520.6996 520.7008 520.6998 520.6994 d5 4.0698 4.0698 4.0698 4.0698 4.0698 4.0698 d7 3.7737 7.7320 14.7763 17.6628 22.6367 25.0050 d14 37.0109 31.9054 22.1439 17.6269 9.2107 5.5892 d19 0.6391 2.1877 5.8558 7.8076 12.4721 14.4313 d25 4.5253 4.1238 3.1728 2.8516 1.6294 0.9234 R 668.0156 668.0154 668.0143 668.0156 668.0145 668.0142 [基準合焦配置での各レンズ群の焦点距離と倍率] 位置1 位置2 位置3 位置4 位置5 位置6 f βw βt1 63.1346 -0.09166 -0.09166 -0.09166 -0.09166 -0.09166 -0.09166 G11 138.1082 -0.22578 -0.22578 -0.22578 -0.22578 -0.22578 -0.22578 G12 113.0534 0.40595 0.40595 0.40595 0.40595 0.40595 0.40595 G2 -17.4987 -0.44296 -0.49229 -0.61397 -0.68316 -0.84778 -0.95766 G3 23.9732 -0.51300 -0.56422 -0.68776 -0.75983 -0.92151 -0.98588 G4 -15.9999 -1.10721 -1.13234 -1.19193 -1.21216 -1.28918 -1.33388 G5 22.0000 -0.86512 -0.86510 -0.86502 -0.86494 -0.86459 -0.86428 [至近合焦配置での各レンズ群の焦点距離と倍率] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ f βw βt1 63.9282 -0.13730 -0.13730 -0.13730 -0.13730 -0.13730 -0.13730 G11 138.1082 -0.35640 -0.35640 -0.35640 -0.35640 -0.35640 -0.35640 G12 113.0534 0.38525 0.38525 0.38525 0.38525 0.38525 0.38525 G2 -17.4987 -0.44319 -0.49258 -0.61441 -0.68370 -0.84862 -0.95873 G3 23.9732 -0.51295 -0.56415 -0.68761 -0.75960 -0.92099 -0.98513 G4 -15.9999 -1.10729 -1.13247 -1.19225 -1.21266 -1.29047 -1.33591 G5 22.0000 -0.86508 -0.86503 -0.86484 -0.86466 -0.86389 -0.86318 [条件対応値] φ=15.4 φ/f3=0.642 K=0.435 β1/β5=0.106 f12/f1=1.79 f2/f4=1.094[Table 3] [Overall specifications] F / 2.35 to F / 3.37 1 / 10x to 1 / 50x 2ω = 38.32 ° to 7.34 ° f = 15.768 to 82.588 [Lens specifications] Nor d ν dn d 1 ∞ 2.000 64.1 1.51680 L 1 2 ∞ 2.000 3 69.090 1.600 25.3 1.80518 L 2 4 38.500 6.800 60.1 1.62041 L 3 5 -1771.924 (d 5) 6 35.124 4.000 60.1 1.62041 L 4 7 67.290 (d 7) 8 37.960 1.050 55.6 1.69680 L 5 9 16.167 4.000 10 198.026 1.050 52.3 1.74810 L 6 11 46.692 2.600 12 -33.688 2.500 25.3 1.80518 L 7 13 -19.000 1.000 55.6 1.69680 L 8 14 -502.634 (d 14 ) 15 46.282 3.800 49.0 1.53172 L 9 16 -17.500 1.000 25.3 1.80518 L 10 17 -30.656 0.200 18 31.774 2.500 82.5 1.49782 L 11 19 -97.113 (d 19 ) 20 -48.170 2.000 25.3 1.80518 L 12 21 -17.090 1.000 57.0 1.62280 L 13 22 49.377 2.300 23 -15.140 1.000 54.0 1.61720 L 14 24 18.500 2.400 27.6 1.75520 L 15 25 103.742 (d 25 ) 26 -237.357 2.800 49.5 1.77279 L 16 27 -22.682 0.200 28 -97.109 1.200 25.3 1.80518 L 17 29 21.060 4.50 0 82.5 1.49782 L 18 30 -58.138 0.200 31 90.831 2.800 82.5 1.49782 L 19 32 -69.580 0.200 33 34.462 4.000 82.5 1.49782 L 20 34 -99.744 36.596 [Variable interval for zooming in the reference focusing arrangement] Position 1 Position 2 Position 3 position 4 position 5 position 6 β -0.0200 -0.0250 -0.0400 -0.0500 -0.0800 -0.1000 d 0 744.8694 744.8694 744.8694 744.8694 744.8694 744.8694 d 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 d 7 1.4123 5.3706 12.4149 15.3014 20.2753 22.6436 d 14 37.0109 31.9054 22.1439 17.6269 9.2107 5.5892 d 19 0.6391 2.1877 5.8558 7.8076 12.4721 14.4313 d 25 4.5253 4.1238 3.1728 2.8516 1.6294 0.9234 R 886.7530 886.7529 886.7529 886.7530 886.7529 886.7530 [ variable spaces at zooming at close focus placement positions 1 'position 2' position 3 'position 4' position 5 'position 6' β -0.0300 -0.0375 -0.0600 -0.0750 -0.1200 -0.1500 d 0 520.7008 520.7007 520.6996 520.7008 520.6998 520.6994 d 5 4.0698 4.0698 4.0698 4.0698 4.0698 4.0698 d 7 3.7737 7.7320 14.7763 17.6628 22.6367 25.0050 d 14 37.0109 31.9054 22.1439 17.6269 9.2107 5.5892 d 19 0.6391 2.1877 5.8558 7.8076 12.4721 14.4313 d 25 4.5253 4.1238 3.1728 2.8516 1.6294 0.9234 R 668.0156 668.0154 668.0143 668.0156 668.0145 668.0142 [ focal length of each lens group at the reference focusing arrangement and Magnification] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 f β w β t G 1 63.1346 -0.09166 -0.09166 -0.09166 -0.09166 -0.09166 -0.09166 G 11 138.1082 -0.22578 -0.22578 -0.22578 -0.22578 -0.22578 -0.22578 G 12 113.0534 0.40595 0.40595 0.40595 0.40595 0.40595 0.40595 G 2 -17.4987 -0.44296 -0.49229 -0.61397 -0.68316 -0.84778 -0.95766 G 3 23.9732 -0.51300 -0.56422 -0.68776 -0.75983 -0.92151 -0.98588 G 4 -15.9999 -1.10721 -1.13234 -1.19193 - 1.21216 -1.28918 -1.33388 G 5 22.0000 -0.86512 -0.86510 -0.86502 -0.86494 -0.86459 -0.86428 [ focal length and magnification of each lens group at close focus placement positions 1 'position 2' position 3 'position 4' position 'Position 6' f β w β t G 1 63.9282 -0.13730 -0.13730 -0.13730 -0.13730 -0.13730 -0.13730 G 11 138.1082 -0.35640 -0.35640 -0.35640 -0.35640 -0.35640 -0.35640 G 12 113.0534 0.38525 0.38525 0.38525 0.38525 0.38525 0.38525 G 2 -17.4987 -0.44319 -0.49258 -0.61441 -0.68370 -0.84862 -0.95873 G 3 23.9732 -0.51295 -0.56415 -0.68761 -0.75960 -0.92099 -0.98513 G 4 -15.9999 -1.10729 -1.13247 -1.19225 -1.21266 -1.29047 -1.33591 G 5 22.0000 -0.86508 -0.86503 -0.86484 -0.86466 -0.86389 -0.86318 [Conditional value] φ = 15.4 φ / f 3 = 0.642 K = 0.435 β 1 / β 5 = 0.106 f 12 / f 1 = 1.79 f 2 / f 4 = 1.094

