JPH10117783A - Immobilization of protein on surface of microbial cell - Google Patents

Immobilization of protein on surface of microbial cell

Info

Publication number
JPH10117783A
JPH10117783A JP8299273A JP29927396A JPH10117783A JP H10117783 A JPH10117783 A JP H10117783A JP 8299273 A JP8299273 A JP 8299273A JP 29927396 A JP29927396 A JP 29927396A JP H10117783 A JPH10117783 A JP H10117783A
Authority
JP
Japan
Prior art keywords
gly
thr
ala
leu
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8299273A
Other languages
Japanese (ja)
Other versions
JP4049408B2 (en
Inventor
Mayumi Kiwaki
真祐美 木脇
Saeko Sawaki
佐重子 沢木
Yukio Shirasawa
幸生 白沢
Mariko Kadota
真理子 門多
Tomoyuki Sako
知行 左古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP29927396A priority Critical patent/JP4049408B2/en
Publication of JPH10117783A publication Critical patent/JPH10117783A/en
Application granted granted Critical
Publication of JP4049408B2 publication Critical patent/JP4049408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To express various useful proteins by immobilizing the various useful proteins on the surface of a microbial cell by utilizing an anchor sequence of a protease derived from Lactococcus lactis. SOLUTION: A fused gene sequence obtained by combining a gene sequence coding an anchor sequence (or a partial sequence thereof) of 763 protease derived from Lactococcus lactis NCD 0763 strain, with a gene sequence coding the objective protein is introduced into a host microbe. The objective protein is immobilized on the surface of the host microbial cell by culturing the host microbe. The anchor sequence having the amino acid sequence of the formula is preferable. An application to an oral vaccine is expected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラクトコッカス・
ラクチス(Lactococcus lactis)の菌体表層のプロテアー
ゼタンパク質が有するアンカー配列を利用して、任意の
有用タンパク質を、宿主菌体表面に発現させる固定化方
法に関するものである。
TECHNICAL FIELD The present invention relates to a lactococcus
The present invention relates to an immobilization method for expressing any useful protein on the surface of a host cell using an anchor sequence of a protease protein on the surface of a cell of lactis ( Lactococcus lactis ).

【0002】[0002]

【従来の技術】グラム陽性菌の多くの菌体表層タンパク
質はアンカー配列と呼ばれる共通した構造を持ち、それ
を介して菌体に結合している。ラクトコッカス・ラクチ
ス菌のプロテアーゼの中で、所謂 763プロテアーゼは、
ラクトコッカス・ラクチスssp.ラクチス NCDO763株
の55Kbプラスミド(pLP 763)上に産生情報が保
持されているセリンプロテアーゼであり、C末端に位置
するアンカー配列により、菌体表面において菌体と結合
する構造を取り、発現していることが知られている。
2. Description of the Related Art Many cell surface proteins of gram-positive bacteria have a common structure called an anchor sequence, and are bound to the cells via the structure. Among the proteases of Lactococcus lactis, the so-called 763 protease is
Lactococcus lactis ssp. Lactis is a serine protease whose production information is retained on the 55Kb plasmid (pLP763) of the NCDO763 strain, which takes on a structure that binds to the cells on the surface of the cells by means of an anchor sequence located at the C-terminus and is expressed. It is known.

【0003】このアンカー配列は、グラム陽性細菌の細
胞表層タンパク質の多くが有する構造であり、(1) 細胞
壁を構成するペプチドグリカン層内に位置するプロリ
ン、グリシンに富んだ繰り返し領域、(2) アミノ酸残基
よりなるコンセンサス配列(LPXTGモチーフ)、
(3) 細胞膜内に位置する疎水性領域、(4) 細胞質内に位
置すると考えられる正電荷領域からなる。
[0003] This anchor sequence is a structure possessed by many cell surface proteins of Gram-positive bacteria, (1) a proline- and glycine-rich repeat region located in a peptidoglycan layer constituting a cell wall, and (2) an amino acid residue. Consensus sequence consisting of groups (LPXTG motif),
It consists of (3) a hydrophobic region located in the cell membrane, and (4) a positively charged region thought to be located in the cytoplasm.

【0004】763プロテアーゼのアンカー配列について
は、その、アミノ酸構造は報告されているが(文献参
照;Molecular Microbiology (1989) vol.3(No.3),359-
369 )、 763プロテアーゼにおいては、上記(1) に記載
のプロリン・グリシンに富んだ繰り返し領域がはっきり
せず、その全てが、プロテアーゼの菌体への結合に必須
であるのか、また、必須ではない場合、最小必要単位が
どの部分であるのか等については、充分解明されていな
い。
Regarding the anchor sequence of 763 protease, its amino acid structure has been reported (see literature; Molecular Microbiology (1989) vol. 3 (No. 3), 359-).
369) and 763 protease, the proline / glycine-rich repeat region described in (1) above is not clear, and whether all of them are essential or not essential for protease binding to bacterial cells. In such a case, it is not sufficiently clarified which part is the minimum necessary unit.

【0005】[0005]

【発明が解決しようとする課題】菌体表層に有用タンパ
ク質を発現させることは、微生物を育種する上で有効な
手段となり得る。そこで、本発明者らは鋭意努力の結
果、 763プロテアーゼに由来するアンカー配列におい
て、プロテアーゼの菌体への結合に関与する領域を解明
することにより、本発明を得るに至った。
The expression of a useful protein on the surface of bacterial cells can be an effective means for breeding microorganisms. Thus, as a result of diligent efforts, the present inventors have elucidated a region involved in binding of a protease to bacterial cells in an anchor sequence derived from the 763 protease, and thereby obtained the present invention.

【0006】本発明は、ラクトコッカス・ラクチス菌由
来のプロテアーゼのアンカー配列又は当該アンカー配列
の部分配列を利用して、種々の任意の有用タンパク質を
菌体表面に固定化し、且つ当該有用タンパク質を発現さ
せることを目的とする。
According to the present invention, various useful proteins are immobilized on the surface of bacterial cells using the anchor sequence of a protease derived from Lactococcus lactis or a partial sequence of the anchor sequence, and the useful protein is expressed. The purpose is to let them.

【0007】[0007]

【課題を解決するための手段】本請求項1に記載された
発明に係る菌体表面へのタンパク質の固定化方法では、
ラクトコッカス・ラクチス(Lactococcus lactis) NCDO7
63株由来の 763プロテアーゼのアンカー配列をコードす
る遺伝子配列と、目的とするタンパク質をコードする遺
伝子配列とを繋いだ融合遺伝子配列を得る工程と、前記
融合遺伝子配列を宿主菌内に導入する工程と、前記融合
遺伝子配列が導入された宿主菌を培養して前記目的とす
るタンパク質を菌体表面に固定化する工程とを備えたも
のである。
According to the method for immobilizing a protein on the surface of a bacterial cell according to the present invention described in claim 1,
Lactococcus lactis NCDO7
A gene sequence encoding the anchor sequence of 763 protease from the 63 strain and a step of obtaining a fusion gene sequence connecting the gene sequence encoding the protein of interest, and a step of introducing the fusion gene sequence into a host bacterium. Culturing a host cell into which the fusion gene sequence has been introduced, and immobilizing the target protein on the surface of the cell body.

