JPH10118669A - Oxidizing treatment of organic matter - Google Patents

Oxidizing treatment of organic matter

Info

Publication number
JPH10118669A
JPH10118669A JP8276258A JP27625896A JPH10118669A JP H10118669 A JPH10118669 A JP H10118669A JP 8276258 A JP8276258 A JP 8276258A JP 27625896 A JP27625896 A JP 27625896A JP H10118669 A JPH10118669 A JP H10118669A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
exchange resin
ion
treatment
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8276258A
Other languages
Japanese (ja)
Inventor
Satoru Okabe
哲 岡部
Jun Kokubu
純 国分
Yoshio Nishimura
喜男 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP8276258A priority Critical patent/JPH10118669A/en
Publication of JPH10118669A publication Critical patent/JPH10118669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance oxidizing treatment efficiency of decoloration, bleaching or deodorization while reducing treatment cost by supporting activated seeds of hydrogen peroxide on an ion exchange resin and subjecting an objective substance to oxidizing treatment continuously and efficiently by activated hydrogen peroxide. SOLUTION: In oxidizing treatment such as decoloration treatment of industrial waste water issued from a dye manufacturing factory or decoloration/ bleaching treatment of an org. material, hydrogen peroxide or peroxide forming hydrogen peroxide is added to org. matter and this org. matter is brought into contact with an ion exchange resin on which activated seeds of hydrogen peroxide are supported. At this time, as peroxide, a sodium carbonate hydrogen peroxide adduct, a sodium perborate hydrate and sodium perborate tetrahydrate are used and, as activated seeds of hydrogen peroxide, a halogenoide ion compd., that is, a cyanic ion compd. or a thioxyanic ion compd. is used. As the ion exchange resin, a strong or weak basic anion exchange resin is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、染料製造工場や染
色工場等からでる産業排水の脱色処理や有機材料・製品
の製造における脱色・漂白処理等の酸化処理に用いられ
る。さらに、過酸化水素による有機化合物の酸化反応に
も利用する事ができる。
The present invention is used for decolorization of industrial wastewater from dye production factories and dye factories, and for oxidation treatment such as decolorization and bleaching in the production of organic materials and products. Furthermore, it can also be used for the oxidation reaction of organic compounds with hydrogen peroxide.

【0002】[0002]

【従来の技術】酸化処理技術は、製品の精製から排水処
理まであらゆる産業分野で広く存在しており、その用途
にも脱色、漂白、脱臭や有機物の酸化反応など多岐にわ
たっている。その中で、脱色や漂白などの排水処理技術
を例とすると、染色工場等では、多くの種類の染料及び
薬剤が用いられており、染色の対象繊維によっても使用
する薬剤が異なるため、その排水には多種類の薬剤や染
料含有廃水を含む着色した産業排水が混合されている。
この排水に対して、水質汚濁法をはじめとする法規制が
適用され、更に着色について、地方自治体単位で「上乗
せ排水基準」として排出水の色度規制条例が制定された
ケースもある。この様なケースの排水に関しては、仮に
何らかの廃水処理でCOD値(化学的酸素要求量)やB
OD値(生物学的酸素要求量)が規制値以下となってい
ても、排水自体が着色していた場合、人間の視覚的判断
から汚濁感や汚染感を与えるため、その脱色技術につい
て関心が高まりつつある。また、脱臭技術においては、
悪臭防止法が公布されて以来、年々その規制基準が厳し
くなるという背景もあり、更に高度な技術が求められて
いる。
2. Description of the Related Art Oxidation treatment techniques are widely used in all industrial fields from product purification to wastewater treatment, and their applications are also diverse such as decolorization, bleaching, deodorization, and oxidation of organic substances. In the case of wastewater treatment technologies such as decolorization and bleaching, dyeing factories and the like use many types of dyes and chemicals, and the chemicals to be used differ depending on the fiber to be dyed. Is mixed with colored industrial wastewater containing various types of chemicals and dye-containing wastewater.
Laws and regulations, such as the Water Pollution Law, are applied to this wastewater, and there are also cases in which municipalities have established chromaticity regulations for wastewater as "additional wastewater standards" for coloring. Regarding the wastewater in such a case, COD value (chemical oxygen demand) and B
Even if the OD value (biological oxygen demand) is below the regulation level, if the wastewater itself is colored, it gives a sense of pollution or a sense of contamination from human visual judgment. Is growing. In the deodorization technology,
Since the Odor Control Law was promulgated, the regulatory standards have become stricter year by year, and further advanced technology is required.