【0042】[0042]

【表4】 [全体諸元] F/2.01〜F/4.60 1/7.14x〜1/50x 2ω=40.54°〜5.76° f=14.908〜116.246 [レンズ諸元] No r d νdd 1 ∞ 2.000 64.1 1.51680 L1 2 ∞ 2.000 3 53.350 1.700 25.3 1.80518 L2 4 30.000 9.000 47.1 1.62374 L3 5 248.222 (d5) 6 44.091 4.000 48.0 1.71700 L4 7 131.849 (d7) 8 72.167 1.200 49.5 1.77279 L5 9 20.909 4.300 10 226.333 1.200 49.5 1.77279 L6 11 54.698 3.000 12 -50.126 3.500 25.3 1.80518 L7 13 -20.000 1.100 52.3 1.74810 L8 14 -257.817 (d14) 15 67.002 3.600 82.5 1.49782 L9 16 -17.200 1.000 25.3 1.80518 L10 17 -25.574 0.200 18 24.223 2.000 82.5 1.49782 L11 19 42.197 (d19) 20 32.887 1.100 60.1 1.62041 L12 21 18.439 3.500 22 -14.235 1.100 58.5 1.65160 L13 23 21.700 3.000 25.3 1.80518 L14 24 -223.776 (d24) 25 -68.813 3.500 47.5 1.78797 L15 26 -22.831 0.200 27 353.972 6.500 82.5 1.49782 L16 28 -18.000 1.200 25.3 1.80518 L17 29 -50.715 0.200 30 32.204 5.000 82.5 1.49782 L18 31 -109.541 35.940 [基準合焦配置での変倍における可変間隔] 位置1 位置2 位置3 位置4 位置5 位置6 β -0.0200 -0.0300 -0.0500 -0.0800 -0.1000 -0.1400 d0 690.6850 690.6850 690.6850 690.6850 690.6850 690.6850 d5 2.4756 2.4756 2.4756 2.4756 2.4756 2.4756 d7 0.2076 5.5184 10.9596 14.7091 16.1684 17.5092 d14 42.4447 32.9714 21.8779 12.4922 8.2791 3.1237 d20 2.9757 8.4165 15.8981 23.7874 27.8589 34.9337 d24 13.4078 12.1295 10.3003 8.0471 6.7293 3.4692 R 853.2368 853.2368 853.2369 853.2369 853.2368 853.2369 [至近合焦配置での変倍における可変間隔] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ β -0.0300 -0.0450 -0.0750 -0.1200 -0.1500 -0.2100 d0 475.6076 475.6091 475.6087 475.6073 475.6087 475.6086 d5 1.0327 1.0327 1.0327 1.0327 1.0327 1.0327 d7 3.0934 8.4042 13.8454 17.5949 19.0542 20.3950 d14 42.4447 32.9714 21.8779 12.4922 8.2791 3.1237 d20 2.9757 8.4165 15.8981 23.7874 27.8589 34.9337 d24 13.4078 12.1295 10.3003 8.0471 6.7293 3.4692 R 639.6023 639.6038 639.6035 639.6021 639.6034 639.6034 [基準合焦配置での各レンズ群の焦点距離と倍率] 位置1 位置2 位置3 位置4 位置5 位置6 f βw βc βt1 58.8369 -0.09207 -0.09207 -0.09207 -0.09207 -0.09207 -0.09207 G11 147.4815 -0.27144 -0.27144 -0.27144 -0.27144 -0.27144 -0.27144 G12 90.6632 0.33919 0.33919 0.33919 0.33919 0.33919 0.33919 G2 -20.0000 -0.60711 -0.72380 -0.90127 -1.08452 -1.17771 -1.27867 G3 33.0726 -0.64531 -0.74976 -0.90444 -1.07218 -1.16057 -1.30410 G4 -20.0000 -0.77089 -0.83481 -0.92628 -1.03896 -1.10486 -1.26793 G5 24.1334 -0.71918 -0.71918 -0.71918 -0.71917 -0.71916 -0.71914 [至近合焦配置での各レンズ群の焦点距離と倍率] 位置1′ 位置2′ 位置3′ 位置4′ 位置5′ 位置6′ f βw βc βt1 58.4657 -0.13810 -0.13810 -0.13810 -0.13810 -0.13810 -0.13810 G11 147.4815 -0.44929 -0.44929 -0.44929 -0.44929 -0.44929 -0.44929 G12 90.6632 0.30737 0.30737 0.30737 0.30737 0.30737 0.30737 G2 -20.0000 -0.60712 -0.72381 -0.90130 -1.08456 -1.17776 -1.27872 G3 33.0726 -0.64531 -0.74976 -0.90443 -1.07216 -1.16053 -1.30404 G4 -20.0000 -0.77089 -0.83481 -0.92630 -1.03901 -1.10494 -1.26808 G5 24.1334 -0.71918 -0.71918 -0.71917 -0.71917 -0.71913 -0.71907 [条件対応値] φ=15.3 φ/f3=0.462 K=2.00 β1/β5=0.128 f12/f1=1.54 f2/f4=1.0[Table 4] [Overall specifications] F / 2.01 to F / 4.60 1 / 7.14x to 1 / 50x 2ω = 40.54 ° to 5.76 ° f = 14.908 to 116.246 [Lens specifications] Nor d ν d n d 1 ∞ 2.000 64.1 1.51680 L 1 2 ∞ 2.000 3 53.350 1.700 25.3 1.80518 L 2 4 30.000 9.000 47.1 