【0008】本請求項2に記載された発明に係る菌体表
面へのタンパク質の固定化方法では、前記アンカー配列
が、少なくとも下記アミノ酸配列を備えているものであ
る。 Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu
[0008] In the method for immobilizing a protein on the surface of a bacterial cell according to the invention described in claim 2, the anchor sequence has at least the following amino acid sequence. Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu

【0009】本請求項3に記載された発明に係る菌体表
面へのタンパク質の固定化方法では、前記アンカー配列
が、請求項2に示すアミノ酸配列を残して下記アミノ酸
配列の一部を切除したアミノ酸配列からなるものであ
る。 Lys Lys Thr Ser Leu Leu Asn Gln Leu Gln Ser Val Lys Ala Ala Leu Glu Thr Asp Leu Gly Asn Gln Thr Asp Ser Ser Thr Gly Lys Thr Phe Thr Ala Ala Leu Asp Asp Leu Val Ala Gln Ala Gln Ala Gly Thr Gln Thr Asp Asp Gln Leu Gln Ala Thr Leu Ala Lys Val Leu Asp Ala Val Leu Ala Lys Leu Ala Glu Gly Ile Lys Ala Ala Thr Pro Ala Glu Val Gly Asn Ala Lys Asp Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile Ala Asp Thr Leu Thr Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys Leu Ala His Leu Gln Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu
In the method for immobilizing a protein on the surface of a bacterial cell according to the present invention described in claim 3, the anchor sequence is obtained by removing a part of the following amino acid sequence except for the amino acid sequence shown in claim 2. It consists of an amino acid sequence. Lys Lys Thr Ser Leu Leu Asn Gln Leu Gln Ser Val Lys Ala Ala Leu Glu Thr Asp Leu Gly Asn Gln Thr Asp Ser Ser Thr Gly Lys Thr Phe Thr Ala Ala Leu Asp Asp Leu Val Ala Gln Ala Gln Ala Gly Thr Gln Thr Asp Asp Gln Leu Gln Ala Thr Leu Ala Lys Val Leu Asp Ala Val Leu Ala Lys Leu Ala Glu Gly Ile Lys Ala Ala Thr Pro Ala Glu Val Gly Asn Ala Lys Asp Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile Ala Asp Thr Leu Thr Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys Leu Ala His Leu Gln Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr Asn Pro Ala Thr Thr Thr Ser Ser Serr Thr Asp Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu

【0010】本発明における目的とするタンパク質と
は、宿主となる乳酸菌の培養に応じてその乳酸菌表面に
発現する有用なタンパク質を指す。例えば、後述する実
施例で示されたスタフィロキナーゼ(SAK)等の酵素
や、病原性細菌の部分タンパク質,生理活性タンパク質
等も考慮される。即ち、任意のタンパク質の遺伝子が単
離されており、通常の遺伝子組換え技術を用いて、該ア
ンカー配列と結合させて、融合蛋白の遺伝子を作成でき
るものであれば、特に制限はない。
[0010] The target protein in the present invention refers to a useful protein expressed on the surface of a lactic acid bacterium as a host according to the culture of the lactic acid bacterium. For example, enzymes such as staphylokinase (SAK) shown in Examples described later, partial proteins of pathogenic bacteria, bioactive proteins, and the like are also considered. That is, there is no particular limitation as long as the gene of any protein is isolated and can be combined with the anchor sequence using a normal gene recombination technique to produce the gene of the fusion protein.

【0011】また、本発明における宿主菌とは、ラクト
コッカス・ラクチス(Lactococcus l actis) NCDO763株由
来の 763プロテアーゼのアンカー配列により、菌体表面
において菌体と結合する構造を取り、菌体表面に発現す
るものであればよい。具体的には、ラクトコッカス・ラ
クチス(Lactococcus lactis),ラクトバチルス・カゼイ
(Lactobacillus casei) ,ストレプトコッカス・サーモ
フィルス(Streptococcus thermophilus),エンテロコッ
カス・フェカリス(Enterococcus faecalis) ,スタフィ
ロコッカス・アウレウス(Staphylococcus aureus) ,ス
トレプトコッカス・ミュータンス(Streptococcus mutan
s),ストレプトコッカス・ピオゲネス(Streptococcus p
yogenes)等の乳酸菌が挙げられる。
[0011] The host strain of the present invention, the anchor sequence of Lactococcus lactis (Lactococcus l actis) NCDO763 strain derived from 763 protease takes a structure which binds to cells in the cell surface, the cell surface Any expression can be used. Specifically, Lactococcus lactis , Lactobacillus casei
(Lactobacillus casei), Streptococcus thermophilus (Streptococcus thermophilus), Enterococcus faecalis (Enterococcus faecalis), Staphylococcus aureus (Staphylococcus aureus), Streptococcus mutans (Streptococcus mutan
s), Streptococcus pyogenes (Streptococcus p
lactic acid bacteria such as yogenes ).

【0012】アンカー配列をコードする遺伝子配列と、
目的とするタンパク質をコードする遺伝子配列とを繋い
だ融合遺伝子配列の作製、この融合遺伝子配列の宿主菌
内への導入、この融合遺伝子配列が導入された宿主菌の
培養は、常法により行うことができる。
A gene sequence encoding an anchor sequence;
Preparation of a fusion gene sequence linked to the gene sequence encoding the protein of interest, introduction of the fusion gene sequence into a host cell, and cultivation of the host cell into which the fusion gene sequence has been introduced must be carried out by a conventional method. Can be.

【0013】[0013]

【発明の実施の形態】本発明では、ラクトコッカス・ラ
クチス(Lactococcus lactis) NCDO763株由来の 763プロ
テアーゼのアンカー配列をコードする遺伝子配列と、目
的とするタンパク質をコードする遺伝子配列とを繋いだ
融合遺伝子配列を得て、この融合遺伝子配列を宿主菌に
導入し、これを培養することにより、目的とするタンパ
ク質を菌体表面に固定化する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a fusion gene comprising a gene sequence encoding an anchor sequence of Lactococcus lactis NCDO763 strain-derived 763 protease and a gene sequence encoding a target protein is described. After obtaining the sequence, the fusion gene sequence is introduced into a host bacterium, and this is cultured to immobilize the target protein on the surface of the cell.

【0014】これにより、例えば、酵素を宿主菌体表面
に表出させて固定化したり、病原性細菌の部分タンパク
質を使用して、ワクチン作用を有するものとしたり、生
理活性タンパク質を使用して、医薬的用途に用いたりす
ることが可能である。後述する実施例においては、優れ
た血栓溶解作用を有する、スタフィロキナーゼ(SA
K)タンパク質をモデルとして用いたが、目的とするタ
ンパク質に応じて種々変更が可能である。
[0014] Thus, for example, the enzyme can be expressed and immobilized on the surface of the host cell, a vaccine can be obtained by using a partial protein of a pathogenic bacterium, or a bioactive protein can be obtained by using a bioactive protein. It can be used for pharmaceutical purposes. In the examples described below, staphylokinase (SA) having an excellent thrombolytic action is described.
K) Although the protein was used as a model, various changes can be made according to the target protein.

【0015】アンカー配列と目的とするタンパク質との
融合タンパク質をコードする遺伝子配列の宿主菌内への
導入は、通常の遺伝子組換え技術を用いて行うことがで
きる。例えば、宿主菌となる乳酸菌に導入可能なプラス
ミドに前記遺伝子配列を保持させて、このプラスミドを
宿主菌に導入することにより行うことができる。
Introduction of a gene sequence encoding a fusion protein of an anchor sequence and a target protein into a host bacterium can be carried out using a conventional gene recombination technique. For example, it can be carried out by retaining the gene sequence in a plasmid that can be introduced into a lactic acid bacterium serving as a host bacterium, and introducing this plasmid into the host bacterium.