【0003】この様な排水系の処理技術については、従
来より以下に示す方法等が用いられている。着色成分の
分離として、無機凝集剤とその助剤を添加し排水中から
着色成分を凝集分離する方法や、凝集吸着や担体吸着
(活性炭)などの吸着による分離法、着色成分の分解と
して微生物による生物学的手法が脱色技術の中心となっ
てきたが、この様な物理化学的または生物学的な処理で
は除去できないCODや色の成分を含んでいる場合が多
い。これらの成分の処理には化学的な酸化処理方法が考
案されており、実際に、下記に示したいくつかの方法
は、その技術であり、一部は実際に工業化されている。
[0003] Regarding such a drainage treatment technique, the following methods and the like have conventionally been used. As a method for separating coloring components, a method of adding an inorganic coagulant and its auxiliary agent to coagulate and separate coloring components from wastewater, a method of separation by coagulation adsorption or adsorption of carrier (activated carbon), and a method of dissolving coloring components by microorganisms Biological techniques have been the focus of decolorization techniques, but often contain COD and color components that cannot be removed by such physicochemical or biological treatments. For the treatment of these components, chemical oxidation treatment methods have been devised, and in fact, some of the methods described below are techniques, and some of them are actually industrialized.

【0004】まず、次亜塩素酸塩などの塩素系酸化剤に
よる酸化方法が従来から数多く知られているが、環境面
に有害な塩素を発生する危険性から、塩素系薬剤の使用
を避けようとする傾向にあり、その利用は好ましくな
い。
[0004] First, a number of oxidation methods using a chlorine-based oxidizing agent such as hypochlorite have been known in the past, but the use of chlorine-based chemicals should be avoided due to the danger of generating harmful chlorine to the environment. And its use is not preferable.

【0005】次に非塩素系の酸化剤による酸化脱色方法
として、特開平6−121991号公報の様に過硫酸塩
で処理する方法や、過炭酸塩、過硼酸塩等の過酸化水素
付加物を含有する浴を用いてラジカルを発生させ染料の
発色団等を攻撃して処理する方法がある。また、特開平
8−081369号公報には、シアン酸の金属塩又はア
ンモニウム塩を活性化種として、過酸化水素あるいは水
溶液中で過酸化水素を生成する過酸化物との共存下で、
染料を脱色する方法が記載されている。しかし、これら
の方法は、対象物質によっては酸化剤との塩を生成し、
スラッジの発生の原因となる。また、反応が浴中におけ
る低濃度のバッチ反応であるために、効率が悪く未反応
物が残存したり、また連続的に排水を酸化処理させるこ
とが出来ない。特に活性化種としてシアン酸塩を用いる
場合、そのものが固体のため大量に扱うときハンドリン
グに問題があること及び、予め水溶液で保存する場合
は、シアン酸塩に加水分解性があるため、水溶液での長
期保存には向かない等の欠点がある。
Next, as a method of oxidative decolorization using a non-chlorine oxidizing agent, a method of treating with a persulfate as disclosed in JP-A-6-121991, or a method of adding a hydrogen peroxide such as percarbonate or perborate There is a method in which a radical is generated by using a bath containing chromophore to attack a chromophore or the like of a dye for treatment. JP-A-8-08369 discloses that a metal salt or an ammonium salt of cyanic acid is used as an activating species in the presence of hydrogen peroxide or a peroxide that generates hydrogen peroxide in an aqueous solution.
Methods for decolorizing dyes are described. However, these methods produce salts with oxidants depending on the target substance,
It causes sludge generation. In addition, since the reaction is a low-concentration batch reaction in a bath, the efficiency is poor and unreacted substances remain, and the wastewater cannot be continuously oxidized. Especially when using cyanate as an activated species, there is a problem in handling when handling a large amount because it is a solid, and when preserving in an aqueous solution, the cyanate has hydrolyzability, so it is difficult to use an aqueous solution. Is not suitable for long-term storage.

【0006】その他の過酸化水素の活性化剤として、特
開昭48−54279号公報には、繊維物質の漂白にお
いて尿素、スルファミン酸及びスルファミン酸塩がある
が、いずれにおいても、アルカリ条件のみに限定されて
おりpHの調製を行わなければならず、強酸性の染料に
は不適切であるという欠点がある。
[0006] As other hydrogen peroxide activators, JP-A-48-54279 discloses urea, sulfamic acid and sulfamate in the bleaching of fibrous substances. There is a drawback that it is limited and the pH must be adjusted, and is not suitable for a strongly acidic dye.

【0007】他の方法として、特開平6−254575
号公報に記載されているオゾン酸化や、特開平6−18
2362号公報等に記載されている過酸化水素と紫外線
照射の併用による処理、更には過酸化水素と第二鉄塩を
用いてのフェントン法が知られている。しかし、オゾン
酸化では、オゾンの発生効率が低く、オゾン発生に多量
の電力が消費され、経済的にも有効と言えない。これ
は、紫外線照射においても同様である。また、フェント
ン法では、スラッジの発生量が多く、処理中の液のpH
の調整が必要となってくるため、排水処理に対する効果
はあるが、スラッジの処分費等の経済的な問題点も少な
くない。また、脱臭技術においては、前述の吸着法、微
生物による脱臭の他に、高温で悪臭物質を燃焼させた
り、触媒による脱臭処理、薬液洗浄法などが挙げられ
る。これらにも、運転費などのコスト面や、低濃度域で
の脱臭効率に問題を有しているものもある。
As another method, Japanese Patent Application Laid-Open No. 6-254575
Ozone oxidation described in Japanese Patent Application Laid-open No.
There is known a treatment described in US Pat. No. 2,362 or the like using a combination of hydrogen peroxide and ultraviolet irradiation, and a Fenton method using hydrogen peroxide and a ferric salt. However, in ozone oxidation, the generation efficiency of ozone is low, a large amount of power is consumed for ozone generation, and it cannot be said that it is economically effective. This is the same in the case of ultraviolet irradiation. In addition, in the Fenton method, the amount of generated sludge is large,
It is necessary to adjust wastewater treatment, which is effective for wastewater treatment, but there are many economic problems such as sludge disposal costs. Examples of the deodorizing technology include, in addition to the above-described adsorption method and deodorization by microorganisms, a method of burning malodorous substances at a high temperature, a deodorizing treatment using a catalyst, and a chemical cleaning method. Some of these have problems in terms of cost such as operating cost and deodorization efficiency in a low concentration range.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前記の問題
点である困難な操作性や、脱色、漂白、脱臭などの酸化
処理効率、その処理にかかるコストなどを解決するため
になされたものであり、簡便かつ経済的に有利で、活性
化された過酸化水素を用いて、水溶液中に含まれる汚染
源となる有機物を酸化処理する方法を提供することにあ
る。さらに、過酸化水素を利用した有機化合物の酸化反
応する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems such as difficult operability, efficiency of oxidation treatment such as decolorization, bleaching, and deodorization, and cost for the treatment. Another object of the present invention is to provide a simple and economically advantageous method for oxidizing an organic substance serving as a contamination source contained in an aqueous solution by using activated hydrogen peroxide. Another object of the present invention is to provide a method for oxidizing an organic compound using hydrogen peroxide.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決すべく
鋭意検討を行った結果、陰イオン交換樹脂にシアン酸イ
オンやチオシアン酸イオンなどのハロゲノイドイオン類
を担持させ、その樹脂に、対象となる物質を含有する溶
液を過酸化水素を添加して接触させることにより過酸化
水素を効率よく活性化し、対象物質の酸化処理が向上で
きる方法を見い出し本発明を完成させた。すなわち本発
明は、過酸化水素の活性化種をイオン交換樹脂に担持
し、活性化された過酸化水素により連続的に、かつ効率
的に対象物質を酸化処理する方法に関するものである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, as a result, anion-exchange resin is loaded with halogenoid ions such as cyanate ion and thiocyanate ion, and the resin is used as an object. Hydrogen peroxide was added to and brought into contact with a solution containing the substance to be activated to efficiently activate the hydrogen peroxide, and a method capable of improving the oxidation treatment of the target substance was found, and the present invention was completed. That is, the present invention relates to a method of supporting an activated species of hydrogen peroxide on an ion exchange resin and continuously and efficiently oxidizing the target substance with the activated hydrogen peroxide.

【0010】[0010]

【発明の実施の形態】本発明を染料水溶液の脱色に用い
る際には、対象となる水溶液中の染料に制限はなく、染
料を製造する際の中間体も含まれる。特に水溶性染料に
対して本発明の方法を実施した場合に効果が顕著であ
る。また、水溶液に含有される染料は、1種類の化合物
単独でもよく、2種以上の化合物の混合物でもよい。ま
た、水溶液中の染料濃度も特に制限はないが、0.1重
量%以下であることが望ましい。その理由は、一般的に
低濃度の染料を含有する水溶液を脱色することが困難で
あるのに対し、本発明によれば効率よく脱色できるから
である。また、脱水処理時の排水の温度については、限
定されることがなく、室温において十分に脱色できる能
力を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When the present invention is used for decolorization of an aqueous dye solution, the dye in the target aqueous solution is not limited, and includes an intermediate in the production of the dye. In particular, the effect is remarkable when the method of the present invention is applied to a water-soluble dye. The dye contained in the aqueous solution may be a single compound alone or a mixture of two or more compounds. The dye concentration in the aqueous solution is not particularly limited, but is preferably 0.1% by weight or less. The reason for this is that while it is generally difficult to decolorize an aqueous solution containing a low-concentration dye, according to the present invention, decolorization can be performed efficiently. In addition, the temperature of the wastewater during the dehydration treatment is not limited, and has a capability of sufficiently decoloring at room temperature.