1.62374 L 3 5 248.222 (d 5) 6 44.091 4.000 48.0 1.71700 L 4 7 131.849 (d 7) 8 72.167 1.200 49.5 1.77279 L 5 9 20.909 4.300 10 226.333 1.200 49.5 1.77279 L 6 11 54.698 3.000 12 -50.126 3.500 25.3 1.80518 L 7 13 -20.000 1.100 52.3 1.74810 L 8 14 -257.817 (d 14 ) 15 67.002 3.600 82.5 1.49782 L 9 16 -17.200 1.000 25.3 1.80518 L 10 17 -25.574 0.200 18 24.223 2.000 82.5 1.49782 L 11 19 42.197 (d 19 ) 20 32.887 1.100 60.1 1.62041 L 12 21 18.439 3.500 22 -14.235 1.100 58.5 1.65160 L 13 23 21.700 3.000 25.3 1.80518 L 14 24 -223.776 (d 24 ) 25- 68.813 3.500 47.5 1.78797 L 15 26 -22.831 0.200 27 353.972 6.500 82.5 1.49782 L 16 28 -18.000 1.200 25.3 1.80518 L 17 29 -50.715 0.2 00 30 32.204 5.000 82.5 1.49782 L 18 31 -109.541 35.940 [Variable interval in zooming in the reference focusing position] Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 β -0.0200 -0.0300 -0.0500 -0.0800 -0.1000 -0.1400 d 0 690.6850 690.6850 690.6850 690.6850 690.6850 690.6850 d 5 2.4756 2.4756 2.4756 2.4756 2.4756 2.4756 d 7 0.2076 5.5184 10.9596 14.7091 16.1684 17.5092 d 14 42.4447 32.9714 21.8779 12.4922 8.2791 3.1237 d 20 2.9757 8.4165 15.8981 23.7874 27.8589 34.9337 d 24 13.4078 12.1295 10.3003 8.0471 6.7293 3.4692 R 853.2368 853.2368 853.2369 853.2369 853.2368 853.2369 [Variable spacing in zooming in close focus arrangement] Position 1 'Position 2' Position 3 'Position 4' Position 5 'Position 6' β -0.0300 -0.0450 -0.0750 -0.1200 -0.1500 -0.2100 d 0 475.6076 475.6091 475.6087 475.6073 475.6087 475.6086 d 5 1.0327 1.0327 1.0327 1.0327 1.0327 1.0327 d 7 3.0934 8.4042 13.8454 17.5949 19.0542 20.3950 d 14 42.4447 32.9714 21.8779 12.4922 8.279 1 3.1237 d 20 2.9757 8.4165 15.8981 23.7874 27.8589 34.9337 d 24 13.4078 12.1295 10.3003 8.0471 6.7293 3.4692 R 639.6023 639.6038 639.6035 639.6021 639.6034 639.6034 [Focal distance and magnification of each lens group in reference focusing arrangement] Position 1 Position 2 Position 3 Position 4 5 position 6 f β w β c β t G 1 58.8369 -0.09207 -0.09207 -0.09207 -0.09207 -0.09207 -0.09207 G 11 147.4815 -0.27144 -0.27144 -0.27144 -0.27144 -0.27144 -0.27144 G 12 90.6632 0.33919 0.33919 0.33919 0.33919 0.33919 0.339 2 -20.0000 -0.60711 -0.72380 -0.90127 -1.08452 -1.17771 -1.27867 G 3 33.0726 -0.64531 -0.74976 -0.90444 -1.07218 -1.16057 -1.30410 G 4 -20.0000 -0.77089 -0.83481 -0.92628 -1.03896 -1.10486 -1.26793 G 5 24.1334 - 0.71918 -0.71918 -0.71918 -0.71917 -0.71916 -0.71914 [Focal length and magnification of each lens group in close focus arrangement] Position 1 'Position 2' Position 3 'Position 4' Position 5 'Position 6' f β w β c β t G 1 58.4657 -0.13810 -0.13810 -0.13 810 -0.13810 -0.13810 -0.13810 G 11 147.4815 -0.44929 -0.44929 -0.44929 -0.44929 -0.44929 -0.44929 G 12 90.6632 0.30737 0.30737 0.30737 0.30737 0.30737 0.30737 G 2 -20.0000 -0.60712 -0.72381 -0.90130 -1.08456 -1.17776 -1.27872 G 3 33.0726 -0.64531 -0.74976 -0.90443 -1.07216 -1.16053 -1.30404 G 4 -20.0000 -0.77089 -0.83481 -0.92630 -1.03901 -1.10494 -1.26808 G 5 24.1334 -0.71918 -0.71918 -0.71917 -0.71917 -0.71913 -0.71907 [ condition correspondence value] phi = 15.3 φ / f 3 = 0.462 K = 2.00 β 1 / β 5 = 0.128 f 12 / f 1 = 1.54 f 2 / f 4 = 1.0

