JPH10123055A - Fluorescence spectrophotometer - Google Patents
Fluorescence spectrophotometerInfo
- Publication number
- JPH10123055A JPH10123055A JP27583696A JP27583696A JPH10123055A JP H10123055 A JPH10123055 A JP H10123055A JP 27583696 A JP27583696 A JP 27583696A JP 27583696 A JP27583696 A JP 27583696A JP H10123055 A JPH10123055 A JP H10123055A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- fluorescence
- sample surface
- optical axis
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、医学,薬学,化
学,生化学の研究目的または生産物の品質管理等の目的
で実施される分光蛍光光度計による固体試料の定性,定
量分析で好適な感度を得るための測定に応用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for qualitative and quantitative analysis of solid samples by a spectrofluorometer which is carried out for the purpose of research in medicine, pharmacy, chemistry, biochemistry or quality control of products. Applied to measurement to obtain sensitivity.
【0002】[0002]
【従来の技術】固体,粉体の試料の測定については
(株)日立製作所「取扱説明書 分光蛍光光度計用65
0−0161固体試料ホルダ」に記載されている。ここ
では試料面を移動する手段はなく、試料ホルダ上の試料
の設置位置を変えるしかなかった。また、(株)日立製
作所「取扱説明書 F−3010/F−4010形分光
蛍光光度計用薄層クトマト付属装置」Part.No.250−
9942に試料面に平行な2軸の移動機能を備えた分光
蛍光光度計について記載されているが、試料面は法線方
向を加えた3軸の移動機能を備えた記載はない。2. Description of the Related Art For the measurement of solid and powder samples, refer to Hitachi, Ltd. "Instruction Manual for Spectrofluorometer 65
0-0161 solid sample holder ". In this case, there is no means for moving the sample surface, and the only option is to change the installation position of the sample on the sample holder. Also, Hitachi, Ltd., “Instruction Manual F-3010 / F-4010 Type Thin-Layer Cutoma Attached Device for Spectrofluorometer”, Part.No.250-
No. 9942 describes a spectrofluorometer having a function of moving two axes parallel to the sample surface, but there is no description of a sample surface having a function of moving three axes in the normal direction.
【0003】[0003]
【発明が解決しようとする課題】ろ紙上に蛍光物質を展
開した固体試料や、蛍光物質が試料面内で局在するよう
な試料を反射形の試料ホルダを用いて測定する場合、も
っとも蛍光物質の密度の高い部分が発光強度が高く、こ
の位置を探して定性分析等に供するべきである。しか
し、従来は試料の移動機構がないため試料を試料ホルダ
に設置/測定を試行錯誤で繰り返す必要があり、繁雑で
あり、好適な測定位置が必ず見つかるとは限らない。本
発明は、自動的に最大の蛍光強度を与える試料上の位置
を自動的に検出するための手段を提供する。When a solid sample in which a fluorescent substance is spread on filter paper or a sample in which the fluorescent substance is localized on the sample surface is measured using a reflection type sample holder, the fluorescent substance is most often measured. The higher the density, the higher the luminous intensity. This position should be searched for qualitative analysis or the like. However, conventionally, since there is no sample moving mechanism, it is necessary to repeat installation and measurement of the sample on the sample holder by trial and error, which is complicated, and a suitable measurement position is not always found. The present invention provides a means for automatically detecting the position on the sample that gives the maximum fluorescence intensity automatically.
【0004】また、試料面上に起伏がある場合、分光蛍
光光度計の励起光束は試料室内の特定の位置に結像する
ため、試料をその試料面に平行な方向にのみ走査しただ
けでは、試料面上で結像しない場合が発生し、好適な感
度を得ることができなくなる。本発明で常に試料面上に
励起光が結像して照射され好適な感度を自動的に得るた
めの手段を提供する。Further, when there is undulation on the sample surface, the excitation light beam of the spectrofluorometer forms an image at a specific position in the sample chamber. A case where no image is formed on the sample surface occurs, and it becomes impossible to obtain a suitable sensitivity. The present invention provides a means for automatically obtaining an appropriate sensitivity by irradiating the excitation light with an image always formed on the sample surface.