【0016】ラクトコッカス・ラクチス(Lactococcus l
actis) NCDO763株由来の 763プロテアーゼのアンカー配
列について、本発明により初めて、配列番号1〜6に示
す243アミノ酸残基配列〜36アミノ酸残基配列が使
用可能であることが確認された。特に、本発明では配列
番号6に示す36アミノ酸残基配列がラクトコッカス・
ラクチス及びラクトバチルス・カゼイで使用可能である
ことが確認された。
[0016] Lactococcus lactis (Lactococcus l
actis ) For the anchor sequence of the 763 protease derived from the NCDO763 strain, it was confirmed for the first time by the present invention that the 243 amino acid residue sequence to 36 amino acid residue sequence shown in SEQ ID NOs: 1 to 6 can be used. In particular, in the present invention, the 36 amino acid residue sequence shown in SEQ ID NO: 6 contains Lactococcus
It has been confirmed that it can be used in Lactis and Lactobacillus casei.

【0017】具体的には、 (1) 配列番号1に示された243アミノ酸残基配列 (2) 配列番号2に示された158アミノ酸残基配列 (3) 配列番号3に示された125アミノ酸残基配列 (4) 配列番号4に示された96アミノ酸残基配列 (5) 配列番号5に示された55アミノ酸残基配列 (6) 配列番号6に示された36アミノ酸残基配列 が使用可能であることは、確認済みであり、これらの範
囲内であれば、その他の部分配列でも使用可能である。
Specifically, (1) 243 amino acid residue sequence shown in SEQ ID NO: 1 (2) 158 amino acid residue sequence shown in SEQ ID NO: 2 (3) 125 amino acid residue sequence shown in SEQ ID NO: 3 Residue sequence (4) 96 amino acid residue sequence shown in SEQ ID NO: 4 (5) 55 amino acid residue sequence shown in SEQ ID NO: 5 (6) 36 amino acid residue sequence shown in SEQ ID NO: 6 It has been confirmed that this is possible, and other subsequences can be used within these ranges.

【0018】更に具体的には、配列番号2に示された配
列は配列番号1のN末端側の85アミノ酸残基が切除さ
れた構成である。配列番号3に示された配列は同じく配
列番号1のN末端側の118アミノ酸残基が切除された
構成である。配列番号4に示された配列は同じく配列番
号1のN末端側の147アミノ酸残基が切除された構成
である。配列番号5に示された配列は同じく配列番号1
のN末端側の198アミノ酸残基が切除された構成であ
る。配列番号6に示された配列は同じく配列番号1のN
末端側の27アミノ酸残基が切除された構成である。
More specifically, the sequence shown in SEQ ID NO: 2 has a structure in which 85 amino acid residues on the N-terminal side of SEQ ID NO: 1 have been removed. The sequence shown in SEQ ID NO: 3 has the same structure as SEQ ID NO: 1 except that the N-terminal 118 amino acid residues have been removed. The sequence shown in SEQ ID NO: 4 has a structure in which 147 amino acid residues on the N-terminal side of SEQ ID NO: 1 have been removed. The sequence shown in SEQ ID NO: 5 is the same as SEQ ID NO: 1.
This is a configuration in which 198 amino acid residues on the N-terminal side of are removed. The sequence shown in SEQ ID NO: 6 is the same as N in SEQ ID NO: 1.
In this configuration, the terminal 27 amino acid residues have been removed.

【0019】また、本発明に係る融合タンパク質とは、
活性発現を目的とするタンパク質(実施例においては、
SAKタンパク質)をコードする遺伝子と、アンカー配
列として使用するアミノ酸配列をコードする遺伝子と
を、常法で結合したものである。
Further, the fusion protein according to the present invention is:
Proteins for expressing activity (in the examples,
A gene encoding SAK protein) and a gene encoding an amino acid sequence used as an anchor sequence are linked by a conventional method.

【0020】この融合タンパク質を任意に選択したベク
ター(例えば、pSG−TERM)に組込み、プラスミ
ドとして適当な宿主に形質転換することで、目的とした
タンパク質を菌体表面に固定した微生物を得ることがで
きる。尚、遺伝子の結合、増幅、宿主への形質転換法な
どは、遺伝子組換え研究分野で、周知のものを組合わせ
て行うことができる。
By incorporating this fusion protein into an arbitrarily selected vector (for example, pSG-TERM) and transforming it into an appropriate host as a plasmid, it is possible to obtain a microorganism having the target protein immobilized on the cell surface. it can. In addition, gene binding, amplification, transformation into a host, and the like can be performed by combining well-known methods in the field of genetic recombination research.

【0021】[0021]

【実施例】食品用乳酸菌を用い、アンカー配列を介した
菌体表層への発現系の作成を目指して、分泌タンパク質
であるスタフィロキナーゼ(SAK)と、ラクトコッカ
ス・ラクチス(Lactococcus lactis)NCDO763 が産生する
プロテアーゼ( 763プロテアーゼ)のアンカー配列部分
との融合タンパク質を構築し、そのアンカーとしての機
能を検討した。
EXAMPLE Using lactic acid bacteria for foods, staphylokinase (SAK), which is a secreted protein, and Lactococcus lactis NCDO763 were synthesized with the aim of creating an expression system on the cell surface via an anchor sequence. A fusion protein with the anchor sequence of the produced protease (763 protease) was constructed, and its function as an anchor was examined.

【0022】1.材料 大腸菌(E. coli) JM109株(東洋紡績株式会社)
と、ラクトコッカス・ラクチス(Lactococcus lactis) Y
IT2081株と、ラクトバチルス・カゼイ(Lactobacillus c
asei)YIT9029株とを宿主として用いた。大腸菌はL-bro
thで、乳酸菌はM17-glucose 培地で培養した。ベクター
として、プラスミドpSG−TERMを用いた。PCR
の鋳型DNAとして、pBE31SAK1及びpMQ9
080を用いた。
1. Material Escherichia coli (E. Coli) JM109 strain (Toyobo Co., Ltd.)
And Lactococcus lactis Y
IT2081 strain and Lactobacillus c.
asei ) YIT9029 strain was used as a host. E. coli is L-bro
At th, the lactic acid bacteria were cultured in M17-glucose medium. Plasmid pSG-TERM was used as a vector. PCR
PBE31SAK1 and pMQ9
080 was used.

【0023】2.シャトルベクターpSG−TERM 図1はプラスミドpSG−TERMの構造を模式的に示
した説明図である。このプラスミドは、大腸菌、乳酸菌
で機能するシャトルベクターpBE31(特開平6−2
53861号公報参照)の約0.21kbのAcc−S
maI断片を欠失させ、更に、BamHI,SphIサ
イトに、エリスロマイシン耐性遺伝子由来のプロモータ
ー(Em promoter )、 763プロテアーゼ遺伝子由来のS
D配列及びシグナル配列(763 protease signal se
q.)、多重制限酵素認識配列(MCS)、 763プロテア
ーゼ遺伝子由来のターミネータ配列(763 protease ter
minator )を含む約0.46kbのDNA断片を挿入
し、pSG−TERMとした。
2. Shuttle Vector pSG-TERM FIG. 1 is an explanatory diagram schematically showing the structure of the plasmid pSG-TERM. This plasmid is a shuttle vector pBE31 (Japanese Unexamined Patent Publication No.
No. 53861) of about 0.21 kb of Acc-S.
The maI fragment was deleted, and further, a promoter (Em promoter) derived from the erythromycin resistance gene and an S promoter derived from the 763 protease gene were added to the BamHI and SphI sites.
D sequence and signal sequence (763 protease signal se)
q.), multiple restriction enzyme recognition sequence (MCS), terminator sequence derived from 763 protease gene (763 protease ter
A DNA fragment of about 0.46 kb including the H.minator) was inserted to obtain pSG-TERM.