【0043】図4、図5、図6、図7、図8及び図9
に、それぞれ第1実施例について基準合焦配置での広角
端、中間倍率位置、及び望遠端、並びに至近合焦配置で
の広角端、中間倍率位置、及び望遠端での球面収差、非
点収差、歪曲収差、倍率色収差、及び横収差を示す。同
様に図11〜図16に第2実施例の諸収差を示し、図1
8〜図23に第3実施例の諸収差を示し、図25〜図3
0に第4実施例の諸収差を示す。各収差図中、FNはF
ナンバー、Yは像高、dはd線、gはg線(λ=43
5.8nm)を表す。また非点収差図中、点線はメリジ
オナル像面を表し、実線はサジタル像面を表す。
4, 5, 6, 7, 8 and 9
The spherical aberration and the astigmatism at the wide-angle end, the intermediate magnification position, and the telephoto end in the reference focusing arrangement and the wide-angle end, the intermediate magnification position, and the telephoto end in the closest focusing arrangement, respectively, for the first embodiment. , Distortion, chromatic aberration of magnification, and lateral aberration. Similarly, FIGS. 11 to 16 show various aberrations of the second embodiment.
8 to 23 show various aberrations of the third embodiment, and FIGS.
0 shows various aberrations of the fourth example. In each aberration diagram, FN is F
Number, Y is image height, d is d line, g is g line (λ = 43
5.8 nm). In the astigmatism diagram, a dotted line represents a meridional image plane, and a solid line represents a sagittal image plane.

【0044】いずれの実施例も、特に広角端は歪曲収差
がほぼ完全に補正されているので、照度比の低下はコサ
イン4乗(cos4ω)に依存するのでビグネッティン
グを抑える必要がある。収差図から明らかなように、基
準撮影距離においていずれの実施例もこのため充分な周
辺光量が確保されている。周辺光量が多いので、コマ収
差変動がズーミングで発生するのを抑えるため、特に主
光線の下側のコマ収差対策に第2レンズ群G2のレンズ
配置、レンズ形状、及び第3レンズ群G3のレンズ形状
に工夫が配慮されている。一方、主光線の上側のコマ収
差対策に第5レンズ群G5のレンズ配置、レンズ形状に
工夫が配慮されている。
In any of the embodiments, especially at the wide-angle end, the distortion is almost completely corrected. Therefore, since the decrease in the illuminance ratio depends on the cosine fourth power (cos 4 ω), it is necessary to suppress the vignetting. As is clear from the aberration diagrams, in each of the embodiments, a sufficient peripheral light amount is secured at the reference photographing distance. Since the peripheral light amount is large, the coma because aberration fluctuations suppressed from occurring in zooming, especially lower coma measures lens arrangement of the second lens group G 2 of the principal rays, lens shape, and the third lens group G 3 The lens shape has been devised. On the other hand, the lens arrangement of the fifth lens group G 5, devised lens shape is conscious upper coma measures of the principal ray.