【0005】さらに試料面上の起伏や蛍光物質の分布に
ついての知見を与えるための手段を提供する。[0005] Further, the present invention provides a means for giving knowledge about the undulation and the distribution of the fluorescent substance on the sample surface.
【0006】[0006]
【課題を解決するための手段】反射形の固体,粉体用試
料ホルダに、(1)反射面(試料面)に平行かつ励起光
軸側光軸および蛍光側光軸の作る面に平行な軸、(2)
反射面(試料面)に平行かつ励起光軸側光軸および蛍光
側光軸の作る面の法線方向を向いた軸、(3)反射面の
法線方向を向いた軸の3種の軸に沿った位置制御可能な
駆動機構を設け、またこれらを走査し、上記3軸上の位
置および蛍光強度(または散乱光強度)をモニタ,記憶
することで最適な測定位置,結像位置そして試料面の起
伏,試料面上の蛍光物質の2次元分布を得る。Means for Solving the Problems In a reflection-type sample holder for solid or powder, (1) parallel to a reflection surface (sample surface) and parallel to a surface formed by an excitation optical axis side optical axis and a fluorescence side optical axis. Axis, (2)
An axis parallel to the reflection surface (sample surface) and oriented in the normal direction of the surface formed by the excitation optical axis side and the fluorescence side optical axis, and (3) an axis oriented in the normal direction of the reflection surface. A drive mechanism capable of controlling the position along the axis is provided, and these are scanned, and the positions on the three axes and the fluorescence intensity (or the scattered light intensity) are monitored and stored, so that the optimal measurement position, imaging position, and sample are obtained. The two-dimensional distribution of the fluorescent substance on the surface of the sample and the undulation of the surface is obtained.
【0007】[0007]
【発明の実施の形態】以下、実施例を図面に基づいて説
明する。Embodiments of the present invention will be described below with reference to the drawings.
【0008】図1は発明した試料ホルダを説明するため
の各軸を表す。FIG. 1 shows each axis for explaining the invented sample holder.
【0009】試料面1に励起光が光軸2の方向から入射
する。励起側光軸2と試料面1の交わる試料面上の位置
から発せられた蛍光または、試料面上の散乱光は蛍光側
光軸3の方向で観測される。ここで励起側光軸と蛍光側
光軸は同一平面4上にある。5から7は発明した試料ホ
ルダの移動方向であり、5は試料面(反射面)に平行か
つ励起光側と蛍光側光軸の作る面に平行な軸方向、6は
試料面の法線方向を向いた軸方向、7は試料面に平行か
つ励起光側と蛍光側光軸の作る面の法線方向を向いた軸
方向を表す。[0009] Excitation light is incident on the sample surface 1 from the direction of the optical axis 2. Fluorescence emitted from a position on the sample surface where the excitation-side optical axis 2 intersects with the sample surface 1 or scattered light on the sample surface is observed in the direction of the fluorescence-side optical axis 3. Here, the excitation side optical axis and the fluorescence side optical axis are on the same plane 4. Reference numerals 5 to 7 denote movement directions of the invented sample holder, 5 denotes an axial direction parallel to the sample surface (reflection surface) and parallel to a plane formed by the excitation light side and the fluorescence side optical axis, and 6 denotes a normal direction of the sample surface. 7 denotes an axial direction parallel to the sample surface and normal to the plane formed by the excitation light side and the fluorescence side optical axis.
【0010】これら5から7の方向に試料ホルダは独立
した移動かつ位置制御可能な機構を設ける。The sample holder is provided with a mechanism capable of independent movement and position control in these 5 to 7 directions.
【0011】具体的には、電動のXYZステージの各軸
方向を5から7の軸方向に対応させて配置したステージ
上に固体試料のホルダを設置する。電動XYZステージ
はPC等から外部制御可能なまたはステージ移動に関し
てプログラム可能なものを用いる。More specifically, a solid sample holder is placed on a stage in which each axial direction of an electric XYZ stage is arranged corresponding to 5 to 7 axial directions. As the electric XYZ stage, a stage that can be externally controlled from a PC or the like or that is programmable with respect to stage movement is used.
【0012】図2はろ紙に蛍光物質を展開した場合のよ
うに試料面内の特定の部分に蛍光物質が局在している場
合の例を示す。FIG. 2 shows an example in which the fluorescent substance is localized at a specific portion in the sample surface, such as when the fluorescent substance is spread on filter paper.
【0013】試料面1上に蛍光物質8が局在している。
これを図1の5試料面(反射面)に平行かつ励起光側と
蛍光側光軸の作る面に平行な軸方向、および7試料面に
平行かつ励起光側と蛍光側光軸の作る面の法線方向を向
いた軸方向の駆動機構によって、試料面を走査する。励
起側光軸,蛍光側光軸は固定であるため、試料面上の励
起光束9は相対的に試料面上を走査することになる。走
査の経路は種々存在するが、ここでは10のような経路
で走査を行ったとする。走査中は常にその位置および蛍
光強度をモニタし、さらに最大の蛍光強度を与える位置
を記憶しておく。走査終了後に自動的に最大の蛍光強度
を与える位置にステージを移動する。これらの処理によ
って、表面反射蛍光を測定する際、従来試行錯誤で最適
な位置を設定していたのに対し、自動的に最適な位置を
検出することが可能となる。The fluorescent substance 8 is localized on the sample surface 1.
The axial direction is parallel to the five sample surfaces (reflection surface) and parallel to the plane formed by the excitation light side and the fluorescence side optical axis in FIG. 1, and the seven surface parallel to the sample surface and formed by the excitation light side and the fluorescence side optical axis. The sample surface is scanned by an axial drive mechanism oriented in the normal direction. Since the excitation-side optical axis and the fluorescence-side optical axis are fixed, the excitation light beam 9 on the sample surface relatively scans on the sample surface. Although there are various scanning paths, it is assumed here that scanning is performed along a path such as 10. During scanning, the position and the fluorescence intensity are constantly monitored, and the position giving the maximum fluorescence intensity is stored. After the end of scanning, the stage is automatically moved to a position giving the maximum fluorescence intensity. Through these processes, when measuring the surface reflected fluorescence, the optimal position can be automatically detected, while the optimal position has been set by trial and error in the past.
【0014】図3は起伏のある固体試料の表面を試料ホ
ルダを試料面の法線方向(6の方向)に試料面を走査する
場合の例について説明するものである。ここで励起光は
11の方向に入射する。11の二つの直線が交差する位
置が励起光の集光位置であり、同じ位置に12で観測す
る発光位置がある。a)では、試料面の起伏の影響で、
最適な位置で試料の励起,蛍光の検出がなされていな
い。ここで、6の軸方向に試料面を走査し、最大の蛍光
強度を与える位置およびその蛍光強度を記憶し、試料面
の走査後に、自動的に最大の蛍光強度を与える位置に試
料面を設定する。b)の位置において、試料はもっとも
効率的に励起され、もっとも効率的な蛍光検出が可能と
なる。FIG. 3 illustrates an example in which the surface of an undulating solid sample is scanned with the sample holder in the direction normal to the sample surface (direction 6). Here, the excitation light is incident in the direction of 11. The position where the two straight lines 11 intersect is the condensing position of the excitation light, and the light emission position observed at 12 is at the same position. In a), due to the undulation of the sample surface,
Excitation of sample and detection of fluorescence are not performed at the optimal position. Here, the sample surface is scanned in the axial direction 6 and the position where the maximum fluorescence intensity is provided and the fluorescence intensity are stored, and after the sample surface is scanned, the sample surface is automatically set to the position where the maximum fluorescence intensity is provided. I do. At position b), the sample is excited most efficiently, allowing the most efficient fluorescence detection.
【0015】さらに図4に、試料表面に起伏があり、か
つ蛍光物質が試料表面に局在している試料の例を示す。
a)が試料の上面図、b)が平面図を表す。ここでは、
簡単のため、試料表面の起伏は、平面状の一定の勾配を
持った形状であったとする。この試料に対し、図2で示
したような経路10で試料ステージを走査する。もちろ
ん、この10以外の経路をたどってもよい。この走査は
図4においては、5および7の軸に沿った走査となる。
この時、(1)一定の距離だけステージを5軸方向また
は7軸方向に移動した後、(2)図4における6軸に沿
って試料ステージの走査を行い、(3)この5,7軸位
置における最大の蛍光強度または散乱光強度を与える6
軸上の位置とその蛍光強度または散乱光強度を記憶して
おく。そして、5または7軸に沿った試料ステージの一
定の移動を行い、(2)から(3)の処理を繰り返す。こ
のようにして、試料面の目的の範囲について、試料面上
の位置(これは、5,7軸に沿った座標値で表される)
と位置に対応した試料表面の起伏(これは6軸に沿った
座標値で表される)および、最大蛍光強度または散乱光
強度の各値を記憶する。すなわち、行列の行方向の5軸
に沿った座標値,列方向に7軸に沿った座標値,行列の
要素に最大蛍光強度または散乱光強度を与える6軸上の
座標値あるいは最大蛍光強度または散乱光強度そのもの
を格納する。格納方法は、行列形式以外にも、配列形
式、または、行方向と列方向の範囲とステージの移動ス
テップがわかっていれば要素のみの記憶でもよい。また
この記憶場所は、分光蛍光光度計を制御する制御部のメ
モリ上でもよいし、制御部に付随するハードディスク,
フロッピーディスク他の記憶媒体上でもよい。FIG. 4 shows an example of a sample in which the surface of the sample has undulations and the fluorescent substance is localized on the surface of the sample.
a) is a top view of the sample, and b) is a plan view. here,
For the sake of simplicity, it is assumed that the undulations on the surface of the sample have a planar shape with a certain gradient. The sample stage is scanned on the sample along the path 10 as shown in FIG. Of course, a route other than the route 10 may be followed. This scan is a scan along axes 5 and 7 in FIG.
At this time, (1) the stage is moved in a 5-axis direction or a 7-axis direction by a fixed distance, (2) the sample stage is scanned along the 6-axis in FIG. Giving the maximum fluorescence or scattered light intensity at the location 6
The position on the axis and its fluorescence intensity or scattered light intensity are stored. Then, the sample stage is moved in a fixed manner along the five or seven axes, and the processing from (2) to (3) is repeated. In this way, for the target range of the sample surface, the position on the sample surface (this is represented by coordinate values along the 5, 7 axes)
And the undulation of the sample surface corresponding to the position (this is represented by coordinate values along six axes) and the maximum fluorescence intensity or the scattered light intensity are stored. That is, the coordinate values along five axes in the row direction of the matrix, the coordinate values along seven axes in the column direction, the coordinate values on the six axes that give the maximum fluorescence intensity or the scattered light intensity to the elements of the matrix, or the maximum fluorescence intensity or Stores the scattered light intensity itself. In addition to the matrix format, the storage method may be an array format or storage of only the elements if the range in the row direction and the column direction and the stage movement step are known. This storage location may be on the memory of the control unit that controls the spectrofluorometer, or may be a hard disk,
It may be on a floppy disk or other storage medium.
【0016】この格納したデータを3次元表示した例を
図5に示す。a)は図4における5,7軸に沿った座標
と6軸上の座標値を表し、試料の表面の起伏に関する知
見を与える。b)は5,7軸に沿った座標と蛍光強度を
表すグラフであって、試料の面内の局在に関する知見を
与える。FIG. 5 shows an example in which the stored data is three-dimensionally displayed. a) represents the coordinates along the 5 and 7 axes and the coordinate values on the 6 axes in FIG. 4, and gives knowledge on the undulation of the surface of the sample. b) is a graph showing the coordinates along the 5 and 7 axes and the fluorescence intensity, and gives information on the localization of the sample in the plane.
【0017】[0017]
【発明の効果】本発明によればこれまで試行錯誤に頼っ
ていた、固体試料の測定面上の最適な測定位置の検出と
最適な結像状態の検出を自動的に行い、また試料表面の
起伏のある場合の形状に関する知見と試料表面上に蛍光
物質が局在するとき、その分布に関する知見を得ること
ができる。According to the present invention, the detection of the optimum measurement position on the measurement surface of a solid sample and the detection of the optimum imaging state, which have conventionally relied on trial and error, are automatically performed. When the fluorescent substance is localized on the surface of the sample and the distribution of the fluorescent substance is localized on the surface of the sample, it is possible to obtain the knowledge about the shape in the case of the undulation.
【図1】試料ホルダの上の座標値を表す説明図。FIG. 1 is an explanatory diagram showing coordinate values on a sample holder.
【図2】試料表面上のステージの走査方法を表す説明
図。FIG. 2 is an explanatory diagram illustrating a method of scanning a stage on a sample surface.
【図3】表面に起伏のある試料の測定例を示す説明図。FIG. 3 is an explanatory view showing a measurement example of a sample having undulations on the surface.
【図4】表面に起伏がありかつ蛍光物質が局在する試料
を表す説明図。FIG. 4 is an explanatory diagram illustrating a sample having undulations on its surface and localizing a fluorescent substance.
【図5】測定結果の3次元グラフ表示の説明図。FIG. 5 is an explanatory diagram of a three-dimensional graph display of measurement results.
1…試料面、2…励起側光軸、3…蛍光側光軸、4…
面、5,6,7…軸。1 ... sample surface, 2 ... excitation side optical axis, 3 ... fluorescence side optical axis, 4 ...
Surface, 5, 6, 7 ... axis.
Claims (5)
試料に照射する励起側分光器、上記試料から発せられた
蛍光側分光器、上記蛍光側分光器の射出光の検出器、上
記二つの分光器の波長移動と検出器からのデータ取得お
よびデータの表示,処理等を行う制御部によって構成さ
れる分光蛍光光度計において、試料室内の固体,粉体試
料を測定するための反射形の試料セルのホルダに試料面
に平行かつ励起光側と蛍光側光軸の作る面に平行な軸方
向、試料面に平行かつ励起光側と蛍光側光軸の作る面の
法線方向を向いた軸方向、および試料面の法線方向を向
いた軸方向に沿って位置制御可能な駆動機構を設け、試
料面の任意の位置に励起光を照射し、上記励起光が照射
された部分からの蛍光を検出できることを特徴とする分
光蛍光光度計。A light source, an excitation-side spectroscope for dispersing light from the light source and irradiating the sample with monochromatic light, a fluorescence-side spectroscope emitted from the sample, a detector for emitting light of the fluorescence-side spectrometer, Reflection for measuring solid and powder samples in the sample chamber in a spectrofluorometer composed of a control unit that performs wavelength shift of the above two spectrometers, data acquisition from the detector, data display, processing, etc. In the holder of the sample cell of the shape, the axial direction parallel to the sample surface and parallel to the plane formed by the excitation light side and the fluorescence side optical axis, and the normal direction parallel to the sample surface and formed by the excitation light side and the fluorescence side optical axis A drive mechanism capable of position control is provided along the axial direction facing and the axial direction facing the normal direction of the sample surface, and irradiates an arbitrary position on the sample surface with excitation light, and a portion irradiated with the excitation light. Fluorescence spectrophotometer characterized by being able to detect fluorescence from a fluorescent light.
蛍光光度計において、測定する固体の試料面に平行かつ
励起光側と蛍光側光軸の作る面に平行な軸方向、試料面
に平行かつ励起光側と蛍光側光軸の作る面の法線方向を
向いた軸方向の両軸方向に試料面を走査し、その試料面
上の位置および蛍光強度を検出,記憶し、走査後に最大
の蛍光強度を与える試料面上の位置を検出し、検出した
最大蛍光強度を与える位置に試料位置を自動的に設定可
能であることを特徴とする分光蛍光光度計。2. A spectrofluorimeter provided with a drive mechanism capable of controlling the position, wherein an axial direction parallel to a surface of a solid sample to be measured and parallel to a plane formed by an excitation light side and a fluorescence side optical axis, The sample surface is scanned in both axial directions parallel to and perpendicular to the surface formed by the excitation light side and the fluorescence side optical axis, and the position and fluorescence intensity on the sample surface are detected and stored. A spectrofluorometer characterized by detecting a position on a sample surface giving the maximum fluorescence intensity and automatically setting the sample position at a position giving the detected maximum fluorescence intensity.
蛍光光度計において、固体試料面上の任意の位置に励起
光を照射した場合に、試料面の法線方向に試料面を走査
し、その移動量と蛍光強度を検出,記憶し、走査後に最
大の蛍光強度を与える位置を検出し、検出した最大蛍光
強度を与える位置に試料位置を自動的に設定可能である
ことを特徴とする分光蛍光光度計。3. A spectrofluorimeter provided with a drive mechanism capable of controlling the position, wherein, when an arbitrary position on the surface of the solid sample is irradiated with excitation light, the sample surface is scanned in a direction normal to the sample surface. Detecting and storing the amount of movement and the fluorescence intensity, detecting the position giving the maximum fluorescence intensity after scanning, and automatically setting the sample position to the position giving the detected maximum fluorescence intensity. Spectrofluorometer.
蛍光光度計において、測定する固体等の試料面に平行か
つ励起光側と蛍光側光軸の作る面に平行な軸方向、試料
面に平行かつ励起光側と蛍光側光軸の作る面の法線方向
を向いた軸方向の両軸方向に試料面を任意の移動量をも
って順次移動し、移動毎に試料面の法線方向に試料面を
走査し、その試料面上の位置,法線方向の移動量、およ
び蛍光強度または励起光の散乱光の強度を検出,記憶
し、走査後に、試料面に平行かつ励起光側と蛍光側光軸
に平行な軸方向位置と試料面に平行かつ励起光側と蛍光
側光軸の作る面に垂直な軸方向位置に、法線方向の位置
移動量を対応させたデータとデータを3次元表示した図
を出力することを特徴とする分光蛍光光度計。4. A spectrofluorimeter provided with a drive mechanism capable of controlling the position, wherein the sample surface in an axial direction parallel to a sample surface of a solid or the like to be measured and parallel to a plane formed by an excitation light side and a fluorescence side optical axis. The sample surface is sequentially moved with an arbitrary amount of movement in both axial directions parallel to the sample and in the direction of the normal to the surface formed by the excitation light side and the fluorescence side optical axis. The sample surface is scanned, the position on the sample surface, the amount of movement in the normal direction, and the intensity of the fluorescence or the scattered light of the excitation light are detected and stored. Data and data in which the amount of movement in the normal direction corresponds to the axial position parallel to the side optical axis and the axial position parallel to the sample surface and perpendicular to the plane formed by the excitation light side and the fluorescence side optical axis are represented by 3 A spectrofluorimeter that outputs a figure that is displayed in three dimensions.
蛍光光度計において、測定する固体等の試料面に平行か
つ励起光側と蛍光側光軸の作る面に平行な軸方向、試料
面に平行かつ励起光側と蛍光側光軸の作る面の法線方向
を向いた軸方向の両軸方向に試料面を任意の移動量をも
って順次移動し、移動毎に試料面の法線方向に試料面を
走査し、その試料面上の位置,法線方向の移動量、およ
び蛍光強度または励起光の散鮮光の強度を検出,記憶
し、走査後に、試料面に平行かつ励起光側と蛍光側光軸
に平行な軸方向位置と試料面に平行かつ励起光側と蛍光
側光軸の作る面に垂直な軸方向位置に、最大の蛍光強度
を対応させたデータとデータを3次元表示した図を出力
することを特徴とする分光蛍光光度計。5. A spectrofluorimeter provided with a drive mechanism capable of controlling the position, wherein the sample surface in an axial direction parallel to a sample surface of a solid or the like to be measured and parallel to a plane formed by an excitation light side and a fluorescence side optical axis. The sample surface is sequentially moved with an arbitrary amount of movement in both axial directions parallel to the sample and in the direction of the normal to the surface formed by the excitation light side and the fluorescence side optical axis. Scanning the sample surface, detecting and storing the position on the sample surface, the amount of movement in the normal direction, and the intensity of the fluorescence intensity or the scattered light of the excitation light. Three-dimensional display of data and data with the maximum fluorescence intensity corresponding to the axial position parallel to the fluorescence side optical axis and the axial position parallel to the sample surface and perpendicular to the plane formed by the excitation light side and the fluorescence side optical axis A spectrofluorimeter, which outputs a plotted image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27583696A JPH10123055A (en) | 1996-10-18 | 1996-10-18 | Fluorescence spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27583696A JPH10123055A (en) | 1996-10-18 | 1996-10-18 | Fluorescence spectrophotometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10123055A true JPH10123055A (en) | 1998-05-15 |
Family
ID=17561117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27583696A Pending JPH10123055A (en) | 1996-10-18 | 1996-10-18 | Fluorescence spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10123055A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017534890A (en) * | 2014-11-13 | 2017-11-24 | マーケット ユニバーシティー | Adapter for spectrofluorometer cell holder |
-
1996
- 1996-10-18 JP JP27583696A patent/JPH10123055A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017534890A (en) * | 2014-11-13 | 2017-11-24 | マーケット ユニバーシティー | Adapter for spectrofluorometer cell holder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5315375A (en) | Sensitive light detection system | |
EP1526373B1 (en) | Biomolecule analyzer | |
US7718131B2 (en) | Methods and apparatus for imaging and processing of samples in biological sample containers | |
US8599376B2 (en) | Optical microscopy with phototransformable optical labels | |
US5424841A (en) | Apparatus for measuring spatial distribution of fluorescence on a substrate | |
JP4463228B2 (en) | Optical alignment method and apparatus for capillary electrophoresis apparatus | |
US7551271B2 (en) | Uncaging devices | |
US8675192B2 (en) | Method and device for high speed quantitative measurement of biomolecular targets on or in biological analysis medium | |
US7199377B2 (en) | Optical analytic measurement device for fluorescence measurements in multisample carriers | |
US20010052976A1 (en) | Scanning optical detection system | |
WO1994013835A1 (en) | Detection of macromolecules | |
US7342995B2 (en) | Apparatus for estimating specific polymer crystal | |
EP1472913B1 (en) | Analysis method | |
EP2980560B1 (en) | Data processing device, optical detection system, data processing method, and data processing program | |
US20080253409A1 (en) | Multi-Channel Bio-Chip Scanner | |
JPH10123055A (en) | Fluorescence spectrophotometer | |
EP1936359A2 (en) | System and Method for Removing Auto-Fluorescence Through The Use Of Multiple Detection Channels | |
EP1933131A1 (en) | Efficient method and system for detecting luminescence | |
JPH11326051A (en) | Detecting device for fluorescence pigment | |
EP3676598B1 (en) | High powered lasers for western blotting | |
RU2284605C2 (en) | Test technique | |
WO2000040957A1 (en) | Method and device for measuring labels in a carrier | |
JP4332283B2 (en) | Near-field optical microscope | |
JP2004170306A (en) | Measuring device |