【0024】3.pMQ9080 大腸菌のプラスミドpUC119のBamHIサイト
に、763プロテアーゼのC末端を含むpLP763 由来
の3.1kbのBglII断片をクローニングし、pMQ
9080とした。
3. A 3.1 kb BglII fragment derived from pLP763 containing the C-terminal of 763 protease was cloned into the BamHI site of plasmid pUC119 of pMQ9080 E. coli,
9080.

【0025】4.各プライマーの配列と合成 次の配列のDNAプライマーを、DNA合成装置(Mo
del 392、アブライド・バイオシステム社)を用
いて合成した。 (1) SGSAK5 ATTAA GTTCG AAGGA GGAAG CGCCA TGCTC (2) SAKSAL1R AACTA TTTTG TCGAC TTTCT T (3) MK245 CTCCG CGTCG ACAAG AAGAC TTCGC TGCTT AAC (4) MK160 CTCCG CGTCG ACGCT GCAAC TGGCA AAACT TGG (5) MK127 TTCCG CGTCG ACTTG CAAAG TCTGA AAACG AAG (6) MK098 TTCCG CGTCG ACAAA GGCGG CGGTC AAGGT ACC (7) MK057 TTCCG CGTCG ACACG AGCAC GGATG ATACG ACT (8) MK038 TTCCG CGTCG ACTTA CCCAA GACAG GAGAG ACA (9) ANCSPH1 AACCG TTTCT ACTGC ATGCA CTATA AGCAA
4. Sequence and Synthesis of Each Primer A DNA primer having the following sequence was synthesized with a DNA synthesizer (Mo
del 392, Abride Biosystems). (1) SGSAK5 ATTAA GTTCG AAGGA GGAAG CGCCA TGCTC (2) SAKSAL1R AACTA TTTTG TCGAC TTTCT T (3) MK245 CTCCG CGTCG ACAAG AAGAC TTCGC TGCTT AAC (4) MK160 CTCCG CGTCG ACGCT GCAAC TGGCA AAACT TGG (5) MK127 TTCCG CGTCG ACTTG CAAAG TCTGA AAACG AAG (6) MK098 TTCCG CGTCG ACAAA GGCGG CGGTC AAGGT ACC (7) MK057 TTCCG CGTCG ACACG AGCAC GGATG ATACG ACT (8) MK038 TTCCG CGTCG ACTTA CCCAA GACAG GAGATGCATCACTAACT

【0026】5.DNA断片の製造 KOD DNAポリメラーゼ(東洋紡績株式会社)を用
いたPCR法により、遺伝子DNAの増幅を行った。S
AK遺伝子の増幅は、pBE31SAK1を鋳型とし、
プライマーSGSAK5とSAKSAL1Rとの間で、
94℃30秒、50℃30秒、74℃60秒を1サイク
ルとし、これを30回繰返すことにより、行った。
[5] Production of DNA Fragment Gene DNA was amplified by a PCR method using KOD DNA polymerase (Toyobo Co., Ltd.). S
The amplification of the AK gene was performed using pBE31SAK1 as a template,
Between the primers SGSAK5 and SAKSAL1R,
This was performed by repeating one cycle of 94 ° C. for 30 seconds, 50 ° C. for 30 seconds, and 74 ° C. for 60 seconds, and repeating this 30 times.

【0027】アンカー配列の増幅は、pMQ9080の
DraI断片を鋳型として、プライマーMK245,M
K160,MK127,MK098,MK057,MK
038とANCSPH1との間で、98℃15秒、60
℃5秒、74℃30秒を1サイクルとし、これを30回
繰返す条件により行った。
The amplification of the anchor sequence was performed by using the DraI fragment of pMQ9080 as a template and primers MK245 and MK245.
K160, MK127, MK098, MK057, MK
038 and ANCSPH1 at 98 ° C for 15 seconds, 60
The cycle was performed at 30 ° C. for 5 seconds and at 74 ° C. for 30 seconds, and this was repeated 30 times.

【0028】6.組換えプラスミドの製造 (1) pSAK−NSの作製 PCR法で増幅したSAK遺伝子を含むDNA断片を、
NspV,SalIで切断し、精製した後、pSG−T
ERMのNspV−SalIサイトに挿入して、pSA
K−NSを作成した。図2はSAK−アンカー配列融合
タンパク質遺伝子の構造を模式的に示す説明図である。
図2のa図に示す通り、pSAK−NSはエリスロマイ
シン耐性遺伝子のプロモータの下流に、SAK遺伝子由
来のSD配列(SD)、SAKシグナル配列(signal s
eq. )、3’側にSalIサイトが挿入されたためにC
末端に2アミノ酸残基が付加したSAK成熟タンパク
質、終止コドン、乳酸菌プロテアーゼ由来のターミネー
タ配列(terminator)が繋った構造をしている。
6. Production of Recombinant Plasmid (1) Preparation of pSAK-NS The DNA fragment containing the SAK gene amplified by PCR was
After cleavage with NspV and SalI and purification, pSG-T
Inserted into the NspV-SalI site of ERM, pSA
K-NS was created. FIG. 2 is an explanatory view schematically showing the structure of the SAK-anchor sequence fusion protein gene.
As shown in FIG. 2A, pSAK-NS is located downstream of the promoter of the erythromycin resistance gene, and is composed of the SAK gene-derived SD sequence (SD) and the SAK signal sequence (signal s).
eq.). Since a SalI site was inserted on the 3 ′ side, C
It has a structure in which a SAK mature protein having two amino acid residues added to the end, a termination codon, and a terminator sequence derived from a lactic acid bacterium protease.

【0029】(2) pSAK245,pSAK160,p
SAK127,pSAK098,pSAK057,pS
AK038の作製 PCR法で増殖したアンカー配列を含むDNA断片を、
SalI,SphIで切断し精製した後、pSAK−N
SのSalI−SphIサイトに挿入することにより、
pSAK245,pSAK160,pSAK127,p
SAK098,pSAK057,pSAK038を作成
した。図2のb図〜g図に示す通り、これらのプラスミ
ドは、SAKタンパク質のC末端にSalIサイトに由
来する2アミノ酸残基を介して、プロテアーゼ由来のア
ンカー配列がC末端から各々、243,158,12
5,96,55,36アミノ酸残基結合した融合タンパ
ク質をコードしている。尚、得られたプラスミドについ
て、pSAK245は、生工研菌寄第15909号とし
て、pSAK038は生工研菌寄第15910号とし
て、各々生命工学研究所に平成08年10月17日付け
で寄託されている。また、他のプラスミドについては、
pSAK245の所望の塩基配列を切除することによ
り、得られると判断したため、菌の寄託を行わなかっ
た。
(2) pSAK245, pSAK160, p
SAK127, pSAK098, pSAK057, pS
Preparation of AK038 A DNA fragment containing an anchor sequence grown by PCR was
After digestion and purification with SalI and SphI, pSAK-N
By inserting into the SalI-SphI site of S,
pSAK245, pSAK160, pSAK127, p
SAK098, pSAK057 and pSAK038 were prepared. As shown in FIGS. 2b to 2g, these plasmids have a protease-derived anchor sequence from the C-terminus at 243, 158 from the C-terminus via two amino acid residues derived from the SalI site at the C-terminus of the SAK protein. , 12
It encodes a fusion protein in which 5,96,55,36 amino acid residues are linked. Regarding the obtained plasmids, pSAK245 was deposited as Biotechnological Laboratory No. 15909 and pSAK038 was deposited as Biotechnological Laboratories No. 15910, respectively, at the Biotechnology Research Institute on October 17, 2008. ing. For other plasmids,
Deposition of the desired base sequence of pSAK245 was judged to be obtained by excision, and thus no bacterial deposit was performed.

【0030】7.宿主への形質転換 作製したプラスミドDNAは、先ず、大腸菌を宿主とし
て、構造の確認を行った。その後、大腸菌より精製した
各々のプラスミドDNA(pSAK245,pSAK1
60,pSAK127,pSAK098,pSAK05
7,pSAK038)をエレクトロポレーション法によ
りラクトコッカス・ラクチス菌 YIT2018株に導入して、
SAK−NS,SAK245,SAK160,SAK1
27,SAK098,SAK057,SAK038を得
た。今回の実施例で作成し、解析を行った乳酸菌クロー
ンを前記表1にまとめた。
[7] Transformation into host First, the structure of the prepared plasmid DNA was confirmed using Escherichia coli as a host. Then, each plasmid DNA (pSAK245, pSAK1
60, pSAK127, pSAK098, pSAK05
7, pSAK038) was introduced into Lactococcus lactis YIT2018 strain by electroporation,
SAK-NS, SAK245, SAK160, SAK1
27, SAK098, SAK057, and SAK038 were obtained. The lactic acid bacteria clones prepared and analyzed in the present example are summarized in Table 1 above.

【0031】[0031]

【表1】 [Table 1]

【0032】8.SAKタンパク質の発現の確認 (1) SAK活性の測定 一晩培養した培養液そのままを培養液画分、これを遠心
分離された菌体ペレットをM17-glucose 培地に再懸濁し
たものを菌体画分とし、各々10μlを反応溶液(chro
mozyme PL 0.5mM, plasminogen 0.06units/ml, polysor
bate 80 0.01%,0.1M Tris-HCl pH8.0)100μlと3
7℃で反応させ、経時的に405nmにおける吸光度を
マイクロプレートリーダーモデル450(Bio Rad 社
製)で測定した。
8. Confirmation of expression of SAK protein (1) Measurement of SAK activity The overnight culture broth was directly used as a culture solution fraction, and the cell pellet obtained by centrifuging the suspension was resuspended in M17-glucose medium to obtain a cell fraction. And 10 μl of each reaction solution (chro
mozyme PL 0.5mM, plasminogen 0.06units / ml, polysor
bate 80 0.01%, 0.1M Tris-HCl pH8.0) 100μl and 3
The reaction was carried out at 7 ° C., and the absorbance at 405 nm was measured with time using a microplate reader model 450 (manufactured by Bio Rad).

【0033】図3はSAK活性を測定した結果を示す線
図であり、a図は培養液画分、b図は菌体画分を示す。
縦軸は吸光度、横軸は反応時間を示す。図3に示す通
り、SAK遺伝子を導入していないベクターでのみ活性
が見られないほかは、全てのクローンで活性が検出され
た。
FIG. 3 is a diagram showing the results of measurement of SAK activity. FIG. 3A shows the culture solution fraction, and FIG. 3B shows the bacterial cell fraction.
The vertical axis indicates the absorbance, and the horizontal axis indicates the reaction time. As shown in FIG. 3, the activity was detected in all clones except that the activity was not observed only in the vector into which the SAK gene was not introduced.

【0034】(2) SDS−PAGE及びウェスタンブロ
ッティング ラクトコッカス・ラクチス菌クローンの一晩培養液1m
lを遠心分離して培養上清と菌体画分とを得た。培養上
清はTCA沈殿後、2×SDS sample buffer20μl
に懸濁し加熱した。菌体画分も同様に2×SDS sampl
e buffer20μlに懸濁し加熱した。これらのサンプル
をPhast System 20% Phast gel(Pharmacia社製) でSD
S電気泳動後、PVDF膜に転写し、抗SAK抗血清を
1次抗体として、アルカリフォスタファーゼ標識抗ウサ
ギIgG抗体を2次抗体として用い、ウェスタンブロッ
ティングを行った。
(2) SDS-PAGE and Western blotting 1 m overnight culture of Lactococcus lactis clones
was centrifuged to obtain a culture supernatant and a cell fraction. The culture supernatant is 2 × SDS sample buffer 20 μl after TCA precipitation.
And heated. Similarly, the cell fraction was 2 × SDS sampl.
The resultant was suspended in 20 μl of e buffer and heated. These samples were subjected to SD on a Phast System 20% Phast gel (Pharmacia).
After S electrophoresis, the DNA was transferred to a PVDF membrane, and Western blotting was performed using an anti-SAK antiserum as a primary antibody and an alkaline phosphatase-labeled anti-rabbit IgG antibody as a secondary antibody.

【0035】図4はウェスタンブロッティングの結果を
模式的に示す説明図であり、各クローン毎の培養上清(s
up) 、菌体画分(cell)を順に示している。図に示す通
り、SAK遺伝子を導入していないベクター(Vector)で
は、SAKタンパク質は検出されていない。菌体画分で
はSDSサンプルバッファーにより菌体の表層タンパク
質が抽出されていると考えられる。培養上清中にはSA
K(融合)タンパク質が分解を受けたと思われる分子量
の小さいバンドが多く検出された。
FIG. 4 is an explanatory view schematically showing the results of Western blotting, in which the culture supernatant (s
up) and the cell fraction (cell) are shown in order. As shown in the figure, no SAK protein was detected in the vector (Vector) into which the SAK gene was not introduced. It is considered that the surface protein of the cells was extracted by the SDS sample buffer in the cell fraction. SA in the culture supernatant
Many bands having a small molecular weight, which are considered to have caused degradation of the K (fusion) protein, were detected.

【0036】(3) アルカリフォスファターゼ標識抗体を
用いた菌体表面のSAK(融合)タンパク質の検出 各プラスミド(pSAK245,pSAK160,pS
AK127,pSAK098,pSAK057,pSA
K038)を同様にエレクトロポレーション法により導
入して、宿主菌をラクトバチルス・カゼイ(Lactobacill
us casei) としたクローンを作製した。
(3) Detection of SAK (fusion) protein on bacterial cell surface using alkaline phosphatase-labeled antibody Each plasmid (pSAK245, pSAK160, pSAK160)
AK127, pSAK098, pSAK057, pSA
K038) was similarly introduced by electroporation, and the host bacterium was transformed into Lactobacillus casei.
us casei ).

【0037】ラクトコッカス・ラクチス菌クローン及び
ラクトバチルス・カゼイ菌クローンの一晩培養液1ml
を遠心分離して菌体画分を得た。得られた菌体を 50mM
Tris-HCl pH7.4 1mlで2回洗浄後、1%BSA/T
BST 0.5mlに懸濁して室温で30〜60分保持し、抗
SAK抗血清1μlを含むTBST 0.5mlに懸濁して室
温で30〜60分保持した後、TBST 0.5mlで3回洗
浄した。その後、アルカリフォスファターゼ標識抗体ウ
サギIgG抗体 0.25 μl を含むTBST 0.5mlに懸濁
して室温で30〜60分保持した後、TBST 0.5mlで
3回洗浄後、OD660 が7.5 になるようにTBSTに懸
濁し、サンプルとした。
1 ml of overnight culture of Lactococcus lactis and Lactobacillus casei clones
Was centrifuged to obtain a bacterial cell fraction. 50 mM of the obtained cells
Tris-HCl pH 7.4 After washing twice with 1 ml, 1% BSA / T
The suspension was suspended in 0.5 ml of BST, kept at room temperature for 30 to 60 minutes, suspended in 0.5 ml of TBST containing 1 μl of anti-SAK antiserum, kept at room temperature for 30 to 60 minutes, and washed three times with 0.5 ml of TBST. Thereafter, suspension was held for 30 to 60 minutes at room temperature and suspended in TBST 0.5 ml containing alkaline phosphatase labeled antibody Rabbit IgG antibody 0.25 [mu] l, washed 3 times with TBST 0.5 ml, in TBST as OD 660 is 7.5 It became cloudy and was used as a sample.

【0038】得られたサンプル10μl に基質溶液(1mg
p-Nitrophenyl Phosphate /10ml diethanolamine buffe
r ) 100μlを加え、室温で反応させ、405nmにお
ける吸光度を経時的にマイクロプレートリーダモデル4
50(Bio Rad 社製)で測定した。
A substrate solution (1 mg) was added to 10 μl of the obtained sample.
p-Nitrophenyl Phosphate / 10ml diethanolamine buffe
r) Add 100 μl, react at room temperature, and measure absorbance at 405 nm over time with microplate reader model 4
50 (manufactured by Bio Rad).

【0039】図5はアルカリフォスファターゼ標識抗体
を用いた菌体表面のSAK(融合)タンパク質の検出結
果を示す線図であり、a図はラクトコッカス・ラクチス
(Lactococcus lactis)、b図はラクトバチルス・カゼイ
(Lactobacillus casei) を示す。縦軸は吸光度、横軸は
反応時間(min)を示す。
FIG. 5 is a diagram showing the results of detection of SAK (fusion) protein on the surface of bacterial cells using an alkaline phosphatase-labeled antibody, and FIG. 5A shows Lactococcus lactis.
( Lactococcus lactis ), Figure b shows Lactobacillus casei
( Lactobacillus casei ). The vertical axis indicates the absorbance, and the horizontal axis indicates the reaction time (min).

【0040】図において、吸光度の活性は菌体に結合し
たアルカリフォスファターゼ(AP)の活性が示され
る。即ち、菌体表面に表出したSAKにウサギ抗体SA
K抗体が結合し、更にこれにアルカリフォスファターゼ
によって標識されたウサギIgG抗体が結合するため、
アルカリフォスファターゼの活性が高ければ、菌体表面
に表出したSAKの数が多いこととなる。従って、図に
示したグラフの傾斜が急な方がAP活性が高く、菌体に
結合したAP標識抗兎IgG抗体の量が多いことを示
す。このことはそのクローンにおいて菌体表層のウサギ
抗SAK抗体量が多いこと、即ち、菌体表層に提示され
ているSAKタンパク質エピトープが多いことを意味す
る。
In the figure, the activity of the absorbance indicates the activity of alkaline phosphatase (AP) bound to the cells. That is, the rabbit antibody SA was added to the SAK expressed on the cell surface.
Since the K antibody binds and further binds to the rabbit IgG antibody labeled with alkaline phosphatase,
If the activity of alkaline phosphatase is high, the number of SAKs expressed on the surface of bacterial cells will be large. Therefore, the steeper the slope of the graph shown in the figure, the higher the AP activity and the higher the amount of AP-labeled anti-rabbit IgG antibody bound to the cells. This means that the clone has a large amount of rabbit anti-SAK antibody on the cell surface, that is, a large number of SAK protein epitopes displayed on the cell surface.

【0041】図に示されるように、ラクトコッカス・ラ
クチス菌、ラクトバチルス・カゼイ菌の何れでも、アミ
ノ酸残基数の多いものは、AP活性、即ちSAKの菌体
表面への発現が高いことが確認された。36アミノ酸残
基は、L.ラクチス菌でコントロール(ベクター,N
S)との差が確認できたが、L.カゼイでは差が確認で
きなかった。これは、融合タンパク質が菌体細胞壁内に
埋没している可能性が考えられる。従って、好ましくは
36アミノ酸残基を超えたアンカー配列が必要である。
As shown in the figure, in any of Lactococcus lactis and Lactobacillus casei, those having a large number of amino acid residues have high AP activity, that is, high expression of SAK on the cell surface. confirmed. The 36 amino acid residues are L. Control with lactis (vector, N
S), the difference from L.S. Casei could not confirm the difference. This may be due to the possibility that the fusion protein is buried in the cell wall of the bacterial cell. Therefore, an anchor sequence preferably exceeding 36 amino acid residues is required.

【0042】[0042]

【発明の効果】本発明は以上説明したとおり、ラクトコ
ッカス・ラクチス菌由来のプロテアーゼのアンカー配列
又は当該アンカー配列の部分配列を利用して、種々の任
意の有用タンパク質を菌体表面に固定化し、且つ当該有
用タンパク質を発現させるという効果がある。従って、
本発明によれば、例えば安全性が高い乳酸菌を利用し
て、種々のタンパク質を固定化することが可能となるの
で、安全性の高い経口ワクチンなどへの利用が考えられ
る。
As described above, the present invention immobilizes various useful proteins on the surface of bacterial cells by utilizing an anchor sequence of a protease derived from Lactococcus lactis or a partial sequence of the anchor sequence. In addition, there is an effect that the useful protein is expressed. Therefore,
According to the present invention, various proteins can be immobilized using, for example, highly safe lactic acid bacteria, and thus it can be used for highly safe oral vaccines and the like.

【0043】[0043]

【配列表】[Sequence list]

配列番号:1 配列の長さ:243 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:ラクトコッカス・ラクチス(Lactococcus lacti
s) 株名: NCDO763株 配列 Lys Lys Thr Ser Leu Leu Asn Gln Leu Gln Ser Val Lys Ala Ala Leu 1 5 10 15 Glu Thr Asp Leu Gly Asn Gln Thr Asp Ser Ser Thr Gly Lys Thr Phe 20 25 30 Thr Ala Ala Leu Asp Asp Leu Val Ala Gln Ala Gln Ala Gly Thr Gln 35 40 45 Thr Asp Asp Gln Leu Gln Ala Thr Leu Ala Lys Val Leu Asp Ala Val 50 55 60 Leu Ala Lys Leu Ala Glu Gly Ile Lys Ala Ala Thr Pro Ala Glu Val 65 70 75 80 Gly Asn Ala Lys Asp Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile 85 90 95 Ala Asp Thr Leu Thr Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys 100 105 110 Leu Ala His Leu Gln Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala 115 120 125 Ala Val Glu Ala Ala Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly 130 135 140 Thr Ser Asp Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly 145 150 155 160 Asp Ile Gly Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly 165 170 175 Gly Asn Ile Pro Thr Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp 180 185 190 Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu 195 200 205 Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly 210 215 220 Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln 225 230 235 240 Arg Glu Glu 243
SEQ ID NO: 1 Sequence length: 243 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Origin Organism name: Lactococcus lacti
s ) Strain name: NCDO763 strain Sequence Lys Lys Thr Ser Leu Leu Asn Gln Leu Gln Ser Val Lys Ala Ala Leu 1 5 10 15 Glu Thr Asp Leu Gly Asn Gln Thr Asp Ser Ser Thr Gly Lys Thr Phe 20 25 30 Thr Ala Ala Leu Asp Asp Leu Val Ala Gln Ala Gln Ala Gly Thr Gln 35 40 45 Thr Asp Asp Gln Leu Gln Ala Thr Leu Ala Lys Val Leu Asp Ala Val 50 55 60 Leu Ala Lys Leu Ala Glu Gly Ile Lys Ala Ala Thr Pro Ala Glu Val 65 70 75 80 Gly Asn Ala Lys Asp Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile 85 90 95 Ala Asp Thr Leu Thr Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys 100 105 110 Leu Ala His Leu Gln Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala 115 120 125 Ala Val Glu Ala Ala Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly 130 135 140 Thr Ser Asp Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly 145 150 155 160 Asp Ile Gly Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly 165 170 175 Gly Asn Ile Pro Thr Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp 180 185 190 Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu 19 5 200 205 Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly 210 215 220 Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln 225 230 235 240 Arg Glu Glu 243