【0045】なお、いずれの実施例も第1レンズ群G1
が前群G11と後群G12との2群構成のレンズ系で構成さ
れているが、レンズ構成をより複雑にし、例えばこの後
群G12を貼り合わせレンズ等にしたりすることで、より
至近距離撮影において、結像性能を確保が可能である。
この様に第1レンズ群G1を2群以上に分割し全系を6
群以上の構成のレンズ系とすることは容易に実現でき
る。また第4レンズ群G4、第5レンズ群G5のレンズ配
列として貼り合わせレンズを増すことにより、広角側に
おける軸上の色収差と倍率の色収差を同時に補正できる
自由度を充分に確保することができる。このとき第2レ
ンズ群G2の色消しのための負荷を軽減することが可能
である。
In each embodiment, the first lens group G 1
Although but is composed of a lens system 2-group structure of the rear group G 12 and the front group G 11, and the lens configuration more complex, for example, by or to a lens or the like bonded to the group G 12 subsequent, more In close-range shooting, imaging performance can be ensured.
6 entire system by dividing the first lens group G 1 in this manner into two or more groups
A lens system having more than a group can be easily realized. Further, by increasing the number of bonded lenses as the lens arrangement of the fourth lens group G 4 and the fifth lens group G 5 , it is possible to sufficiently secure the degree of freedom to simultaneously correct axial chromatic aberration and magnification chromatic aberration on the wide-angle side. it can. In this case it is possible to reduce the load for the second lens group G 2 achromatic.

【0046】更に、いずれの実施例も基本は5群構成の
レンズ系で構成されているが、第1レンズ群G1と同様
に第3レンズ群G3を2群以上に分割し、大口径化の自
由度を確保した構成とし、全系を6群以上の構成のレン
ズ系とすることも容易に実現できる。広角化が不必要、
或いは暗い光学系で充分目的を果たすとき、各実施例よ
り、構成レンズ枚数を削減可能なことは明らかである。
特に、望遠端側ヘズーム領域を拡大しズーム比を増大す
ることは、広角端へ拡張するよりはるかに容易である。
更に、共役長を短くし撮影倍率を高くすることは広角化
する必要がないので、容易に本発明から実現が可能であ
る。これを実現する1つの方法として、第1レンズ群G
1中の各部分群の部分および全体をそれぞれ光軸上を移
動することによる合焦にて達成できる。
[0046] Further, although either embodiment is also fundamental is constituted by the lens system of 5-group configuration, dividing the third lens group G 3 to the two or more groups like the first lens group G 1, large diameter It is also possible to easily realize a lens system having six or more lens groups as a configuration in which the degree of freedom of the configuration is secured. No need for wide angle,
When the objective is sufficiently fulfilled by a dark optical system, it is apparent from each embodiment that the number of constituent lenses can be reduced.
In particular, it is much easier to enlarge the zoom region to the telephoto end and increase the zoom ratio than to expand to the wide-angle end.
Further, it is not necessary to widen the angle to shorten the conjugate length and increase the photographing magnification, so that the present invention can be easily realized. As one method of realizing this, the first lens group G
This can be achieved by focusing by moving each part and the whole of each part group in 1 on the optical axis.

【0047】合焦レンズ群である第1レンズ群G1は、
ズーミングにおいて実施例では固定されているが、ズー
ミングにおいて変倍に寄与するように移動しても構わな
い。また、3群以上のズーム変倍群を有するとき、この
変倍群の担う全ての変倍群が同時等倍となる必要は必ず
しも無い。特定の変倍群の等倍配置を避けて使用しても
構わない。
The first lens group G 1 which is a focusing lens group includes:
Although the zooming is fixed in the embodiment, the zooming may be moved so as to contribute to zooming. When three or more zooming units are provided, it is not always necessary for all the zooming units carried by the zooming unit to be at the same magnification. It may be used while avoiding the same magnification arrangement of a specific zooming group.

【0048】更に、本発明は広角端で実効F値がF/
2.0程度と非常に明るく、周辺光量も充分確保されて
いる。明るく、しかも第1レンズ面の有効径が小さく抑
えられ光学系がコンパクトである。このことにも係わら
ず諸収差を良好に補正し高性能な光学系を実現可能な理
由として、効率的なズームタイプにあると考えられる。
各群の担う倍率、各レンズ群の屈折力配分、ズーム軌道
の巧妙な選択などがあげられる。さらに、同時等倍配置
を利用することにより、製造誤差等による結像性能の劣
化を少なく抑えることが出来る。
Further, according to the present invention, the effective F value at the wide angle end is F /
It is very bright, about 2.0, and the peripheral light quantity is sufficiently secured. It is bright, and the effective diameter of the first lens surface is kept small, so that the optical system is compact. In spite of this, it is considered that the reason why the various types of aberration can be satisfactorily corrected and a high-performance optical system can be realized is an efficient zoom type.
Magnification of each group, distribution of refractive power of each lens group, clever selection of zoom trajectory, and the like. Further, by using the same-size simultaneous arrangement, it is possible to suppress deterioration of the imaging performance due to a manufacturing error or the like.

【0049】通常、瞳をレンズ端の表面より出来る限り
近くするとき、レンズ群の屈折力配置は負の屈折力のレ
ンズ群が先行する。一方、瞳の位置をレンズ端の表面よ
り出来る限り遠くするときは、レンズ群の屈折力配置は
正の屈折力のレンズ群が先行する。この様な屈折力配分
を採用することにより、像側、物側テレセントリック光
学系、あるいはこれに近い光学系を実現できる。しか
し、本発明において、厳密なテレセントリック光学系で
ある必要はない。開口絞りは第2レンズ群と第3レンズ
群との間から、第4レンズ群と第5レンズ群との間まで
のいずれの位置でもかまわない。また、ズーミングに連
動して空間的に移動、あるいは固定してもかまわない。
Usually, when the pupil is made as close as possible to the surface of the lens end, the refractive power arrangement of the lens groups is preceded by the lens group having a negative refractive power. On the other hand, when the position of the pupil is as far as possible from the surface of the lens end, the refractive power arrangement of the lens groups is preceded by the lens group having a positive refractive power. By employing such a refractive power distribution, an image-side, object-side telecentric optical system, or an optical system close thereto can be realized. However, in the present invention, it is not necessary to be a strict telecentric optical system. The aperture stop may be at any position from between the second lens group and the third lens group to between the fourth lens group and the fifth lens group. Also, it may be spatially moved or fixed in conjunction with zooming.

