JPH10121185A - Method for casting gray cast iron - Google Patents

Method for casting gray cast iron

Info

Publication number
JPH10121185A
JPH10121185A JP27787196A JP27787196A JPH10121185A JP H10121185 A JPH10121185 A JP H10121185A JP 27787196 A JP27787196 A JP 27787196A JP 27787196 A JP27787196 A JP 27787196A JP H10121185 A JPH10121185 A JP H10121185A
Authority
JP
Japan
Prior art keywords
cast iron
graphite
temperature
temp
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27787196A
Other languages
Japanese (ja)
Inventor
Toshitake Sugano
利猛 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMURA CHUZOSHO KK
Kimura Foundry Co Ltd
Original Assignee
KIMURA CHUZOSHO KK
Kimura Foundry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMURA CHUZOSHO KK, Kimura Foundry Co Ltd filed Critical KIMURA CHUZOSHO KK
Priority to JP27787196A priority Critical patent/JPH10121185A/en
Publication of JPH10121185A publication Critical patent/JPH10121185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for casting a high strength gray cast iron. SOLUTION: Casting is carried out under the conditions that the contents of carbon and silicon are set at 2.3-3.2% and 1.2-4.0%, respectively, and an inoculant containing >=20% silicon and >=1% calcium is used by 0.3-0.7% based on cast iron and components other than carbon and silicon are contained so that ΔT3 becomes 5-70 deg.C and the value of ΔT1 /ΔT3 becomes >=0.6 and also the innoculant is added. At this time, ΔT3 is a temp. difference between graphite eutectic temp. of cast iron and cementite eutectic temp., and ΔT1 , is a temp. difference between euetctic supercooling temp. and cementite eutectic temp. By performing casting so that the aforesaid conditions are satisfied, a cast product of gray cast iron having high strength, free from occurrence of chill, and excellent in quality can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ねずみ鋳鉄の鋳造
方法に関し、特に強度の高いねずみ鋳鉄を得ることがで
きるねずみ鋳鉄の鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting gray cast iron, and more particularly to a method for casting gray cast iron capable of obtaining high strength gray cast iron.

【0002】[0002]

【従来の技術】例えばエンジンブロック等に用いられる
ねずみ鋳鉄の強度を高くし鋳造製品の肉厚を薄くすれ
ば、製品を軽量化できること等から強度の高いねずみ鋳
鉄が望まれている。現在世界各国のねずみ鋳鉄の規格
は、強度が100N/mm2 〜350N/mm2 の範囲にお
いてなされているが、それ以上の強度についての規格化
はなされていない。それは、それ以上の強度のねずみ鋳
鉄を安定して製造できないためであり、400N/mm2
以上の強度のねずみ鋳鉄を安定して製造する方法が望ま
れている。
2. Description of the Related Art For example, if the strength of gray cast iron used for an engine block or the like is increased and the thickness of a cast product is reduced, the product can be reduced in weight. Current worldwide gray cast iron standard is strength have been made in the range of 100N / mm 2 ~350N / mm 2 , it has not been standardized for more strength. The reason is that gray cast iron having a higher strength cannot be stably manufactured, and 400 N / mm 2
A method for stably producing gray cast iron having the above strength is desired.

【0003】現在ねずみ鋳鉄の引張強さを向上させる方
法としては、鋳鉄の炭素含有量を減らし、組織中におけ
る黒鉛量を減少させること、接種を行い黒鉛形状をA型
黒鉛にすること、またはNi、Cr、Mo、Cu等を鋳
鉄に添加して基地組織を強化すること等が一般的に知ら
れている。
[0003] At present, methods for improving the tensile strength of gray cast iron include reducing the carbon content of cast iron, reducing the amount of graphite in the structure, inoculating the graphite into A-type graphite, or reducing the carbon content of Ni. It is generally known that Cr, Mo, Cu, etc. are added to cast iron to strengthen the base structure.

【0004】[0004]

【発明を解決しようとする課題】しかしながら、鋳鉄の
炭素含有量を減少させると、成分が鋼に近づき強度を高
くすることができるが、逆に核となる組織中の黒鉛量が
減少するため黒鉛による核生成能力が低下し、レデブラ
イトと呼ばれるチル組織の発生が多くなる。すると、チ
ル組織の発生によりその発生箇所が硬くかつ脆くなり、
鋳造製品にとって好ましくない結果となる。
However, when the carbon content of cast iron is reduced, the components can approach the steel and the strength can be increased, but on the contrary, the amount of graphite in the core structure is reduced, so that graphite is reduced. Reduces the nucleation ability and increases the generation of chill structures called redebrite. Then, due to the generation of the chill structure, the location of occurrence becomes hard and brittle,
Unfavorable results for cast products.

【0005】また、従来接種は、これを過剰に行なって
も効果は少ないとされ、逆に鋳造製品の機械的性質を低
下させたり、引けを発生させるなどの鋳造欠陥を招くと
考えられており、実際の生産における接種量は溶湯重量
に対して0.3%を限界としていた。そのため、溶湯中
の炭素含有量を低くするほど、A型の黒鉛を晶出させる
ことが困難となり、また、炭素含有量が低いほど溶湯中
に存在する未溶解黒鉛核が消失しやすくなり、必要な核
物質が消失する速度、すなわちフェーディングが速くな
りすぎるという問題があった。
[0005] Conventional inoculation is considered to have little effect even if the inoculation is performed excessively. On the contrary, it is considered that casting defects such as deterioration of mechanical properties of cast products and shrinkage are caused. The inoculum amount in actual production was limited to 0.3% based on the weight of the molten metal. Therefore, the lower the carbon content in the molten metal, the more difficult it is to crystallize A-type graphite, and the lower the carbon content, the more easily undissolved graphite nuclei present in the molten metal are lost. There is a problem that the rate of disappearance of various nuclear materials, that is, fading becomes too fast.

【0006】更に、Ni、Cr、Mo、Cu等を添加剤
として使用した場合は、これらによっても400N/mm
2 以上の強度を安定的に得ることはできず、更にこれら
元素はチル化元素であり、前述と同様製品内にチル組織
を発生させるという問題が生じる。又黒鉛の形状を片状
から球状に変えた球状黒鉛鋳鉄もあるが、これは振動吸
収能等が悪く、ねずみ鋳鉄としての利点が損なわれると
いう問題があった。
[0006] Further, when Ni, Cr, Mo, Cu, etc. are used as additives, they are also 400 N / mm.
It is not possible to stably obtain a strength of 2 or more, and these elements are chilled elements, which causes a problem of generating a chill structure in the product as described above. There is also a spheroidal graphite cast iron in which the shape of graphite is changed from flake to spherical, but this has a problem that its vibration absorbing ability is poor and its advantage as gray cast iron is impaired.

【0007】[0007]

【課題を解決するための手段】そこで本発明者らは、ね
ずみ鋳鉄の強度を高めるため種々の実験を行い、特にね
ずみ鋳鉄の炭素含有量、シリコン含有量、接種条件、黒
鉛共晶温度、セメンタイト共晶温度、共晶過冷温度等に
着目し、次のような鋳造方法の発明を完成させた。
Accordingly, the present inventors have conducted various experiments to increase the strength of gray cast iron. In particular, the carbon content, silicon content, inoculation conditions, graphite eutectic temperature, cementite Focusing on eutectic temperature, eutectic supercooling temperature, etc., the invention of the following casting method was completed.

【0008】すなわち、炭素含有量を2.3%〜3.2
%、シリコン含有量を1.2%〜4.0%に設定し、シ
リコンを20%以上、カルシウムを1%以上含む接種剤
を鋳鉄に対して0.3〜0.7%の範囲で用い、かつ△
3 が5〜70℃の範囲内で、かつ△T1 /△T3 の値
が0.6以上となるように炭素とシリコン以外の成分を
含有し、かつ接種剤を添加させるという条件で鋳造する
こととした。ここで、△T3 は、鋳鉄の黒鉛共晶温度と
セメンタイト共晶温度との温度差であり、△T1 は共晶
過冷温度とセメンタイト共晶温度との温度差である。
That is, the carbon content is 2.3% to 3.2%.
%, Silicon content is set to 1.2% to 4.0%, and an inoculant containing 20% or more of silicon and 1% or more of calcium is used in a range of 0.3 to 0.7% with respect to cast iron. , And
T 3 in the range of 5 to 70 ° C., and △ T 1 / △ value of T 3 is contain components other than carbon and silicon such that 0.6 or more, and in a condition that is added inoculum I decided to cast it. Here, ΔT 3 is the temperature difference between the graphite eutectic temperature and the cementite eutectic temperature of cast iron, and ΔT 1 is the temperature difference between the eutectic supercooling temperature and the cementite eutectic temperature.

【0009】上記条件を満足させることにより、強度が
高く、チルの発生がない品質の良好なねずみ鋳鉄の鋳造
製品を得ることができる。
[0009] By satisfying the above conditions, it is possible to obtain a gray cast iron cast product having high strength and good quality without chilling.

【0010】[0010]

【実施例】以下、本発明にかかるねずみ鋳鉄の鋳造方法
の実施例について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for casting gray cast iron according to the present invention will be described below.

【0011】ねずみ鋳鉄の実験を次の条件で行った。An experiment on gray cast iron was performed under the following conditions.

【0012】まず、鋳鉄の炭素以外の成分含有量は、S
iを1.7%、Mnを0.75%、Poを0.07%、
Sを0.05%とし、炭素含有量を2.0%〜3.5%
の間で任意に変化させた。更に、Caを15%、Siを
50%、残部をFeとした接種剤を溶湯に対して0.3
%〜0.7%の間で任意に添加量を変化させて△T1
△T3 の値を設定し、そのときの鋳鉄の強度を測定し
た。
First, the content of components other than carbon in cast iron is S
i is 1.7%, Mn is 0.75%, Po is 0.07%,
S is 0.05%, and the carbon content is 2.0% to 3.5%.
Arbitrarily varied between Further, an inoculant containing 15% of Ca, 50% of Si and the balance of Fe was added to the molten metal at 0.3%.
% To 0.7% optionally changing the amount between of △ T 1 /
The value of ΔT 3 was set, and the strength of the cast iron at that time was measured.

【0013】結果を図1に示す。図1に示すように、炭
素含有量を2.3%とした場合には、△T1 /△T3
0.6以上にするとチル組織の発生を抑えることができ
る。しかし、炭素含有量を2.3%以下にすると△T1
/△T3 の値にかかわらずチル組織の発生は抑えられな
い。この結果から、炭素含有量は2.3%以上必要であ
ることがわかる。一方、3.2%以上炭素を含有させる
と、△T1 /△T3 の値をいかに設定しても400N/
mm2 以上の値は得られず、強度的に不十分であった。
The results are shown in FIG. As shown in FIG. 1, when the carbon content is 2.3%, the generation of chill structure can be suppressed by setting ΔT 1 / ΔT 3 to 0.6 or more. However, when the carbon content is 2.3% or less, ΔT 1
Regardless of the value of / ΔT 3 , generation of chilled tissue cannot be suppressed. From this result, it is understood that the carbon content is required to be 2.3% or more. On the other hand, the inclusion of carbon or 3.2%, setting how the value of △ T 1 / △ T 3 400N /
The value of mm 2 or more was not obtained, and the strength was insufficient.

【0014】具体的な実験方法を、次に述べる。溶解量
50kg、周波数3kHzの高周波誘導炉にて鋳鉄を溶
解し、溶解した鋳鉄の黒鉛共晶温度、セメンタイト共晶
温度、共晶過冷温度の各温度を、特願平7−14009
9号公報に記載されている鋳鉄の溶湯の性状を判定する
方法で測定した。測定は、溶湯の一部を3カップメータ
に注入し、注入した溶湯の温度変化から、共晶過冷温度
とセメンタイト共晶温度と黒鉛共晶温度を求め、更にこ
れらから共晶過冷温度とセメンタイト共晶温度との温度
差△T1 及び黒鉛共晶温度とセメンタイト共晶温度の温
度差△T3 を求めた。また、30×600mmの丸棒鋳
造用砂型に溶湯を注ぎ、引張試験機(図示せず)におい
てそれぞれの鋳鉄の引張強さを測定した。
A specific experimental method will be described below. The cast iron was melted in a high-frequency induction furnace having a melting amount of 50 kg and a frequency of 3 kHz, and the graphite eutectic temperature, cementite eutectic temperature, and eutectic supercooling temperature of the melted cast iron were measured using Japanese Patent Application No. Hei 7-14409.
No. 9 was used to determine the properties of the molten cast iron. For the measurement, a part of the molten metal was poured into a 3 cup meter, and the eutectic supercooling temperature, cementite eutectic temperature, and graphite eutectic temperature were determined from the temperature change of the injected molten metal. The temperature difference ΔT 1 between the cementite eutectic temperature and the temperature difference ΔT 3 between the graphite eutectic temperature and the cementite eutectic temperature were determined. Further, the molten metal was poured into a 30 × 600 mm round bar casting sand mold, and the tensile strength of each cast iron was measured by a tensile tester (not shown).

【0015】図2に、△T1 /△T3 と黒鉛形状の関係
を示す。△T1 /△T3 の数値を上昇させると、A型の
黒鉛の割合が増加し、炭素形状の良好な鋳鉄が得られ
る。尚、図2のグラフの縦軸は、式1で求められる値H
である。
FIG. 2 shows the relationship between ΔT 1 / ΔT 3 and the shape of graphite. When the value of ΔT 1 / ΔT 3 is increased, the proportion of A-type graphite increases, and a cast iron having a good carbon shape can be obtained. The vertical axis of the graph of FIG.
It is.

【0016】(式1) H=A%×1.2 +E%×0.9 +B%×0.9 +D%×0.3
+Chill %×0 図3の(a)から(d)に、AtypeからDtypeまでの黒
鉛形状をそれぞれ示す。
(Equation 1) H = A% × 1.2 + E% × 0.9 + B% × 0.9 + D% × 0.3
+ Chill% × 0 FIGS. 3A to 3D show graphite shapes from A type to D type, respectively.

【0017】更に、黒鉛形状がA型であっても、△T1
/△T3 の値を0.5以上とすると、より良好な形状と
なり、引張強度の向上が見られた。
Further, even if the graphite shape is A type, ΔT 1
When the value of / ΔT 3 was 0.5 or more, a better shape was obtained, and improvement in tensile strength was observed.

【0018】図3において、△T1 /△T3 の値を0.
6以上とした場合の顕微鏡等による組織判定では、黒鉛
の組織はほぼA型となり、従来は、これ以上の黒鉛組織
の良否を判定することが不可能であった。このため式1
で求められるHは、△T1 /△T3 の値が0.6以上で
あると漸近的に120に近づく。これに対して、図1に
図示する鋳鉄の強度は、△T1 /△T3 の上昇とともに
比例的に上昇しており、△T1 /△T3 がより良く黒鉛
形状、すなわち鋳鉄の強度を示す数値であることを示し
ている。
In FIG. 3, the value of ΔT 1 / ΔT 3 is set to 0.
In the determination of the structure with a microscope or the like when the number is 6 or more, the structure of the graphite is almost A-type, and it was conventionally impossible to determine the quality of the graphite structure further. Therefore, Equation 1
H asymptotically approaches 120 when the value of ΔT 1 / ΔT 3 is 0.6 or more. In contrast, the strength of cast iron shown in FIG. 1, △ T 1 / △ with increasing of T 3 are proportionally increased, △ T 1 / △ T 3 is better graphite shape, or intensity of cast iron Is shown.

【0019】このように、高強度のねずみ鋳鉄を安定的
に製造するためには炉前において正確に黒鉛形状を判定
することが必要で、鋳鉄の△T1 /△T3 値を炉前にて
判定する技術は、本発明の重要な一要素となっている。
As described above, in order to stably produce high-strength gray cast iron, it is necessary to accurately determine the graphite shape before the furnace, and to determine the ΔT 1 / ΔT 3 value of the cast iron before the furnace. The technique of making the determination is an important element of the present invention.

【0020】次に、接種剤の添加割合を変更した場合の
引張強度と△T1 /△T3 の変化について行った実験の
結果を図4に示す。
Next, FIG. 4 shows the results of an experiment conducted on the change in tensile strength and ΔT 1 / ΔT 3 when the inoculant addition ratio was changed.

【0021】この実験は、C3.0%、Si1.7%、
Mn0.75%、P0.07%、S0.05%とした成
分の鋳鉄に、Fe−50%Si、Fe−1%Ca−
50%Si、Fe−10%Ca−50%Si、Fe
−30%Ca−50%Siの4種類の接種剤をそれぞれ
添加量を変えて添加させて△T1 /△T3 の値及び鋳鉄
の強度の値を測定した。
In this experiment, C3.0%, Si1.7%,
Fe-50% Si, Fe-1% Ca- were added to the cast iron having the components of Mn 0.75%, P 0.07% and S 0.05%.
50% Si, Fe-10% Ca-50% Si, Fe
Four kinds of inoculants of -30% Ca-50% Si were added in different amounts, and the values of ΔT 1 / ΔT 3 and the strength of cast iron were measured.

【0022】図4によると、まず接種剤にCaを1%以
上含めた場合は、黒鉛形状がより良くなり、また、△T
1 /△T3 の値を0.6以上とし、しかも400N/mm
2 以上とするためには、接種剤としてはCaを1%以上
含み、かつSiを20%以上含むことが必要なことが判
明した。
According to FIG. 4, first, when Ca is included in the inoculant in an amount of 1% or more, the graphite shape becomes better and the ΔT
The value of 1 / ΔT 3 is set to 0.6 or more and 400 N / mm
In order to achieve 2 or more, it was found that the inoculant needed to contain 1% or more of Ca and 20% or more of Si.

【0023】更に、上記例に加え、Ni、Cr、Mo、
Cu、Ni等の合金を入れて基地を強化することによ
り、より強度を増した鋳鉄を製造することもできる。
Further, in addition to the above examples, Ni, Cr, Mo,
By adding an alloy such as Cu and Ni to strengthen the matrix, it is possible to produce cast iron with increased strength.

【0024】[0024]

【発明の効果】本発明のねずみ鋳鉄の鋳造方法によれ
ば、鋳鉄に含有する炭素を2.3〜3.2%、Siを
1.2〜4.0%とし、Caを0.1%以上、Siを2
0%以上含む接種剤を鋳鉄に0.3%以上添加し、炭
素、シリコン以外の成分の添加によって黒鉛共晶温度と
セメンタイト共晶温度の差(△T3 )が5℃〜70℃の
範囲となるようにし、かつ接種剤の添加によって、共晶
過冷温度とセメンタイト共晶温度の差(△T1 )を黒鉛
共晶温度とセメンタイト共晶温度の差で除した値(△T
1 /△T3 )が0.6以上とし、鋳込むこととしたの
で、炭素量を低減させて高強度の鋳鉄を安定して提供す
ることができる。
According to the method for casting gray cast iron of the present invention, the cast iron contains 2.3 to 3.2% of carbon, 1.2 to 4.0% of Si, and 0.1% of Ca. Above, Si is 2
The inoculant containing 0% or more is added to cast iron at 0.3% or more, and the difference between graphite eutectic temperature and cementite eutectic temperature (ΔT 3 ) is in the range of 5 ° C to 70 ° C by adding components other than carbon and silicon. And the difference between the eutectic supercooling temperature and the cementite eutectic temperature (ΔT 1 ) divided by the difference between the graphite eutectic temperature and the cementite eutectic temperature (ΔT
1 / △ T 3 ) is set to 0.6 or more, and casting is performed. Therefore, the amount of carbon can be reduced and a high-strength cast iron can be stably provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】△T1 /△T3 の値と引張強度の関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between the value of ΔT 1 / ΔT 3 and tensile strength.

【図2】△T1 /△T3 の値と黒鉛化の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the value of ΔT 1 / ΔT 3 and graphitization.

【図3】(a)Atypeの黒鉛形状を示す図である。 (b)Etypeの黒鉛形状を示す図である。 (c)Btypeの黒鉛形状を示す図である。 (d)Dtypeの黒鉛形状を示す図である。FIG. 3A is a view showing a graphite shape of A type. (B) It is a figure which shows the graphite shape of Etype. (C) It is a figure which shows the graphite shape of Btype. (D) It is a figure which shows the graphite shape of Dtype.

【図4】接種剤の添加量と△T1 /△T3 の値と引張強
度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of inoculant added, the value of ΔT 1 / ΔT 3 and the tensile strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素含有量を2.3%〜3.2%、 シリコン含有量を1.2%〜4.0%、 前記炭素及び前記シリコン以外の成分の含有量を、黒鉛
共晶温度とセメンタイト共晶温度との温度差△T3 が5
℃〜70℃の範囲内となるように選択し、 かつ、シリコンを20%以上、カルシウムを1%以上含
有する接種剤を、重量比0.3〜0.7%添加させ、 更に、共晶過冷温度とセメンタイト共晶温度との温度差
△T1 を前記温度差△T3 で除した値を0.6以上とす
るように前記接種剤の使用量を設定して鋳込むことを特
徴としたねずみ鋳鉄の鋳造方法。
1. A carbon content of 2.3% to 3.2%, a silicon content of 1.2% to 4.0%, and a content of the carbon and components other than the silicon are determined by a graphite eutectic temperature. Temperature difference ΔT 3 between eutectic temperature and eutectic temperature is 5
C. to 70.degree. C., and an inoculant containing 20% or more of silicon and 1% or more of calcium is added in a weight ratio of 0.3 to 0.7%. It is characterized in that the used amount of the inoculant is set and cast so that a value obtained by dividing a temperature difference ΔT 1 between the supercooling temperature and the cementite eutectic temperature by the temperature difference ΔT 3 is 0.6 or more. Casting method of gray cast iron.
JP27787196A 1996-10-21 1996-10-21 Method for casting gray cast iron Pending JPH10121185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27787196A JPH10121185A (en) 1996-10-21 1996-10-21 Method for casting gray cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27787196A JPH10121185A (en) 1996-10-21 1996-10-21 Method for casting gray cast iron

Publications (1)

Publication Number Publication Date
JPH10121185A true JPH10121185A (en) 1998-05-12

Family

ID=17589452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27787196A Pending JPH10121185A (en) 1996-10-21 1996-10-21 Method for casting gray cast iron

Country Status (1)

Country Link
JP (1) JPH10121185A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238988A (en) * 2015-10-30 2016-01-13 成都宏源铸造材料有限公司 Preparing method and application of gray iron inoculant
CN105256217A (en) * 2015-10-30 2016-01-20 成都宏源铸造材料有限公司 Preparing method and application of nucleating agent for cam shaft
CN110396639A (en) * 2019-07-10 2019-11-01 广西大学 A kind of preparation method of gray cast iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238988A (en) * 2015-10-30 2016-01-13 成都宏源铸造材料有限公司 Preparing method and application of gray iron inoculant
CN105256217A (en) * 2015-10-30 2016-01-20 成都宏源铸造材料有限公司 Preparing method and application of nucleating agent for cam shaft
CN105256217B (en) * 2015-10-30 2017-06-06 成都宏源铸造材料有限公司 A kind of preparation method and applications of camshaft inovulant
CN110396639A (en) * 2019-07-10 2019-11-01 广西大学 A kind of preparation method of gray cast iron

Similar Documents

Publication Publication Date Title
US11466349B2 (en) Spheroidal graphite cast iron
CN109402491B (en) Control method for increasing graphite ball number of thick and large section solid solution strengthening ferrite nodular cast iron
WO1995024508A1 (en) Cast iron inoculant and method for production of cast iron inoculant
CN114058935A (en) Ultralow-temperature ferrite nodular cast iron and preparation method thereof
JPH10121185A (en) Method for casting gray cast iron
CN107475604A (en) A kind of high ferro steel backing material and preparation method thereof
Caldera et al. Precipitation and dissolution of carbides in low alloy ductile iron plates of varied thickness
US4224064A (en) Method for reducing iron carbide formation in cast nodular iron
US4036641A (en) Cast iron
Riposan et al. Structure characteristics of high-Si ductile cast irons
US3033676A (en) Nickel-containing inoculant
US2973564A (en) Method of graphitizing cast iron
US4579164A (en) Process for making cast iron
JP4541545B2 (en) Method for producing pseudo-spherical graphite iron (CGI)
Rundman et al. Cast irons
Ai et al. Evolution of inoculation thermal analysis and solidification morphology of compacted graphite iron.
JPS63483B2 (en)
CN110923388A (en) Preparation method of spherical vermicular graphite gray gradient cast iron glass mold material
CN115627412B (en) Synthetic cast iron produced by low alloy scrap steel and method
US2625473A (en) Lithium modified magnesium treatment of cast iron
US2661283A (en) Lithium treated cast iron
JP7158615B1 (en) Manufacturing method of non-magnetic spheroidal graphite cast iron
JPS6059284B2 (en) How to inoculate cast iron
JPH03130344A (en) Spheroidal graphite cast iron and its production
SU1446186A1 (en) Cast iron

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010724