【0011】本発明に用いられる水溶液中で過酸化水素
を発生する過酸化物(以下、過酸化水素等と称す)とし
ては、過酸化水素、有機及び無機過酸化水素付加物であ
るトリポリリン酸ナトリウム過酸化水素付加物、ピロリ
ン酸ナトリウム過酸化水素付加物、尿素過酸化水素付加
物、4Na2 SO4 ・2H22 ・NaCl、炭酸ナト
リウム過酸化水素付加物、過ホウ酸ナトリウム一水和
物、過ホウ酸ナトリウム四水和物、過酸化ナトリウム、
過酸化カルシウム等が例示される。そのなかで、炭酸ナ
トリウム過酸化水素付加物、過ホウ酸ナトリウム一水和
物、過ホウ酸ナトリウム四水化物が好ましい。また、染
料水溶液の脱色に用いる場合の過酸化水素等の添加量
は、染料の種類にもよるが、水溶液中の染料化合物の量
の好ましくは0.1〜100倍重量、より好ましくは
0.5〜50倍重量となる量である。過酸化水素と付加
物を形成している化合物を使用する場合は、付加物が水
中で解離して生成する過酸化水素が前記範囲に含まれる
量になる量を使用する。また、これ以上の量の過酸化水
素等を用いると、処理の際に過酸化水素等の残留による
COD値上昇の可能性があり過剰量の使用は好ましくな
い。
The peroxide (hereinafter referred to as "hydrogen peroxide") which generates hydrogen peroxide in the aqueous solution used in the present invention includes hydrogen peroxide, sodium tripolyphosphate which is an organic and inorganic hydrogen peroxide adduct. hydrogen peroxide adduct, sodium pyrophosphate peroxide adduct, urea peroxide adduct, 4Na 2 SO 4 · 2H 2 O 2 · NaCl, sodium carbonate hydrogen peroxide adduct, sodium perborate monohydrate , Sodium perborate tetrahydrate, sodium peroxide,
Calcium peroxide and the like are exemplified. Among them, sodium carbonate hydrogen peroxide adduct, sodium perborate monohydrate, and sodium perborate tetrahydrate are preferred. Further, the amount of hydrogen peroxide or the like to be used for decolorization of the aqueous dye solution depends on the type of the dye, but is preferably 0.1 to 100 times the weight of the dye compound in the aqueous solution, and more preferably 0.1 to 100 times. The amount is 5 to 50 times the weight. When a compound that forms an adduct with hydrogen peroxide is used, the amount is such that the amount of hydrogen peroxide generated by dissociation of the adduct in water is within the above range. If the amount of hydrogen peroxide or the like is larger than this, the COD value may increase due to the residual hydrogen peroxide or the like during the treatment, and the use of an excessive amount is not preferable.

【0012】過酸化水素の活性化機能を持ち陰イオン交
換樹脂に担持させるハロゲノイドイオン類は、シアン化
物イオン、チオシアン酸イオン、セレノシアン酸イオ
ン、テルロシアン酸イオン、シアン酸イオン、イソシア
ン酸イオンが例示されるが、好ましくは、シアン酸イオ
ン、チオシアン酸イオンがよく、その化合物として、ア
ルカリ金属塩、又はアンモニウム塩で、シアン酸カリウ
ム、シアン酸アンモニウム、チオシアン酸カリウム、チ
オシアン酸ナトリウム、チオシアン酸アンモニウムなど
が挙げられる。
Halogenoid ions having the function of activating hydrogen peroxide and supported on an anion exchange resin include cyanide ion, thiocyanate ion, selenocyanate ion, tellurocyanate ion, cyanate ion, and isocyanate ion. Illustrative examples include, preferably, cyanate ion and thiocyanate ion, and as the compound, an alkali metal salt or an ammonium salt, such as potassium cyanate, ammonium cyanate, potassium thiocyanate, sodium thiocyanate, and ammonium thiocyanate. And the like.

【0013】次に本発明で使用される陰イオン交換樹脂
は、ハロゲノイドイオン類が担持される樹脂であればそ
の種類に制限はなく、例えばイオン交換基として第4級
アンモニウム基を有する強塩基性樹脂である三菱化学社
製のダイヤイオンPA−318やローム&ハース社製の
IRA−900等が代表例として挙げられる。これらの
ハロゲノイドイオン類を担持する陰イオン交換樹脂の調
製する際に用いる水溶液の濃度にも制限はないが、好ま
しくは0.5〜2.0Nの水溶液が良く、樹脂層に通過
させる水溶液の空間速度(SV)は、1〜100/h、
好ましくは1〜20/hの範囲が適当である。この調製
方法として、例えば、円筒型カラムにイオン交換樹脂を
純水とともに充填し、シアン酸カリウム水溶液を通液す
ると、末端がシアン酸型の陰イオン交換樹脂を調製でき
る。この調製された樹脂は、再生して繰り返し使用する
ことが出来る。
The anion exchange resin used in the present invention is not particularly limited as long as it is a resin carrying halogenoid ions. For example, a strong base having a quaternary ammonium group as an ion exchange group can be used. Representative examples include Diaion PA-318 manufactured by Mitsubishi Chemical Corporation and IRA-900 manufactured by Rohm & Haas Co., Ltd., which are conductive resins. The concentration of the aqueous solution used in preparing the anion exchange resin carrying these halogenoid ions is not limited, but preferably an aqueous solution of 0.5 to 2.0 N is preferable, and the aqueous solution passed through the resin layer is preferably used. Space velocity (SV) is 1 to 100 / h,
Preferably, the range of 1 to 20 / h is appropriate. As this preparation method, for example, when a cylindrical column is filled with an ion exchange resin together with pure water and an aqueous solution of potassium cyanate is passed, an anion exchange resin having a cyanate terminal at the end can be prepared. This prepared resin can be recycled and used repeatedly.

【0014】本発明を染料水溶液の脱色に用いる際に
は、シアン酸イオンを活性化種としてイオン交換樹脂に
担持させた場合、染料の脱色は染料含有水溶液のpHに
影響されない。また、チオシアン酸イオンをイオン交換
樹脂に担持させる場合、脱色がアルカリ側で顕著に促進
されることから、染料含有水溶液のpHは、通常pH8
〜14、好ましくは9〜13の範囲に予め調製すること
が好ましい。
When the present invention is used for decolorization of an aqueous dye solution, the decolorization of the dye is not affected by the pH of the aqueous dye-containing solution when cyanate ions are loaded on an ion exchange resin as an activating species. When the thiocyanate ion is supported on the ion exchange resin, the pH of the dye-containing aqueous solution is usually pH 8 because decolorization is remarkably promoted on the alkali side.
~ 14, preferably 9 ~ 13.

【0015】本発明において、pHを必要に応じ調製す
る場合には、アルカリ剤としてアルカリ金属水酸化物ま
たはアルカリ珪酸塩が使用される。アルカリ金属水酸化
物またはアルカリ金属珪酸塩としては、水酸化リチウ
ム、水酸化ナトリウム、水酸化カリウムなどのアルカリ
金属水酸化物、珪酸ナトリウム、珪酸カリウムなどのア
ルカリ珪酸塩を使用することが望ましい。また、過酸化
物として炭酸ナトリウム過酸化水素付加物や過ホウ酸ナ
トリウム等のそれ自体でアルカリ性を示すものには、ア
ルカリ剤の使用量を減らすことができる。
In the present invention, when the pH is adjusted as required, an alkali metal hydroxide or an alkali silicate is used as an alkali agent. As the alkali metal hydroxide or alkali metal silicate, it is desirable to use an alkali metal hydroxide such as lithium hydroxide, sodium hydroxide or potassium hydroxide, or an alkali silicate such as sodium silicate or potassium silicate. In addition, the amount of the alkali agent can be reduced for those which show alkalinity by themselves, such as sodium carbonate hydrogen peroxide adduct and sodium perborate, as the peroxide.

【0016】本発明の方法を排水処理のために実施する
場合は、他の一般的な排水処理方法、例えば、凝集沈殿
法、微生物処理法、活性炭吸着法、オゾン酸化法などと
組み合わせて行うことができる。例えば、排水に含まれ
る高濃度の汚染物質の大部分を凝集沈殿処理によって除
去した後に、本発明の方法を実施して排水を処理するこ
とは、本発明の特徴である連続的に排水を通液させ処理
できるため効率がよく、本発明の好ましい実施形態の一
つである。また、溶液を漂白したり脱臭する場合におい
ても前述と同様に実施することができ、有機合成の分野
においても、過酸化水素を酸化剤として利用するエポキ
シ化反応等の有機合成において本発明を利用することが
できる。
When the method of the present invention is carried out for wastewater treatment, it is carried out in combination with other general wastewater treatment methods, for example, a coagulation sedimentation method, a microorganism treatment method, an activated carbon adsorption method, an ozone oxidation method and the like. Can be. For example, treating the wastewater by performing the method of the present invention after removing most of the high-concentration contaminants contained in the wastewater by coagulation sedimentation treatment is a feature of the present invention that the wastewater is continuously passed through the wastewater. Since it is possible to perform a liquid treatment, the efficiency is high, and this is one of the preferred embodiments of the present invention. In addition, the present invention can be carried out in the same manner as described above even when the solution is bleached or deodorized. In the field of organic synthesis, the present invention is used in an organic synthesis such as an epoxidation reaction using hydrogen peroxide as an oxidizing agent. can do.

【0017】[0017]

【実施例】以下、本発明の中で染料水溶液の脱色を実施
例により具体的に説明するが、本発明はこれら実施例に
限定されるものではない。 実施例1 陰イオン交換樹脂として第4級アンモニウム基を有する
強塩基性樹脂(商品名;ダイヤイオンPA−318、三
菱化学(株)製)20mlを容量100mlの円筒型カ
ラムに純水とともに充填し、1Nのシアン酸カリウム水
溶液をカラムの上端からSV=10/hで1時間通液し
て調製されたシアン酸型の陰イオン交換樹脂を使用し
た。染料のサンプルとして、酸性媒染染料の1つである
エリオクロムブラックTの0.05重量%水溶液の色差
を測定したところ100.2であった。この染料含有水
溶液に、過酸化水素を水溶液が1.2%になるように添
加して、その水溶液を前述で調製したイオン交換樹脂2
0mlにSV=10/hで通液させたところ、通液後の
水溶液の色差は6.17であり、脱色率は93.84%
であった。なお、色差は以下の方法のより測定した。色
差計を用いて、測定液と純水のそれぞれについて明度指
数(L*)及びクロマテイクネス指数(a*、b*)を
測定した。つぎに、測定液と純水のL*、a*、b*の
差である△L*、△a*、△b*をもとめ、それぞれの
自乗の和の平方根により求めた。脱色率は下式により求
めた。 脱色率(%)=(処理前色差−処理後色差)/処理前色
差×100 比較例1 末端のイオン形が市販時の状態であるクロル型の強塩基
性樹脂を用いること以外は実施例1と同様に行ったとこ
ろ、エリオクロムブラックT水溶液の脱色率は0.1%
であった。
EXAMPLES Hereinafter, decolorization of an aqueous dye solution in the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 20 ml of a strong basic resin having a quaternary ammonium group (trade name: Diaion PA-318, manufactured by Mitsubishi Chemical Corporation) as an anion exchange resin was packed together with pure water into a cylindrical column having a capacity of 100 ml. A cyanic acid type anion exchange resin prepared by passing a 1N aqueous solution of potassium cyanate from the upper end of the column at SV = 10 / h for 1 hour was used. As a dye sample, the color difference of a 0.05% by weight aqueous solution of eriochrome black T, one of the acidic mordant dyes, was measured and found to be 100.2. To this dye-containing aqueous solution, hydrogen peroxide was added so that the aqueous solution became 1.2%, and the aqueous solution was added to the ion exchange resin 2 prepared above.
When the solution was passed through 0 ml at SV = 10 / h, the color difference of the aqueous solution after passing was 6.17, and the decolorization rate was 93.84%.
Met. The color difference was measured by the following method. Using a color difference meter, the lightness index (L *) and the chroma takeness index (a *, b *) were measured for each of the measurement liquid and pure water. Next, △ L *, △ a *, * b *, which is the difference between L *, a *, and b * of the measurement liquid and pure water, were obtained, and were determined by the square root of the sum of the squares of each. The decolorization rate was determined by the following equation. Decolorization ratio (%) = (color difference before processing−color difference after processing) / color difference before processing × 100 Comparative Example 1 Example 1 except that a chlorinated strong basic resin having a commercially available ionic terminal was used. The decolorization rate of the aqueous solution of Eriochrome Black T was 0.1%
Met.

【0018】実施例2 塩基性染料の1つであるクリスタルバイオレットの0.
05重量%水溶液に、過酸化水素を水溶液が0.12%
になるように添加して、その水溶液を実施例1と同様に
調製したイオン交換樹脂20mlに通液させたところ、
処理による脱色率は93.57%であった。 比較例2 末端のイオン形がクロル型の強塩基性樹脂を用いること
以外は実施例2と同様に行ったところ、クリスタルバイ
オレット水溶液の脱色率は67.89%であった。
Example 2 0.1 of crystal violet, one of the basic dyes.
0.12% of aqueous solution of hydrogen peroxide in 05% by weight aqueous solution
And the aqueous solution was passed through 20 ml of an ion exchange resin prepared in the same manner as in Example 1.
The bleaching rate due to the treatment was 93.57%. Comparative Example 2 The same procedure as in Example 2 was carried out except that a strong basic resin having a terminal ion form of chloro was used. The decolorization rate of the aqueous crystal violet solution was 67.89%.

【0019】実施例3 酸性染料の1つであるオレンジIIの0.05重量%水
溶液に、過酸化水素を水溶液が1.2%になるように添
加して、その水溶液を実施例1と同様に調製したイオン
交換樹脂20mlに通液させたところ、処理による脱色
率は98.89%であった。
Example 3 Hydrogen peroxide was added to a 0.05% by weight aqueous solution of orange II, one of the acid dyes, so that the aqueous solution became 1.2%, and the aqueous solution was used in the same manner as in Example 1. When the solution was passed through 20 ml of the ion exchange resin prepared as described above, the decolorization rate due to the treatment was 98.89%.

【0020】実施例4 トリアリールメタン型染料化合物の1つであるピロカテ
コールバイオレットの0.05重量%水溶液に、過酸化
水素を水溶液が1.2%になるように添加して、その水
溶液を実施例1と同様に調製したイオン交換樹脂20m
lに通液させたところ、処理による脱色率は95.15
%であった。
Example 4 Hydrogen peroxide was added to a 0.05% by weight aqueous solution of pyrocatechol violet, one of the triarylmethane type dye compounds, so that the aqueous solution became 1.2%, and the aqueous solution was added. 20 m of ion exchange resin prepared in the same manner as in Example 1.
1 and the decolorization rate by the treatment was 95.15.
%Met.

【0021】実施例5 陰イオン交換樹脂として第4級アンモニウム基を有する
強塩基性樹脂(商品名;ダイヤイオンPA−318、三
菱化学(株)製)をチオシアン酸カリウムを用いる以
外、実施例1と同様の方法で調製されたチオシアン酸塩
型にしたものを使用した。実施例1と同じ水溶液に、水
酸化ナトリウムを1.0%になるように添加し、その水
溶液のpHは11.68であった。これを上記の樹脂2
0mlにSV=5/hで通液させたところ、脱色率は、
79.5%であった。
Example 5 Example 1 was repeated except that a strongly basic resin having a quaternary ammonium group (trade name: Diaion PA-318, manufactured by Mitsubishi Chemical Corporation) was used as the anion exchange resin, and potassium thiocyanate was used. A thiocyanate type prepared by the same method as in Example 1 was used. Sodium hydroxide was added to the same aqueous solution as in Example 1 so as to be 1.0%, and the pH of the aqueous solution was 11.68. This is the above resin 2
When the solution was passed through 0 ml at SV = 5 / h, the decolorization rate was
79.5%.

【0022】実施例6 実施例3と同じ水溶液に、それに含まれる過酸化水素濃
度が1.2%になるように過炭酸ナトリウムを添加し
て、その水溶液を実施例5と同様に調製したイオン交換
樹脂20mlにSV=10/hで通液させたところ、処
理による脱色率は99.53%であった。
Example 6 Sodium percarbonate was added to the same aqueous solution as in Example 3 so that the concentration of hydrogen peroxide contained therein became 1.2%, and the aqueous solution was prepared in the same manner as in Example 5. When the solution was passed through 20 ml of the exchange resin at SV = 10 / h, the decolorization rate due to the treatment was 99.53%.

【0023】実施例7 シクロヘキセンのエポキシ化を行った。なお、収率は、
ガスクロマトグラフィーを用いて、内部標準法により算
出した。実施例1と同様に調製したイオン交換樹脂10
mlに過酸化水素20重量%、シクロヘキセン5.0重
量%のメタノール溶液を室温下、SV=1/hで通液し
たところ、得られたシクロヘキサンオキシドの収率は、
14.3%であった。
Example 7 Cyclohexene was epoxidized. The yield is
It was calculated by the internal standard method using gas chromatography. Ion exchange resin 10 prepared in the same manner as in Example 1.
When a methanol solution of 20% by weight of hydrogen peroxide and 5.0% by weight of cyclohexene was passed through the flask at room temperature at SV = 1 / h, the yield of cyclohexane oxide obtained was as follows:
It was 14.3%.

【0024】比較例3 200ml三角フラスコに過酸化水素4.0重量%、シ
クロヘキセン5.0重量%、シアン酸カリウム5.3重
量%のメタノール溶液100.0gを40℃、5時間攪
拌して得られたシクロヘキサンオキシドの収率は、9.
6%であった。
Comparative Example 3 100.0 g of a methanol solution containing 4.0% by weight of hydrogen peroxide, 5.0% by weight of cyclohexene and 5.3% by weight of potassium cyanate was stirred in a 200 ml Erlenmeyer flask at 40 ° C. for 5 hours to obtain a solution. The yield of cyclohexane oxide obtained was 9.
6%.

【0025】[0025]

【発明の効果】本発明によれば、過酸化水素の活性化種
を担持したイオン交換樹脂に過酸化水素を含む有機物を
接触させることで、簡便且つ効率的に酸化処理方法を行
うことができる。
According to the present invention, an oxidizing method can be carried out simply and efficiently by bringing an organic substance containing hydrogen peroxide into contact with an ion-exchange resin carrying activated species of hydrogen peroxide. .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機物に過酸化水素または過酸化水素を
生成する過酸化物を添加して、過酸化水素の活性化種を
担持したイオン交換樹脂に接触させる有機物の酸化処理
方法。
1. A method for oxidizing an organic substance, wherein hydrogen peroxide or a peroxide that generates hydrogen peroxide is added to the organic substance, and the organic substance is brought into contact with an ion exchange resin carrying an activated species of hydrogen peroxide.
【請求項2】 過酸化水素の活性化種がハロゲノイドイ
オン化合物であることを特徴とする請求項1記載の方
法。
2. The method according to claim 1, wherein the activated species of hydrogen peroxide is a halogenoid ion compound.
【請求項3】 ハロゲノイドイオン化合物が、シアン酸
イオン化合物またはチオシアン酸イオン化合物であるこ
とを特徴とする請求項2記載の方法。
3. The method according to claim 2, wherein the halogenoid ion compound is a cyanate ion compound or a thiocyanate ion compound.
【請求項4】 イオン交換樹脂が、強塩基性または弱塩
基性の陰イオン交換樹脂であることを特徴とする請求項
1記載の方法。
4. The method according to claim 1, wherein the ion exchange resin is a strongly basic or weakly basic anion exchange resin.
【請求項5】 過酸化水素または過酸化水素を生成する
過酸化物が、過酸化水素、炭酸ナトリウム過酸化水素付
加物、または過ホウ酸ナトリウムである請求項1記載の
方法。
5. The method according to claim 1, wherein the hydrogen peroxide or the peroxide that produces hydrogen peroxide is hydrogen peroxide, sodium carbonate hydrogen peroxide adduct, or sodium perborate.
【請求項6】 排水中の有機物を酸化処理する請求項1
記載の方法。
6. The method according to claim 1, wherein the organic matter in the waste water is oxidized.
The described method.
【請求項7】 請求項1記載の方法に使用される過酸化
水素の活性化種を担持したイオン交換樹脂。
7. An ion exchange resin carrying an activated species of hydrogen peroxide used in the method according to claim 1.
JP8276258A 1996-10-18 1996-10-18 Oxidizing treatment of organic matter Pending JPH10118669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8276258A JPH10118669A (en) 1996-10-18 1996-10-18 Oxidizing treatment of organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8276258A JPH10118669A (en) 1996-10-18 1996-10-18 Oxidizing treatment of organic matter

Publications (1)

Publication Number Publication Date
JPH10118669A true JPH10118669A (en) 1998-05-12

Family

ID=17566929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8276258A Pending JPH10118669A (en) 1996-10-18 1996-10-18 Oxidizing treatment of organic matter

Country Status (1)

Country Link
JP (1) JPH10118669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426973A (en) * 2005-04-28 2006-12-13 Probe Ind Ltd Method of deodorising dewater effluent
CN110801870A (en) * 2018-08-06 2020-02-18 兰州蓝星纤维有限公司 Strong-alkaline anion resin activation system and activation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426973A (en) * 2005-04-28 2006-12-13 Probe Ind Ltd Method of deodorising dewater effluent
CN110801870A (en) * 2018-08-06 2020-02-18 兰州蓝星纤维有限公司 Strong-alkaline anion resin activation system and activation method

Similar Documents

Publication Publication Date Title
Neamtu et al. Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study
Aplin et al. Comparison of three advanced oxidation processes for degradation of textile dyes
Balcioğlu et al. Partial oxidation of reactive dyestuffs and synthetic textile dye-bath by the O3 and O3/H2O2 processes
Gottschalk et al. Ozonation of water and waste water: A practical guide to understanding ozone and its applications
Neamţu et al. Effect of dealumination of iron (III)—exchanged Y zeolites on oxidation of Reactive Yellow 84 azo dye in the presence of hydrogen peroxide
Arslan et al. H2O2/UV-C and Fe 2+/H2 O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater
Kušić et al. Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization
Lin et al. Oxidation of 2-chlorophenol in water by ultrasound/Fenton method
Höfl et al. Oxidative degradation of AOX and COD by different advanced oxidation processes: a comparative study with two samples of a pharmaceutical wastewater
US5746994A (en) Method for synthesizing ferrate and ferrate produced thereby
Daud et al. Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study
Chung et al. Application of advanced oxidation processes to remove refractory compounds from dye wastewater
Meshram et al. Ultrasonic cavitation induced degradation of Congo red in aqueous solutions
Salem et al. Kinetics of degradation of allura red, ponceau 4R and carmosine dyes with potassium ferrioxalate complex in the presence of H2O2
Agustina et al. Decolorization and mineralization of CI reactive blue 4 and CI reactive red 2 by Fenton oxidation process
Salim et al. Photochemical UVC/H 2 O 2 oxidation system as an effective method for the decolourisation of bio-treated textile wastewaters: towards onsite water reuse
Bouafia-Chergui et al. A photo-Fentontreatment of a mixture of three cationic dyes
Meghwal et al. Chemical and Biological Treatment of Dyes
Aplin et al. Effect of Fe (III)-ligand properties on effectiveness of modified photo-Fenton processes
Venkatesh et al. Decolorization of synthetic dye solution containing Congo red by advanced oxidation process (AOP)
Yasar et al. Decolorization of Blue CL-BR dye by AOPs using bleach wastewater as source of H2O2
Płonka et al. Investigation of the efficiency of the UV/H2O2 process on the removal of dye Acid Green 16 from aqueous solutions: Process optimization and toxicity assessment
Palit Ozone treatment as an effective advanced oxidation process for the degradation of textile dye-effluents
JPH10118669A (en) Oxidizing treatment of organic matter
Ouhammou et al. Textile wastewater discoloration by Fenton oxidation process