【0050】[0050]

【発明の効果】本発明において、以上のような高解像、
高性能、合焦領域の広い高変倍率のズームレンズを提供
することによって、広範な利用目的に適う光学システム
系を容易に提供できることとなった。特に、明るく、共
役長が短く、しかも広画角で小型のズーム光学系が実現
できた。また、ズーム変倍にて歪曲収差と、歪曲収差の
変動とが非常に少ない光学系も実現できた。且つ、撮像
系のシェーディングを少なくするため、画面周辺で充分
な周辺光量を確保した光学系をも実現できた。これらの
特徴を同時に満足する光学系を実現したことによって、
光学系の汎用性が非常に増大した。特に、共役長、ワー
キングディスタンスの大きな変更に伴う結像性能の劣化
を抑制することが広い範囲にわたり可能となり、マイク
ロズームレンズとしての使用も可能である。具体的に、
この光学系は書画用レンズ系、カメラ型スキャナー、デ
ジタルスチルカメラ用レンズ系、TVカメラレンズ系、
近接撮影光学系、その他、拡大引伸し用光学系、液晶ビ
デオプロジェクター用投写レンズ等に使用が可能であ
る。なお、撮影像や投影像のサイズ、共役長、ワーキン
グディスタンスは合焦レンズ群の移動合焦にて容易に設
定が可能であり、各種利用目的に応じて最適な配置にて
使用が可能な万能レンズに近づいた。
According to the present invention, the high resolution as described above,
By providing a high-performance, high-magnification zoom lens with a wide focusing area, an optical system suitable for a wide range of applications can be easily provided. In particular, a compact zoom optical system that is bright, has a short conjugate length, and has a wide angle of view can be realized. Further, an optical system in which distortion and fluctuation of distortion are very small by zooming can be realized. In addition, an optical system in which a sufficient amount of peripheral light is secured around the screen in order to reduce shading of the image pickup system was realized. By realizing an optical system that satisfies these characteristics simultaneously,
The versatility of the optical system has greatly increased. In particular, it is possible to suppress the deterioration of the imaging performance due to a large change in the conjugate length and working distance over a wide range, and it is also possible to use it as a micro zoom lens. Specifically,
This optical system includes a document lens system, a camera-type scanner, a digital still camera lens system, a TV camera lens system,
It can be used for a close-up photographing optical system, an optical system for enlargement / enlargement, a projection lens for a liquid crystal video projector, and the like. The size, conjugate length, and working distance of the photographed image and projected image can be easily set by moving and focusing the focusing lens group, and can be used in an optimal arrangement according to various purposes. Approached the lens.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す基準合焦配置での模式図FIG. 1 is a schematic view of a reference focusing arrangement showing the principle of the present invention.

【図2】本発明の原理を示す至近合焦配置での模式図FIG. 2 is a schematic diagram illustrating a principle of the present invention in a close-focusing arrangement.

【図3】第1実施例の基準合焦配置における広角端での
レンズ配置図
FIG. 3 is a lens arrangement diagram at a wide-angle end in a reference focusing arrangement according to the first embodiment.

【図4】第1実施例の基準合焦配置における広角端での
諸収差図
FIG. 4 is a diagram illustrating various aberrations at a wide-angle end in a reference focusing arrangement according to the first example.

【図5】第1実施例の基準合焦配置における中間倍率位
置での諸収差図
FIG. 5 is a diagram illustrating various aberrations at an intermediate magnification position in the reference focusing arrangement according to the first example.

【図6】第1実施例の基準合焦配置における望遠端での
諸収差図
FIG. 6 is a diagram illustrating various aberrations at a telephoto end in a reference focusing arrangement according to the first example.

【図7】第1実施例の至近合焦配置における広角端での
諸収差図
FIG. 7 is a diagram showing various aberrations at the wide-angle end in a close-focusing arrangement according to the first embodiment;

【図8】第1実施例の至近合焦配置における中間倍率位
置での諸収差図
FIG. 8 is a diagram illustrating various aberrations at an intermediate magnification position in a close-focusing arrangement according to the first embodiment;

【図9】第1実施例の至近合焦配置における望遠端での
諸収差図
FIG. 9 is a diagram illustrating various aberrations at a telephoto end in a close-focusing arrangement according to the first embodiment;

【図10】第2実施例の基準合焦配置における広角端で
のレンズ配置図
FIG. 10 is a lens arrangement diagram at a wide-angle end in a reference focusing arrangement according to a second embodiment.

【図11】第2実施例の基準合焦配置における広角端で
の諸収差図
FIG. 11 is a diagram showing various aberrations at the wide-angle end in a reference focusing arrangement according to a second example.

【図12】第2実施例の基準合焦配置における中間倍率
位置での諸収差図
FIG. 12 is a diagram illustrating various aberrations at an intermediate magnification position in the reference focusing arrangement according to the second example.