【0044】配列番号:2 配列の長さ:158 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:ラクトコッカス・ラクチス(Lactococcus lacti
s) 株名: NCDO763株 配列 Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile Ala Asp Thr Leu Thr 1 5 10 15 Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys Leu Ala His Leu Gln 20 25 30 Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala 35 40 45 Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly 50 55 60 Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp 65 70 75 80 Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr 85 90 95 Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr Asp Arg 100 105 110 Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu 115 120 125 Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser 130 135 140 Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu 145 150 155 158
SEQ ID NO: 2 Sequence length: 158 Sequence type: amino acid Topology: Linear Sequence type: Peptide Origin Organism name: Lactococcus lacti
s ) Strain name: NCDO763 strain Sequence Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile Ala Asp Thr Leu Thr 1 5 10 15 Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys Leu Ala His Leu Gln 20 25 30 Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala 35 40 45 Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly 50 55 60 Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp 65 70 75 80 Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr 85 90 95 Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr Asp Arg 100 105 110 Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu 115 120 125 Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser 130 135 140 Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu 145 150 155 158

【0045】配列番号:3 配列の長さ:125 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:ラクトコッカス・ラクチス(Lactococcus lacti
s) 株名: NCDO763株 配列 Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala Lys 1 5 10 15 Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly Gly 20 25 30 Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp Lys 35 40 45 Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr Asn 50 55 60 Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr Asp Arg Asn 65 70 75 80 Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr 85 90 95 Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu 100 105 110 Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu 115 120 125
SEQ ID NO: 3 Sequence length: 125 Sequence type: amino acid Topology: linear Sequence type: peptide Origin Organism name: Lactococcus lacti
s ) Strain name: NCDO763 strain Sequence Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala Lys 1 5 10 15 Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly Gly 20 25 30 Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp Lys 35 40 45 Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr Asn 50 55 60 Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr Asp Arg Asn 65 70 75 80 Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr 85 90 95 Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu 100 105 110 Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu 115 120 125

【0046】配列番号:4 配列の長さ:96 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:ラクトコッカス・ラクチス(Lactococcus lacti
s) 株名: NCDO763株 配列 Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly 1 5 10 15 Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile 20 25 30 Pro Thr Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr 35 40 45 Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr 50 55 60 Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val 65 70 75 80 Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu 85 90 95 96
SEQ ID NO: 4 Sequence length: 96 Sequence type: amino acid Topology: linear Sequence type: peptide Origin Organism name: Lactococcus lacti
s ) Strain name: NCDO763 strain Sequence Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly 1 5 10 15 Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile 20 25 30 Pro Thr Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr 35 40 45 Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr 50 55 60 Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val 65 70 75 80 Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu 85 90 95 96

【0047】配列番号:5 配列の長さ:55 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:ラクトコッカス・ラクチス(Lactococcus lacti
s) 株名: NCDO763株 配列 Thr Ser Thr Asp Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly 1 5 10 15 Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe 20 25 30 Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu 35 40 45 Lys Arg Lys Gln Arg Glu Glu 50 55
SEQ ID NO: 5 Sequence length: 55 Sequence type: amino acid Topology: linear Sequence type: peptide Origin Organism name: Lactococcus lacti
s ) Strain name: NCDO763 strain Sequence Thr Ser Thr Asp Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly 1 5 10 15 Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe 20 25 30 Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu 35 40 45 Lys Arg Lys Gln Arg Glu Glu 50 55

【0048】配列番号:6 配列の長さ:36 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:ラクトコッカス・ラクチス(Lactococcus lacti
s) 株名: NCDO763株 配列 Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu 1 5 10 15 Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys 20 25 30 Gln Arg Glu Glu 35 36
SEQ ID NO: 6 Sequence length: 36 Sequence type: amino acid Topology: linear Sequence type: peptide Origin Organism name: Lactococcus lacti
s ) Strain name: NCDO763 strain Sequence Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu 1 5 10 15 Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys 20 25 30 Gln Arg Glu Glu 35 36

【図面の簡単な説明】[Brief description of the drawings]

【図1】プラスミドpSG−TERMの構造を模式的に
示した説明図である。
FIG. 1 is an explanatory diagram schematically showing the structure of a plasmid pSG-TERM.

【図2】SAK−アンカー配列融合タンパク質遺伝子の
構造を模式的に示す説明図である。
FIG. 2 is an explanatory view schematically showing the structure of a SAK-anchor sequence fusion protein gene.

【図3】SAK活性を測定した結果を示す線図であり、
a図は培養液画分、b図は菌体画分を示す。縦軸は吸光
度、横軸は反応時間を示す。
FIG. 3 is a diagram showing the results of measuring SAK activity,
Fig. a shows the culture solution fraction, and Fig. b shows the bacterial cell fraction. The vertical axis indicates the absorbance, and the horizontal axis indicates the reaction time.

【図4】ウェスタンブロッティングの結果を模式的に示
す説明図であり、各クローン毎の培養上清(sup) 、菌体
画分(cell)を順に示している。
FIG. 4 is an explanatory diagram schematically showing the results of Western blotting, in which a culture supernatant (sup) and a cell fraction (cell) for each clone are shown in order.

【図5】アルカリフォスファターゼ標識抗体を用いた菌
体表面のSAK(融合)タンパク質の検出結果を示す線
図であり、a図はラクトコッカス・ラクチス(Lactococc
us lactis)、b図はラクトバチルス・カゼイ(Lactobaci
llus casei) を示す。縦軸は吸光度、横軸は反応時間
(min)を示す。
FIG. 5 is a diagram showing the results of detection of SAK (fusion) protein on the surface of bacterial cells using an alkaline phosphatase-labeled antibody. FIG. 5A is a diagram showing the results of Lactococcus lactis.
us lactis ), and the figure b shows Lactobaci
llus casei ). The vertical axis indicates the absorbance, and the horizontal axis indicates the reaction time (min).

フロントページの続き (51)Int.Cl.6 識別記号 FI // C12Q 1/68 C12Q 1/68 A (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:01) (C12P 21/02 C12R 1:01) (72)発明者 門多 真理子 東京都港区東新橋1丁目1番19号 株式会 社ヤクルト本社内 (72)発明者 左古 知行 東京都港区東新橋1丁目1番19号 株式会 社ヤクルト本社内Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C12Q 1/68 C12Q 1/68 A (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:01) (C12P 21 / 72 C12R 1:01) (72) Inventor Mariko Kadota 1-1-1, Higashi-Shimbashi, Minato-ku, Tokyo Yakult Honsha (72) Inventor Tomoyuki Sako 1-1-1, Higashi-Shimbashi, Minato-ku, Tokyo No. 19 Yakult Honsha

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ラクトコッカス・ラクチス(Lactococcus
lactis) NCDO763株由来の 763プロテアーゼのアンカー
配列をコードする遺伝子配列と、目的とするタンパク質
をコードする遺伝子配列とを繋いだ融合遺伝子配列を得
る工程と、 前記融合遺伝子配列を宿主菌内に導入する工程と、 前記融合遺伝子配列が導入された宿主菌を培養して前記
目的とするタンパク質を菌体表面に固定化する工程とを
備えたことを特徴とする菌体表面へのタンパク質の固定
化方法。
1. Lactococcus lactis ( Lactococcus)
lactis ) a step of obtaining a fusion gene sequence linking the gene sequence encoding the anchor sequence of the 763 protease derived from the NCDO763 strain and the gene sequence encoding the protein of interest, and introducing the fusion gene sequence into a host bacterium. A method for immobilizing a protein on a cell surface, comprising: culturing a host cell into which the fusion gene sequence has been introduced, and immobilizing the target protein on the cell surface. .
【請求項2】 前記アンカー配列が、少なくとも下記ア
ミノ酸配列を備えていることを特徴とする請求項1に記
載の菌体表面へのタンパク質の固定化方法。 Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu
2. The method according to claim 1, wherein the anchor sequence has at least the following amino acid sequence. Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu
【請求項3】 前記アンカー配列が、請求項2に示すア
ミノ酸配列を残して下記アミノ酸配列の一部を切除した
アミノ酸配列からなることを特徴とする請求項2に記載
の菌体表面へのタンパク質の固定化方法。 Lys Lys Thr Ser Leu Leu Asn Gln Leu Gln Ser Val Lys Ala Ala Leu Glu Thr Asp Leu Gly Asn Gln Thr Asp Ser Ser Thr Gly Lys Thr Phe Thr Ala Ala Leu Asp Asp Leu Val Ala Gln Ala Gln Ala Gly Thr Gln Thr Asp Asp Gln Leu Gln Ala Thr Leu Ala Lys Val Leu Asp Ala Val Leu Ala Lys Leu Ala Glu Gly Ile Lys Ala Ala Thr Pro Ala Glu Val Gly Asn Ala Lys Asp Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile Ala Asp Thr Leu Thr Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys Leu Ala His Leu Gln Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr Asn Pro Ala Thr Thr Thr Ser Thr Ser Thr Asp Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu
3. The protein according to claim 2, wherein the anchor sequence comprises an amino acid sequence obtained by partially removing the following amino acid sequence while retaining the amino acid sequence shown in claim 2. Immobilization method. Lys Lys Thr Ser Leu Leu Asn Gln Leu Gln Ser Val Lys Ala Ala Leu Glu Thr Asp Leu Gly Asn Gln Thr Asp Ser Ser Thr Gly Lys Thr Phe Thr Ala Ala Leu Asp Asp Leu Val Ala Gln Ala Gln Ala Gly Thr Gln Thr Asp Asp Gln Leu Gln Ala Thr Leu Ala Lys Val Leu Asp Ala Val Leu Ala Lys Leu Ala Glu Gly Ile Lys Ala Ala Thr Pro Ala Glu Val Gly Asn Ala Lys Asp Ala Ala Thr Gly Lys Thr Trp Tyr Ala Asp Ile Ala Asp Thr Leu Thr Ser Gly Gln Ala Ser Ala Asp Ala Ser Asp Lys Leu Ala His Leu Gln Ala Leu Gln Ser Leu Lys Thr Lys Val Ala Ala Ala Val Glu Ala Ala Lys Thr Val Gly Lys Gly Asp Gly Thr Thr Gly Thr Ser Asp Lys Gly Gly Gly Gln Gly Thr Pro Ala Pro Thr Pro Gly Asp Ile Gly Lys Asp Lys Gly Asp Glu Gly Ser Gln Pro Ser Ser Gly Gly Asn Ile Pro Thr Asn Pro Ala Thr Thr Thr Ser Ser Serr Thr Asp Asp Thr Thr Asp Arg Asn Gly Gln Leu Thr Ser Gly Lys Gly Ala Leu Pro Lys Thr Gly Glu Thr Thr Glu Arg Pro Ala Phe Gly Phe Leu Gly Val Ile Val Val Ser Leu Met Gly Val Leu Gly Leu Lys Arg Lys Gln Arg Glu Glu
JP29927396A 1996-10-24 1996-10-24 Method for immobilizing proteins on the surface of Gram-positive bacteria Expired - Fee Related JP4049408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29927396A JP4049408B2 (en) 1996-10-24 1996-10-24 Method for immobilizing proteins on the surface of Gram-positive bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29927396A JP4049408B2 (en) 1996-10-24 1996-10-24 Method for immobilizing proteins on the surface of Gram-positive bacteria

Publications (2)

Publication Number Publication Date
JPH10117783A true JPH10117783A (en) 1998-05-12
JP4049408B2 JP4049408B2 (en) 2008-02-20

Family

ID=17870418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29927396A Expired - Fee Related JP4049408B2 (en) 1996-10-24 1996-10-24 Method for immobilizing proteins on the surface of Gram-positive bacteria

Country Status (1)

Country Link
JP (1) JP4049408B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063991A (en) * 2001-08-28 2003-03-05 Japan Science & Technology Corp Cytokine inducing agent for use in oral administration
US6896887B2 (en) 2001-06-11 2005-05-24 Applied Nanosystems B.V. Bacterial ghosts provided with antigens
JP2008174489A (en) * 2007-01-18 2008-07-31 Nitto Denko Corp New preparation containing microorganism and peptide type medicine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896887B2 (en) 2001-06-11 2005-05-24 Applied Nanosystems B.V. Bacterial ghosts provided with antigens
US7067639B2 (en) 2001-06-11 2006-06-27 Applied Nanosystems B.V. Method to provide bacterial ghosts provided with antigens
US7541039B2 (en) 2001-06-11 2009-06-02 Applied Nanosystems, B.V. Immunization with bacterial ghost-based vaccines
US7858357B2 (en) 2001-06-11 2010-12-28 Applied Nanosystems B.V. Immunization with bacterial ghost-based vaccines
JP2003063991A (en) * 2001-08-28 2003-03-05 Japan Science & Technology Corp Cytokine inducing agent for use in oral administration
JP2008174489A (en) * 2007-01-18 2008-07-31 Nitto Denko Corp New preparation containing microorganism and peptide type medicine

Also Published As

Publication number Publication date
JP4049408B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
US4977247A (en) Immobilized protein G variants and the use thereof
JP4249483B2 (en) Serpins in bifidobacteria
EP0584167B1 (en) Recombinant dna coding for signal peptide, selective interacting polypeptide and membrane anchoring sequence
US20090186380A1 (en) Method of secretory expression of lysostaphin in escherichia coli at high level
US5545548A (en) Thermally stable cytosine deaminase from saccharomyces
CA2555393A1 (en) Hybrid proteins of active-site serine beta-lactamase
JP4377242B2 (en) Protein tag comprising a biotinylated domain, method for increasing solubility and method for determining folding state
KR100518953B1 (en) Method for Whole Surrounding Surface Display of Target Proteins Using Exosporium of Bacillus cereus Group
JP2004065257A (en) Protein imparting inductive glycopeptide resistance especially to gram-positive bacteria
US4954618A (en) Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
US6274345B1 (en) Expression vectors encoding Escherichia coli OmpC as a cell surface anchoring motif
JP3920271B2 (en) Methods and compositions for identifying streptococci containing cysteine proteases or fragments thereof
EP0567503B1 (en) Pasteurella haemolytica glycoprotease gene
US5082773A (en) Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
US5312901A (en) Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
CN111153968B (en) Signal peptide mutant for improving expression quantity of exogenous alkaline protease and construction method and application thereof
JPH10117783A (en) Immobilization of protein on surface of microbial cell
EP1394176A1 (en) Novel mucin binding polypeptides derived from Lactobacillus johnsonii
CN114539393B (en) 2019-novel coronavirus N protein single domain antibody and application thereof
US5229492A (en) Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
CN108410901B (en) Double-antigen anchoring expression vector pLQ2a for non-resistance screening and preparation method thereof
CN112390862B (en) Protein for detecting bluetongue, coding gene and soluble preparation method thereof
JP3507373B2 (en) Plasmid vector
AU2002318786B2 (en) Vaccine based on a cysteine protease or fragment thereof
CN116121215A (en) Mutant of glycerophosphate oxidase and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees