JPH10122993A - Photo-pressure sensor - Google Patents

Photo-pressure sensor

Info

Publication number
JPH10122993A
JPH10122993A JP28233996A JP28233996A JPH10122993A JP H10122993 A JPH10122993 A JP H10122993A JP 28233996 A JP28233996 A JP 28233996A JP 28233996 A JP28233996 A JP 28233996A JP H10122993 A JPH10122993 A JP H10122993A
Authority
JP
Japan
Prior art keywords
pressure sensor
rare earth
analyzer
polarizer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28233996A
Other languages
Japanese (ja)
Inventor
Kazushi Shirai
一志 白井
Norio Takeda
憲夫 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP28233996A priority Critical patent/JPH10122993A/en
Publication of JPH10122993A publication Critical patent/JPH10122993A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized lightweight photo-pressure sensor by using a nonmagnetic rare earth garnet monocrystal as photoelastic element. SOLUTION: As the photoelastic element of an optical pressure sensor formed of a polarizer, a photoelastic element, and an analyzer, nonmagnetic rare earth garnet monocrystal is used. The nonmagnetic rare earth garnet monocrystal is properly selected from those shown by the general formula (RC)3 A5 O12 (in the formula, R represents at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Td, Dy, Ho, Er, Tm, Yb and Lu, C represents at least one selected from the group consisting of Li and Ca by which R can be partially substituted, and A represents at least one selected from the group consisting of Ga, Sc, A, Zr, Si, In, and Mg). This photo-pressure sensor is formed of the polarizer, the nonmagnetic rare earth garnet monocrystal, and the analyzer in order from the light source side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非磁性希土類ガーネッ
ト単結晶を利用した光圧力センサに関する。更に詳しく
云えば本発明は、感度の高い非磁性希土類ガーネット単
結晶を用いた小型軽量な光圧力センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pressure sensor using a non-magnetic rare earth garnet single crystal. More specifically, the present invention relates to a compact and lightweight optical pressure sensor using a highly sensitive nonmagnetic rare earth garnet single crystal.

【0002】[0002]

【従来の技術】光ファイバ通信の発展とともに、光伝送
路としての光ファイバ、光源としての半導体レーザーや
発光ダイオード、受光素子としてのホトダーオード、お
よびセルホックレンズやガラス製偏光子等の小型光部品
など、多くの要素技術が整備されてきた。近年、こうし
た技術を背景にして、電磁誘導の影響を受けない、引火
・爆発の危険がないなどの優れた特徴を有する光応用計
測技術に関心が高まっている。
2. Description of the Related Art With the development of optical fiber communication, an optical fiber as an optical transmission line, a semiconductor laser or a light emitting diode as a light source, a photo diode as a light receiving element, and small optical components such as a cell hook lens or a glass polarizer. Many elemental technologies have been developed. In recent years, with the background of these technologies, there has been an increasing interest in optical applied measurement technology having excellent characteristics such as being unaffected by electromagnetic induction and free from danger of ignition or explosion.

【0003】光応用計測の一分野として、透明弾性体の
一方向に圧力を加えたとき歪によって透明弾性体が複屈
折結晶のごとく振る舞う現象、すなわち、光弾性効果を
応用した光圧力計測がある。その一例を図1に示す。図
1において、符号1はルチル単結晶等からなる偏光子、
符号2は石英ガラス等からなりる光弾性素子、符号3は
ルチル単結晶等からなる検光子である。
[0003] As one field of optical applied measurement, there is a phenomenon in which a transparent elastic body behaves like a birefringent crystal due to strain when a pressure is applied in one direction of the transparent elastic body, that is, an optical pressure measurement applying a photoelastic effect. . One example is shown in FIG. In FIG. 1, reference numeral 1 denotes a polarizer made of rutile single crystal or the like,
Reference numeral 2 denotes a photoelastic element made of quartz glass or the like, and reference numeral 3 denotes an analyzer made of rutile single crystal or the like.

【0004】図1において、偏光子1を透過した光は直
線偏光となって、光弾性素子2に入射する。光弾性素子
2に圧力が加わった場合、光弾性素子2の複屈折性によ
って光は楕円偏光となる。従って、検光子3を通過した
光の強度(P1 )は圧力に応じて変化する。これが基本
原理である。しかしながら従来から光弾性素子に使用さ
れている石英ガラス等は、光弾性効果が小さいため、素
子自体を大きくしなければならず、圧力検出部の小型化
が困難であった。
In FIG. 1, light transmitted through a polarizer 1 becomes linearly polarized light and enters a photoelastic element 2. When pressure is applied to the photoelastic element 2, light becomes elliptically polarized light due to the birefringence of the photoelastic element 2. Accordingly, the intensity (P1) of the light passing through the analyzer 3 changes according to the pressure. This is the basic principle. However, since quartz glass or the like conventionally used for a photoelastic element has a small photoelastic effect, the element itself must be enlarged, and it is difficult to reduce the size of the pressure detecting unit.

【0005】[0005]

【課題を解決するための手段】本願発明者らは、光圧力
センサの小型化を実現するため、光弾性効果の大きい材
料を開発すべく鋭意検討した。その結果、非磁性希土類
ガーネット単結晶が大きな光弾性効果を有していること
を見いだし、さらに検討を重ねて本発明を完成させた。
すなわち、本発明は、偏光子、光弾性素子、検光子で構
成される光圧力センサにおいて、該光弾性素子が非磁性
希土類ガーネット単結晶であることを特徴とする光圧力
センサである。
Means for Solving the Problems The present inventors have intensively studied to develop a material having a large photoelastic effect in order to realize a compact optical pressure sensor. As a result, they have found that a nonmagnetic rare earth garnet single crystal has a large photoelastic effect, and have further studied and completed the present invention.
That is, the present invention is an optical pressure sensor comprising a polarizer, a photoelastic element, and an analyzer, wherein the photoelastic element is a nonmagnetic rare earth garnet single crystal.

【0006】本発明において、光弾性素子として用いる
非磁性希土類ガーネット単結晶に特に制限はなく、一般
式: (RC)3A5O12 〔但し、Rは、Y, La, Ce, Pr, Nd,
Sm,Eu, Gd, Tb, Dy, Ho, Er, Tm, YbおよびLuの群から
選ばれる少なくとも一種であり、CはRを一部置換し得
るLi, Caの群から選ばれる少なくとも一種であり、A
は、Ga, Sc, Al, Zr, Si, InおよびMgの群から選ばれる
少なくとも一種である〕で示される希土類鉄ガーネット
単結晶の中から適宜に選ぶのが好ましい。とりわけ、光
アイソレータ用ファラデー回転子に広く用いられている
ビスマス置換希土類鉄ガーネット単結晶膜育成用基板で
ある [Gd3Ga5O12]基板や[(GdCa)3(GaMgZr)5O12] 基板
は、入手が容易であり、比較的安価であり、また透明性
に優れていることから、特に好ましい素材である。
In the present invention, the nonmagnetic rare earth garnet single crystal used as the photoelastic element is not particularly limited, and has the general formula: (RC) 3 A 5 O 12 [where R is Y, La, Ce, Pr, Nd ,
At least one selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and C is at least one selected from the group consisting of Li and Ca which can partially substitute R , A
Is at least one selected from the group consisting of Ga, Sc, Al, Zr, Si, In, and Mg.] Is preferably selected from the rare earth iron garnet single crystals. In particular, a [Gd 3 Ga 5 O 12 ] substrate or a [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate, which is a substrate for growing a bismuth-substituted rare earth iron garnet single crystal film widely used in a Faraday rotator for an optical isolator Is a particularly preferred material because it is easily available, relatively inexpensive, and excellent in transparency.

【0007】本発明は、基本的に光源側から偏光子、非
磁性希土類ガーネット単結晶、検光子で構成されるが、
レーザー光を偏波面保持光ファイバで導けば、偏光子を
省くことも可能である。また、圧力と検光子を透過した
光強度を直線関係にする目的で、1/4 波長板を加えるこ
とも可能である。この場合、偏光子と非磁性希土類ガー
ネット単結晶との間、又は非磁性希土類ガーネット単結
晶と検光子との間のいずれかに、1/4 波長板を設置する
ことができる。
The present invention basically comprises a polarizer, a nonmagnetic rare earth garnet single crystal, and an analyzer from the light source side.
If the laser light is guided by the polarization maintaining optical fiber, the polarizer can be omitted. It is also possible to add a quarter-wave plate in order to make the pressure and the light intensity transmitted through the analyzer a linear relationship. In this case, a quarter-wave plate can be provided either between the polarizer and the non-magnetic rare-earth garnet single crystal or between the non-magnetic rare-earth garnet single crystal and the analyzer.

【0008】本発明を実施するに際し、光源の波長に特
に制限はなく、非磁性ガーネット単結晶の光透過率が良
好な波長領域と、レーザー光源の入手の容易さや価格な
どを総合的に考慮し、適宜選択するば良い。実際にはレ
ーザー光源と受光素子が安価でしかも入手が容易な、0.
8 μm帯の波長領域が最も好ましい。次善の策としては
1.31μmや1.55μmの長距離光通信用の波長も選択可能
である。
In practicing the present invention, there is no particular limitation on the wavelength of the light source, and a comprehensive consideration is given to the wavelength range in which the light transmittance of the nonmagnetic garnet single crystal is favorable, the availability of the laser light source, the price, and the like. , May be selected as appropriate. Actually, the laser light source and light receiving element are inexpensive and easy to obtain.
The wavelength region of the 8 μm band is most preferable. The next best thing is
1.31 μm and 1.55 μm long wavelength optical communication wavelengths can also be selected.

【0009】[0009]

【実施例】以下、本発明を実施例によって、具体的に説
明するが、以下の例は、本発明の実施態様や発明の範囲
を限定するものとしては意図されていない。 実施例1 信越化学工業(株)社製の厚さ 500μmで、格子定数が
1.2383nm の(111) ガーネット単結晶[Gd3Ga5O12] 基板
を 2mm×2mm の大きさに切断した。次に、この 2mm×2m
m の大きさの Gd3Ga5O12を、図2で示される評価装置に
セットし、Gd3Ga5O12 に加えられた圧力と検光子を通過
した光の強度との関係を調べた。測定結果を図3に示し
た。Gd3Ga5O12に加わる圧力として、0N/mm2から15N/mm
2 の範囲で直線関係が得られた。この測定範囲における
測定エラーは±2%であった。
EXAMPLES The present invention will be described in more detail with reference to examples, but the following examples are not intended to limit the embodiments and the scope of the present invention. Example 1 A 500 μm-thick Shin-Etsu Chemical Co., Ltd. lattice constant
A (111) garnet single crystal [Gd 3 Ga 5 O 12 ] substrate of 1.2383 nm was cut into a size of 2 mm × 2 mm. Next, this 2mm x 2m
Gd 3 Ga 5 O 12 having a size of m was set in the evaluation device shown in FIG. 2, and the relationship between the pressure applied to Gd 3 Ga 5 O 12 and the intensity of light passing through the analyzer was examined. . The measurement results are shown in FIG. The pressure applied to Gd 3 Ga 5 O 12 is 0 N / mm 2 to 15 N / mm
A linear relationship was obtained in the range of 2 . The measurement error in this measurement range was ± 2%.

【0010】尚、図2において、波長0.78μmの半導体
レーザー光源(10)、半導体レーザー光源10からのレーザ
ー光を導くための光ファイバ(11)、光ファイバ11から出
射されたレーザー光を平行ビームにするための分布屈折
率レンズ(12)、グラントムソンプリズム(偏光子)(13)
、 2mm×2mm の大きさのGd3Ga5O12(14) 、 Gd3Ga5O12
を固定するための金属ホルダー(15)、 Gd3Ga5O12に圧力
を加えるための加圧用金属ジグ(16)、水晶からなる0.78
μm用の1/4 波長板(17)、グラントムソンプリズム(検
光子)(18) 、光強度を測定するための光パワーメータ(1
9)である。
In FIG. 2, a semiconductor laser light source (10) having a wavelength of 0.78 μm, an optical fiber (11) for guiding laser light from the semiconductor laser light source 10, and a laser beam emitted from the optical fiber 11 are converted into a parallel beam. Gradient index lens (12), Glan-Thompson prism (polarizer) for making (13)
Gd 3 Ga 5 O 12 of size 2 mm × 2 mm (14), Gd 3 Ga 5 O 12
Metal holder for fixing (15), pressing a metal jig (16) for applying pressure to the Gd 3 Ga 5 O 12, made of quartz 0.78
μm quarter-wave plate (17), Glan-Thompson prism (analyzer) (18), optical power meter (1)
9).

【0011】実施例2 クリスマテック(株)社製の厚さ 500μmで、格子定数
が1.2407nmの (111)ガーネット単結晶[(CaGd)3(ZrMgGa)
5O12] 基板を 2mm×2mm の大きさに切断した。次に、実
施例1と同様にして 2mm×2mm の大きさの(CaGd)3(ZrMg
Ga)5O12 に加えられた圧力と検光子を通過した光の強度
との関係を調べた。ただし、図2において、波長1.31μ
mのレーザー光源(10)、波長1.31μm用1/4 波長板(17)
とした。この結果、(CaGd)3(ZrMgGa)5O12 加わる圧力と
して、0N/mm2から18N/mm2 の範囲で直線関係が得られ
た。この測定範囲における測定エラーは±2%であっ
た。
Example 2 A (111) garnet single crystal [(CaGd) 3 (ZrMgGa) having a thickness of 500 μm and a lattice constant of 1.2407 nm manufactured by Chrismatech Co., Ltd.
5 O 12 ] The substrate was cut into a size of 2 mm × 2 mm. Next, in the same manner as in Example 1, a (CaGd) 3 (ZrMg
The relationship between the pressure applied to Ga) 5 O 12 and the intensity of light passing through the analyzer was examined. However, in FIG.
m laser light source (10), quarter wave plate for wavelength of 1.31 μm (17)
And As a result, as the pressure applied (CaGd) 3 (ZrMgGa) 5 O 12, a linear relationship was obtained in the range from 0N / mm 2 of 18N / mm 2. The measurement error in this measurement range was ± 2%.

【0012】[0012]

【発明の効果】本発明によれば、希土類ガーネット単結
晶を用いて、小型軽量の光圧力センサを、工業的に、極
めて容易に製造して提供することができる。
According to the present invention, a compact and lightweight optical pressure sensor can be manufactured and provided industrially very easily using a rare earth garnet single crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光弾性効果を利用した光圧力センサの構成を示
した模式図である。
FIG. 1 is a schematic diagram showing a configuration of an optical pressure sensor using a photoelastic effect.

【図2】本発明からなる光圧力センサの評価方法を示し
た模式図である。
FIG. 2 is a schematic view showing a method for evaluating an optical pressure sensor according to the present invention.

【図3】実施例1における測定結果を示した図である。FIG. 3 is a diagram showing measurement results in Example 1.

【符号の説明】[Explanation of symbols]

1:偏光子 2:光弾性素子 3:検光子 10:安定化半導体レーザー光源 11:光ファイバ 12:分布屈折率レンズ 13:グラントムソンプリズム(偏光子) 14:Gd3Ga5O12 15:金属ホルダー 16:加圧用金属ジグ 17:1/4 波長板 18:グラントムソンプリズム(検光子) 19:光パワーメータ1: Polarizer 2: Photoelastic element 3: Analyzer 10: Stabilized semiconductor laser light source 11: Optical fiber 12: Distributed index lens 13: Glan-Thompson prism (polarizer) 14: Gd 3 Ga 5 O 12 15: Metal Holder 16: Metal jig for pressurization 17: 1/4 wavelength plate 18: Glan-Thompson prism (analyzer) 19: Optical power meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 偏光子、光弾性素子、検光子で構成され
る光圧力センサにおいて、該光弾性素子が非磁性希土類
ガーネット単結晶であることを特徴とする光圧力セン
サ。
1. An optical pressure sensor comprising a polarizer, a photoelastic element, and an analyzer, wherein the photoelastic element is a nonmagnetic rare earth garnet single crystal.
【請求項2】 該偏光子と該検光子との間に、さらに 1
/4波長板が設置されてなる請求項1記載の光圧力セン
サ。
2. The method according to claim 1, further comprising the step of:
The optical pressure sensor according to claim 1, further comprising a quarter-wave plate.
JP28233996A 1996-10-24 1996-10-24 Photo-pressure sensor Pending JPH10122993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28233996A JPH10122993A (en) 1996-10-24 1996-10-24 Photo-pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28233996A JPH10122993A (en) 1996-10-24 1996-10-24 Photo-pressure sensor

Publications (1)

Publication Number Publication Date
JPH10122993A true JPH10122993A (en) 1998-05-15

Family

ID=17651138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28233996A Pending JPH10122993A (en) 1996-10-24 1996-10-24 Photo-pressure sensor

Country Status (1)

Country Link
JP (1) JPH10122993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186356A1 (en) * 2014-06-03 2015-12-10 Okinawa Institute Of Science And Technology School Corporation System and method for obtaining force based on photoelasticity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186356A1 (en) * 2014-06-03 2015-12-10 Okinawa Institute Of Science And Technology School Corporation System and method for obtaining force based on photoelasticity
JP2017517003A (en) * 2014-06-03 2017-06-22 学校法人沖縄科学技術大学院大学学園 System and method for acquiring force based on photoelasticity

Similar Documents

Publication Publication Date Title
Fujita et al. Waveguide optical isolator based on Mach–Zehnder interferometer
US5408565A (en) Thin-film magneto-optic polarization rotator
US7254286B2 (en) Magneto-optical resonant waveguide sensors
EP0510621B1 (en) Magneto-optical element and magnetic field measurement apparatus
US4560932A (en) Magneto-optical converter utilizing Faraday effect
US20040001255A1 (en) Polarization compensators and optical devices and systems incorporating polarization compensators
JPH0727127B2 (en) Optical system with reciprocal polarization rotator
US4886332A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
JP3144928B2 (en) Optical sensor
KR960035055A (en) Magneto-optical elements and photo-magnetic sensors
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
US6943932B2 (en) Waveguide mach-zehnder optical isolator utilizing transverse magneto-optical phase shift
WO1996025683A1 (en) Optical isolator
JPH10122993A (en) Photo-pressure sensor
Levy et al. Permanent magnet film magneto‐optic waveguide isolator
JPH05333124A (en) Reflection type photomagnetic field sensor head
EP3422060A1 (en) Optical isolator module
Reyher et al. Optically detected magnetic resonance via the magnetic circular dichroism of absorption of cerium impurities in bulk paramagnetic terbium gallium garnet
Kirilyuk et al. Asymmetry of second harmonic generation in magnetic thin films under circular optical excitation
JPH0137697B2 (en)
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JPH10122992A (en) Photo-pressure sensor
US3516726A (en) Optical devices with zero linear magnetic birefringence
JP2916995B2 (en) Magnetic garnet for optical devices