【図13】第2実施例の基準合焦配置における望遠端で
の諸収差図
FIG. 13 is a diagram showing various aberrations at the telephoto end in a reference in-focus arrangement according to the second embodiment.

【図14】第2実施例の至近合焦配置における広角端で
の諸収差図
FIG. 14 is a diagram showing various aberrations at the wide-angle end in a close-focusing arrangement according to the second embodiment;

【図15】第2実施例の至近合焦配置における中間倍率
位置での諸収差図
FIG. 15 is a diagram illustrating various aberrations at an intermediate magnification position in a close-focusing arrangement according to the second embodiment.

【図16】第2実施例の至近合焦配置における望遠端で
の諸収差図
FIG. 16 is a diagram showing various aberrations at the telephoto end in a close-focusing arrangement according to the second embodiment;

【図17】第3実施例の基準合焦配置における広角端で
のレンズ配置図
FIG. 17 is a lens arrangement diagram at the wide-angle end in the reference in-focus arrangement of the third embodiment.

【図18】第3実施例の基準合焦配置における広角端で
の諸収差図
FIG. 18 is a diagram illustrating various aberrations at the wide-angle end in a reference in-focus arrangement according to the third example.

【図19】第3実施例の基準合焦配置における中間倍率
位置での諸収差図
FIG. 19 is a diagram illustrating various aberrations at an intermediate magnification position in the reference focusing arrangement according to the third example;

【図20】第3実施例の基準合焦配置における望遠端で
の諸収差図
FIG. 20 is a diagram showing various aberrations at the telephoto end in a reference in-focus arrangement according to the third embodiment.

【図21】第3実施例の至近合焦配置における広角端で
の諸収差図
FIG. 21 is a diagram illustrating various aberrations at the wide-angle end in a close-focusing configuration according to the third example.

【図22】第3実施例の至近合焦配置における中間倍率
位置での諸収差図
FIG. 22 is a diagram illustrating various aberrations at an intermediate magnification position in a close-focusing arrangement according to the third example;

【図23】第3実施例の至近合焦配置における望遠端で
の諸収差図
FIG. 23 is a diagram illustrating various aberrations at the telephoto end in a close-focusing configuration according to the third example;

【図24】第4実施例の基準合焦配置における広角端で
のレンズ配置図
FIG. 24 is a lens arrangement diagram at the wide-angle end in the reference in-focus arrangement of the fourth embodiment.

【図25】第4実施例の基準合焦配置における広角端で
の諸収差図
FIG. 25 is a diagram illustrating various aberrations at the wide-angle end in the reference in-focus arrangement of the fourth example.

【図26】第4実施例の基準合焦配置における中間倍率
位置での諸収差図
FIG. 26 is a diagram illustrating various aberrations at an intermediate magnification position in the reference focusing arrangement according to the fourth example;

【図27】第4実施例の基準合焦配置における望遠端で
の諸収差図
FIG. 27 is a diagram showing various aberrations at the telephoto end in the reference in-focus arrangement of the fourth embodiment.

【図28】第4実施例の至近合焦配置における広角端で
の諸収差図
FIG. 28 is a diagram illustrating various aberrations at the wide-angle end in a close-focusing configuration according to the fourth example;

【図29】第4実施例の至近合焦配置における中間倍率
位置での諸収差図
FIG. 29 is a diagram illustrating various aberrations at an intermediate magnification position in a close-focusing arrangement according to the fourth example;

【図30】第4実施例の至近合焦配置における望遠端で
の諸収差図
FIG. 30 is a diagram illustrating various aberrations at the telephoto end in a close-focusing configuration according to a fourth example;

【符号の説明】[Explanation of symbols]

1…第1レンズ群 G11…第1
レンズ群前群 G12…第1レンズ群後群 G2…第2
レンズ群 G3…第3レンズ群 G4…第4
レンズ群 G5…第5レンズ群 S…開口絞
G 1 … first lens group G 11 … first
Front group G 12 ... group after the first lens group G 2 ... second
Lens group G 3 ... third lens group G 4 ... 4
Lens group G 5 ... diaphragm fifth lens group S ... opening

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】5群以上のレンズ群によって全系を構成
し、3つ以上の変倍レンズ群を、相互依存的に光軸方向
に移動することによってズーミングを行うズーム光学系
において、 前記変倍レンズ群のうちの2つ以上の変倍レンズ群の担
う倍率が、特定のズーミング位置においていずれもほぼ
等倍となり、 前記第1レンズ群は2つ以上の下位レンズ群からなり、
該下位レンズ群のうちの1つ以上の下位レンズ群を異な
る速度で光軸方向に移動することによって合焦を行うこ
とを特徴とするズーム光学系。
1. A zoom optical system that performs zooming by moving the entire system by five or more lens groups and moving three or more zoom lens groups in an optical axis direction in an interdependent manner. Magnifications of two or more variable magnification lens groups in the magnification lens group become almost equal magnification at a specific zooming position, and the first lens group is composed of two or more lower lens groups,
A zoom optical system, wherein focusing is performed by moving one or more lower lens groups of the lower lens groups at different speeds in the optical axis direction.
【請求項2】前記特定のズーミング位置は、広角端と望
遠端との間にある、請求項1に記載のズーム光学系。
2. The zoom optical system according to claim 1, wherein said specific zooming position is between a wide-angle end and a telephoto end.
【請求項3】前記各レンズ群の屈折力の符号が、物側か
ら配置されたレンズ群と像側から配置されたレンズ群と
の間で対称である、請求項1又は2に記載のズーム光学
系。
3. The zoom according to claim 1, wherein the sign of the refractive power of each lens group is symmetric between the lens group arranged from the object side and the lens group arranged from the image side. Optical system.
【請求項4】正の屈折力を有する第1レンズ群と、負の
屈折力を有する第2レンズ群と、正の屈折力を有する第
3レンズ群と、負の屈折力を有する第4レンズ群と、正
の屈折力を有する第5レンズ群とからなり、 前記第2レンズ群と第3レンズ群と第4レンズ群が前記
変倍レンズ群である、請求項3に記載のズーム光学系。
4. A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. 4. The zoom optical system according to claim 3, comprising a group, and a fifth lens group having a positive refractive power, wherein the second lens group, the third lens group, and the fourth lens group are the zoom lens groups. 5. .
【請求項5】正の屈折力を有する第1レンズ群と、負の
屈折力を有する第2レンズ群と、正の屈折力を有する第
3レンズ群と、負の屈折力を有する第4レンズ群と、正
の屈折力を有する第5レンズ群とからなり、 前記第2レンズ群と第3レンズ群と第4レンズ群と第5
レンズ群が前記変倍レンズ群である、請求項3に記載の
ズーム光学系。
5. A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. And a fifth lens group having a positive refractive power. The second lens group, the third lens group, the fourth lens group, and the fifth lens group.
The zoom optical system according to claim 3, wherein a lens group is the zoom lens group.
【請求項6】前記第1レンズ群は、正の屈折力を有する
前群と、正の屈折力を有する後群とからなる、請求項
1、2、3、4又は5に記載のズーム光学系。
6. The zoom optical system according to claim 1, wherein said first lens group comprises a front group having a positive refractive power and a rear group having a positive refractive power. system.
【請求項7】第1レンズ群の前記前群の合焦に際する移
動量は、前記後群の移動量よりも広い、請求項6に記載
のズーム光学系。
7. The zoom optical system according to claim 6, wherein an amount of movement of said first lens group during focusing of said front group is larger than an amount of movement of said rear group.
【請求項8】第1レンズ群の前記前群の合焦に際する移
動量は、前記後群の移動量よりも狭い、請求項6に記載
のズーム光学系。
8. The zoom optical system according to claim 6, wherein an amount of movement of said first lens group during focusing of said front group is smaller than an amount of movement of said rear group.
JP29730896A 1996-10-17 1996-10-17 Zoom optical system Expired - Fee Related JP4013268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29730896A JP4013268B2 (en) 1996-10-17 1996-10-17 Zoom optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29730896A JP4013268B2 (en) 1996-10-17 1996-10-17 Zoom optical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007160316A Division JP4395795B2 (en) 2007-06-18 2007-06-18 Zoom optical system

Publications (2)

Publication Number Publication Date
JPH10123421A true JPH10123421A (en) 1998-05-15
JP4013268B2 JP4013268B2 (en) 2007-11-28

Family

ID=17844836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29730896A Expired - Fee Related JP4013268B2 (en) 1996-10-17 1996-10-17 Zoom optical system

Country Status (1)

Country Link
JP (1) JP4013268B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197767A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2010197765A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2011221554A (en) * 2011-07-15 2011-11-04 Panasonic Corp Zoom lens and video camera using the same
JP2014174340A (en) * 2013-03-08 2014-09-22 Ricoh Co Ltd Zoom projection optical system and image display device
CN112492210A (en) * 2020-12-01 2021-03-12 维沃移动通信有限公司 Photographing method and device, electronic equipment and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197767A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2010197765A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2011221554A (en) * 2011-07-15 2011-11-04 Panasonic Corp Zoom lens and video camera using the same
JP2014174340A (en) * 2013-03-08 2014-09-22 Ricoh Co Ltd Zoom projection optical system and image display device
CN112492210A (en) * 2020-12-01 2021-03-12 维沃移动通信有限公司 Photographing method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP4013268B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
US7460311B2 (en) Zoom lens system and image pickup apparatus including the same
JP3862520B2 (en) Zoom lens and optical apparatus using the same
US20090109548A1 (en) Zoom lens and image-pickup apparatus
US7564632B2 (en) Projection zoom lens
JP4338812B2 (en) Zoom lens
JP2000298236A (en) Variable focusing lens system
JP2005234460A (en) Zoom lens and imaging apparatus provided with the same
JP2004053751A (en) Zoom lens system
JPH0572474A (en) Aspherical zoom lens and video camera using the same
US8248703B2 (en) Zoom lens and optical apparatus having the zoom lens
US8358470B2 (en) Zoom lens and image pickup apparatus including the same
JPH0239011A (en) Aspherical zoom lens
US8488254B2 (en) Zoom lens optical system and image pickup apparatus having the same
JPH05297275A (en) Aspherical zoom lens and video camera using same
JP4395795B2 (en) Zoom optical system
JP2011065185A (en) Zoom lens and imaging apparatus having the same
JPH06347697A (en) Aspherical zoom lens and video camera using the same
JP2001337275A (en) Zoom lens and projector using the same
JP4013268B2 (en) Zoom optical system
JP2003043357A (en) Zoom lens
JPH08327905A (en) Zoom lens
JPH0735975A (en) Wide angle zoom lens
JPH09189859A (en) Zoom lens
JP3957883B2 (en) Zoom lens
JP2000227549A (en) Zoom lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees