JPH10116849A - Wire bonding method, assembling method using the bonding method, and assembled mcm - Google Patents

Wire bonding method, assembling method using the bonding method, and assembled mcm

Info

Publication number
JPH10116849A
JPH10116849A JP8267599A JP26759996A JPH10116849A JP H10116849 A JPH10116849 A JP H10116849A JP 8267599 A JP8267599 A JP 8267599A JP 26759996 A JP26759996 A JP 26759996A JP H10116849 A JPH10116849 A JP H10116849A
Authority
JP
Japan
Prior art keywords
bonding
substrate
semiconductor chip
wire
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8267599A
Other languages
Japanese (ja)
Inventor
Osamu Okuda
修 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8267599A priority Critical patent/JPH10116849A/en
Publication of JPH10116849A publication Critical patent/JPH10116849A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of bonding semiconductor chips (multi-layer semiconductor chips) to a substrate in which the lateral integration degree of three or more semiconductor chips are enhanced in assembling an MCM (multi-chip module). SOLUTION: When assembling an MCM by bonding semiconductor ships to a substrate by using the wedge bonding method. The forward method is at least adopted as a method of bonding the second semiconductor chip to the substrate. A wire is bonded first to the bonding pad A on the semiconductor ship and is bonded secondly to the bonding pad B on the substrate. Further, in bonding the top semiconductor chip to the substrate, it is preferable to use the reverse method (a broken line) because each distance between multi-layer semiconductor chips can be narrowed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はMCMを製造する際
に用いる多層半導体チップのボンディング方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for bonding a multi-layer semiconductor chip used in manufacturing an MCM.

【0002】[0002]

【従来の技術】リードフレームの多ピン化、TABテー
プを用いたいわゆるテープBGAの実用化等半導体装置
の高集積化が進んでいる。しかしながら、現在の電子部
品の小型化、すなわち高集積化の要求はこれら半導体装
置自体の高集積化では満足できないほど厳しくなってき
ている。このような、要求に答えるものの一つとしてマ
ルチチップモジュール(以下「MCM」と示す。)があ
る。
2. Description of the Related Art High integration of semiconductor devices is progressing, for example, by increasing the number of pins of a lead frame and by realizing a so-called tape BGA using a TAB tape. However, the demand for miniaturization, that is, high integration, of current electronic components has become so severe that these semiconductor devices themselves cannot be satisfied with high integration. One of the ones that responds to such a demand is a multi-chip module (hereinafter, referred to as “MCM”).

【0003】これは一つの基板上に必要とされる複数の
半導体装置を搭載し、回路全体を一つのパッケージとす
るものであり、そうすることにより回路全体を小さくで
きるという特徴を持つ。
In this method, a plurality of necessary semiconductor devices are mounted on one substrate, and the entire circuit is formed into one package. By doing so, the whole circuit can be reduced in size.

【0004】このMCMの例の一つに図1に示したもの
がある。図1のMCMは一つのセラミックパッケージに
二段積みしたメモリーIC1を四個所、計8個、二種類
のロジックIC2,3を各1個を搭載したものであり、
これらのチップを単に平面的に搭載していた従来の回路
より大幅に小型化されていることは明らかである。
[0004] One example of this MCM is shown in FIG. The MCM of FIG. 1 has four memory ICs 1 stacked in two layers in one ceramic package, eight in total, and one of each of two types of logic ICs 2 and 3 mounted thereon.
Obviously, these chips are significantly smaller than the conventional circuit that simply mounts these chips in a planar manner.

【0005】MCMの生命はどれだけ多くの半導体装置
を小さなパッケージに搭載できるかということであり、
図1の二段積みしたメモリーIC1にみられるように、
半導体チップの積層技術の開発も行われている。
[0005] The life of the MCM is how many semiconductor devices can be mounted in a small package.
As can be seen in the memory IC1 stacked in two stages in FIG.
Development of semiconductor chip stacking technology is also underway.

【0006】例えば、半導体チップの周辺部に電極パッ
ドが配置し、かつ用いる接着剤とその使用厚さを制限す
ることにより半導体チップの端子部と前記電極パット部
とのボンデイングに支障無くチップを多層化することも
試みられている。
For example, by arranging electrode pads on the periphery of a semiconductor chip, and by limiting the adhesive used and the thickness used, the chip can be multilayered without hindering the bonding between the terminal portion of the semiconductor chip and the electrode pad. Has also been attempted.

【0007】確かに、半導体チップを多層化することは
一定の割合で回路全体のパッケージングの小型化につな
がる。しかし、二段目以上のチップの端子と基板の電極
パットとをボンデイングする際にボンディングヘッドが
それ以前にボンディングしたワイヤと接触しないように
することが最低限必要であり、その分横方向の集積度は
妨げられることになる。
Certainly, increasing the number of layers of the semiconductor chip leads to a reduction in the packaging of the entire circuit at a certain rate. However, when bonding the terminals of the second and higher chips to the electrode pads of the substrate, it is necessary to minimize the bonding head from contacting the previously bonded wires. Degree will be hindered.

【0008】より具体的にこの点を説明すると、MCM
の組立に際しては、ワイヤボンディング技術を用いて半
導体チップと基板の間の電気的接続をおこなう。このと
き、常温でボンディングできること、半導体チップに熱
履歴を与えないため信頼性を確保できるということ、ボ
ールボンディング法に比べてワイヤ長を短くできるとい
うことからウエッジボンディング法が用いられている。
このウエッジボンディング法で用いるボンディングヘッ
ドはワイヤに超音波をかけて密着させるためのウエッジ
と、ワイヤを挟持・繰り出すためのクランパーとから構
成されている。
[0008] To explain this point more specifically, MCM
At the time of assembling, an electrical connection is made between the semiconductor chip and the substrate using a wire bonding technique. At this time, the wedge bonding method is used because bonding can be performed at room temperature, reliability can be ensured because no heat history is given to the semiconductor chip, and the wire length can be shortened as compared with the ball bonding method.
The bonding head used in the wedge bonding method includes a wedge for applying ultrasonic waves to the wire to make it adhere to the wire, and a clamper for holding and feeding the wire.

【0009】ウエッジボンディング法を用いて三層に積
層された半導体チップと基板とをワイヤーボンディング
する例を図2で説明すると、まず基板の一層目の半導体
チップ(Chip1)用のボンディングパッドAにファ
ースト・ボンディングし、次いで、Chip1上のボン
ディングパッドにセカンド・ボンディングする。こうし
てChip1と基板との電気的接続を形成する。このボ
ンディング方法をリバース法と称しているが、リバース
法でボンディングした場合、ワイヤのループ形状は、基
板側のパッドからほぼ垂直に立ち上がり、いわゆる肩を
張った状態でChip1上のボンディングパットに至っ
ている。
An example of wire bonding a semiconductor chip and a substrate stacked in three layers using a wedge bonding method will be described with reference to FIG. 2. First, a bonding pad A for a first semiconductor chip (Chip 1) on the substrate is firstly provided. Bonding and then second bonding to the bonding pad on Chip1. Thus, an electrical connection between the Chip 1 and the substrate is formed. Although this bonding method is called a reverse method, when bonding is performed by the reverse method, the loop shape of the wire rises almost vertically from the pad on the substrate side, and reaches the bonding pad on Chip 1 in a so-called shouldered state. .

【0010】次に基板上の二層目の半導体チップ(Ch
ip2)用のボンディングパッドBにファースト・ボン
ディングし、次いで、Chip2上のボンディングパッ
ドにセカンド・ボンディングする。こうしてChip2
と基板との電気的接続を形成する。
Next, a second-layer semiconductor chip (Ch) on the substrate
First bonding is performed to the bonding pad B for ip2), and then second bonding is performed to the bonding pad on Chip2. Thus Chip2
To form an electrical connection between the substrate and the substrate.

【0011】次に、基板上の三層目の半導体チップ(C
hip3)用のボンディングパッドCにファースト・ボ
ンディングし、破線に従ってボンディングヘッドが移動
してChip3上のボンディングパッドにセカンド・ボ
ンディングする。この際、ボンディングヘッドがChi
p1と基板、Chip2と基板とを接続しているボンデ
ィングワイヤーを損傷しないようにするために、ボンデ
ィングパッドA、B、Cはそれぞれ最小限ボンディング
ヘッドの動きに障害とならない距離だけ離さなければな
らない。
Next, a third-layer semiconductor chip (C
The first bonding is performed to the bonding pad C for the chip 3), and the bonding head moves according to the broken line to perform the second bonding to the bonding pad on the chip 3. At this time, the bonding head is
In order not to damage the bonding wires connecting p1 to the substrate and Chip2 to the substrate, the bonding pads A, B, and C must be separated by at least a distance that does not hinder the movement of the bonding head.

【0012】[0012]

【発明が解決しようとする課題】本発明は上記状況に鑑
みてなされたものであり、MCMに組立などにおいて三
層以上積層された半導体チップ(多層半導体チップ)の
横方向の集積度を高めうる多層半導体チップと基板との
ボンデイング方法の提供を課題とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can increase the degree of lateral integration of three or more stacked semiconductor chips (multilayer semiconductor chips) in an MCM or the like. It is an object of the present invention to provide a method for bonding a multilayer semiconductor chip and a substrate.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、ウエッジボンディング法を用いて多層半導
体チップと基板とをボンディングするに際し、少なくと
も第二層の半導体チップと基板とをボンディングする方
法としてフォワード法、すなわち半導体チップ上のボン
ディングパッドにワイヤをファースト・ボンディング
し、基板上のボンディングパッドにセカンド・ボンディ
ングする方法を採用するものである。
According to a method of the present invention for solving the above-mentioned problems, in bonding a multilayer semiconductor chip and a substrate using a wedge bonding method, at least a semiconductor chip of a second layer and a substrate are bonded. As a method, a forward method, that is, a method in which a wire is first bonded to a bonding pad on a semiconductor chip and a second bonding is performed to a bonding pad on a substrate is employed.

【0014】なお、最上層の半導体チップと基板とをボ
ンディングする際にはリバース法とすると多層半導体チ
ップ相互の間隔を狭められるので好ましい。
When bonding the uppermost semiconductor chip and the substrate, a reverse method is preferable because the distance between the multilayer semiconductor chips can be reduced.

【0015】[0015]

【発明の実施の形態】本発明の方法で、多層半導体の第
一層と基板とのボンディングを行うに際しては、リバー
ス法を用いてもフォワード法を用いてもよい。しかし、
通常は第一層の半導体チップ上部のボンディングパッド
と基板との高低差があまりなく、フォワード法でボンデ
ィングした場合に半導体チップ上面のボンディングパッ
ド近傍のワイヤが大きく下方に曲がり、ワイヤが損傷を
受けやすい。よって、このような場合にはリバース法を
採用し、第一層の半導体チップの高さが十分であり、こ
のような危険性がない場合にはフォワード法を採用すれ
ばよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In bonding a first layer of a multilayer semiconductor to a substrate by the method of the present invention, a reverse method or a forward method may be used. But,
Normally, there is not much difference between the height of the bonding pad on the upper part of the semiconductor chip of the first layer and the substrate, and when the bonding is performed by the forward method, the wire near the bonding pad on the upper surface of the semiconductor chip is largely bent downward and the wire is easily damaged. . Therefore, in such a case, the reverse method is employed, and when the height of the first layer semiconductor chip is sufficient, and there is no such danger, the forward method may be employed.

【0016】第二層の半導体チップと基板とボンディン
グするにフォワード法を用いるのは、ボンディングされ
たワイヤのループ形状を図3に示したように弧状とする
ためである。この際、第1層の半導体チップと基板とを
ボンディングしたワイヤーは、そのループ形状に関わら
ず障害とはならない。すなわち、ボンディングヘッドを
構成するウエッジと、ワイヤを挟持・繰り出すためのク
ランパーとの位置関係より、通常ウエッジ下端とクラン
パー下端との高低差より第1層の半導体チップの高さが
小さいからである。
The reason why the forward method is used for bonding the semiconductor chip of the second layer and the substrate is to make the loop shape of the bonded wire into an arc shape as shown in FIG. At this time, the wire bonding the semiconductor chip of the first layer and the substrate does not become an obstacle regardless of the loop shape. That is, the height of the semiconductor chip of the first layer is smaller than the height difference between the lower end of the wedge and the lower end of the clamper due to the positional relationship between the wedge forming the bonding head and the clamper for holding and feeding the wire.

【0017】また、このときボンディングヘッドのクラ
ンパーは半導体チップとウエッジをはさんで反対の位置
となるため、半導体チップと対応する基板上のボンディ
ングパッドとの距離を近づけても半導体チップがボンデ
ィングヘッドにより破壊されるおそれはない。
At this time, since the clamper of the bonding head is at the opposite position across the semiconductor chip and the wedge, even if the distance between the semiconductor chip and the corresponding bonding pad on the substrate is reduced, the semiconductor chip is moved by the bonding head. There is no danger of being destroyed.

【0018】第二層の半導体チップと基板とボンデイン
グするワイヤの形状が弧状であれば、第三層の半導体チ
ップと基板とを結合する際に、図3の破線で示されたよ
うにリバース法を用いてボンディングしてもクランパー
がワイヤーに当たることなく対応する基板上のボンディ
ングパッドの位置を半導体チップ側に寄せることが可能
となる。
If the shape of the wire bonding to the second layer semiconductor chip and the substrate is arcuate, when the third layer semiconductor chip and the substrate are joined together, as shown by a broken line in FIG. It is possible to bring the position of the bonding pad on the corresponding substrate closer to the semiconductor chip side without the clamper hitting the wire even when bonding is performed using.

【0019】むろん、第三層の半導体チップと基板とを
フォワード法によりボンデイングしても支障はない。し
かし、半導体チップの積層数が多くなり基板と半導体チ
ップとの上面との差が大きくなりすぎると、フォワード
法でボンディングした場合、前記と同様に半導体チップ
上面のボンディングパッド近傍のワイヤが大きく下方に
曲がり、ワイヤが損傷を受けやすい。よって、このよう
な場合にはリバース法を採用することが好ましい。
Of course, there is no problem even if the third layer semiconductor chip and the substrate are bonded by the forward method. However, when the number of stacked semiconductor chips increases and the difference between the upper surface of the substrate and the upper surface of the semiconductor chip becomes too large, when bonding is performed by the forward method, the wires near the bonding pads on the upper surface of the semiconductor chip are greatly lowered as described above. Bends and wires are susceptible to damage. Therefore, in such a case, it is preferable to employ the reverse method.

【0020】[0020]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0021】本実施例、従来例、比較例では、チップを
2段積み重ね、そのうちの一つが不良の場合に3段目に
追加のチップを載せてワイヤボンディングを行うことを
想定し、ボンディング試験を行った。
In the present embodiment, the conventional example, and the comparative example, it is assumed that two chips are stacked, and if one of them is defective, an additional chip is mounted on the third stage to perform wire bonding. went.

【0022】なお、本例では、基板上の一段目の半導体
チップ用のボンディングパッドをA、二段目の半導体チ
ップ用パッドをB、三段目の半導体チップ用パッドを
C、この予備としてのパッドをDと呼ぶ。用いた半導体
チップのサイズは、幅7mm×長さ15mm×厚さ0.
45mmであり、ワイヤは直径25ミクロンのアルミワ
イヤである。また、半導体チップを搭載する基板として
はシリコン基板上に電源、グランド層と2層の配線層を
形成したものを用いた。
In this example, the bonding pad for the first-stage semiconductor chip on the substrate is A, the pad for the second-stage semiconductor chip is B, the pad for the third-stage semiconductor chip is C, and a spare for this is provided. The pad is called D. The size of the semiconductor chip used was 7 mm in width × 15 mm in length × 0.1 mm in thickness.
45 mm and the wire is an aluminum wire with a diameter of 25 microns. Further, as a substrate on which a semiconductor chip is mounted, a substrate in which a power supply, a ground layer, and two wiring layers are formed on a silicon substrate was used.

【0023】また、ワイヤボンディング装置としてはド
イツのデルボテック社製のロータリーヘッド式ウエッジ
ボンダーを用いた。
As a wire bonding apparatus, a rotary head wedge bonder manufactured by Delbotech, Germany was used.

【0024】(実施例1)まず、図4に示したようにボ
ンディングパッドAとBとの間隔bを30ミクロン、ボ
ンディングパッドBとCとの間隔cを30ミクロン、C
とDとの間隔dを30ミクロンとして、一段目の半導体
チップのパッドと基板のパッドAとをリバース法でボン
ディングした。引き続き、二段目の半導体チップを積層
し、この半導体チップのパッドと基板のパッドBとをフ
ォワード法でボンディングした。
(Embodiment 1) First, as shown in FIG. 4, the distance b between the bonding pads A and B is 30 microns, the distance c between the bonding pads B and C is 30 microns, and C
The pad d of the first-stage semiconductor chip and the pad A of the substrate were bonded by a reverse method with the distance d between D and D being 30 microns. Subsequently, a second-stage semiconductor chip was stacked, and a pad of this semiconductor chip and a pad B of the substrate were bonded by a forward method.

【0025】次に、本実施例の想定に基づき三段目の半
導体チップを積層し、三段目の半導体チップのパッドと
基板のパッドCおよびDとをリバース法でワイヤボンデ
ィングした。
Next, based on the assumption of the present embodiment, the third-stage semiconductor chips were stacked, and the pads of the third-stage semiconductor chips and the pads C and D of the substrate were wire-bonded by a reverse method.

【0026】以上の工程で、ボンディングに際してボン
ディングヘッドが他のワイヤや半導体チップにぶつかる
ことなくワイヤボンディングができた。
Through the above steps, wire bonding was performed without causing the bonding head to hit another wire or semiconductor chip during bonding.

【0027】なお、間隔aは半導体チップ搭載時の樹脂
の流れだしを考慮して決められ、概ね550ミクロン程
度とられることが多い。
The distance a is determined in consideration of the flow of the resin when the semiconductor chip is mounted, and is generally set to about 550 microns.

【0028】(実施例2)間隔b,c,dをパッド間で
電気的接触(短絡)を起こさない最小のパッド間隔であ
る5ミクロンとして、実施例1と同様にして半導体チッ
プのパッドと基板のパッドとをワイヤボンディングし
た。
(Embodiment 2) The gaps b, c, and d are set to 5 μm, which is the minimum pad gap that does not cause electrical contact (short circuit) between the pads. Was wire-bonded to the pad.

【0029】実施例1と同様に、ワイヤボンディング中
にボンディングヘッドが他のワイヤや半導体チップにぶ
つかることはなかった。
As in the first embodiment, the bonding head did not hit other wires or semiconductor chips during wire bonding.

【0030】(実施例3)DをCの外側、すなわち半導
体チップに対して遠い側に設ける従来のパッド配置ルー
ルを変更し、DをBとCの間に配置した以外は実施例1
と同様にしてボンディングを行った。
(Example 3) Example 1 is different from the conventional pad arrangement rule in which D is provided outside C, that is, on the side farther from the semiconductor chip, and D is arranged between B and C.
Bonding was performed in the same manner as described above.

【0031】本例でも実施例1と同様にボンディングヘ
ッドがチップやワイヤとぶつかることなくワイヤボンデ
ィング可能であった。この結果より、パッド配置エリア
をさらに縮小できることがわかった。
In this embodiment, as in the first embodiment, the bonding head can perform wire bonding without hitting a chip or a wire. From this result, it was found that the pad arrangement area could be further reduced.

【0032】(比較例1、実施例4〜7)従来のチップ
配置ルールでは、一つのチップ(の山)とその隣のチッ
プ(の山)の間隔を、各々の一番外側のパッド(D−
D’)の距離が最小900ミクロンになるように、チッ
プを配置していた.本実施例では、DあるいはD’のパ
ッドにワイヤボンディングをする場合には、リバース法
で行うため、ボンディングヘッドのクランパーが隣のチ
ップ用ワイヤと反対方向に位置する。よって、この方法
を採用した場合にボンディングヘッドがワイヤやチップ
にぶつからずにワイヤボンディングできる最小のパッド
間隔は900ミクロンより小さくできることになる。そ
こで、D−D’を150(比較例1)、190(実施例
4)、230(実施例5)、270(実施例6)、35
0(実施例7)ミクロンとし、支障無くワイヤボンデイ
ングできる距離を求めた。その結果、D−D’間は19
0ミクロンまで狭められることが分かった. (従来例)従来通り、bを178ミクロン、cを97ミ
クロン、dを96ミクロンとしてすべてのワイヤボンデ
ィングをリバース法で行った。
(Comparative Example 1, Examples 4 to 7) According to the conventional chip arrangement rules, the distance between one chip (a peak) and the adjacent chip (a peak) is determined by setting the outermost pad (D −
The chips were arranged such that the distance of D ') was at least 900 microns. In the present embodiment, when wire bonding is performed on the pad of D or D ', since the reverse method is used, the clamper of the bonding head is located in the direction opposite to the adjacent chip wire. Therefore, when this method is adopted, the minimum pad spacing at which the bonding head can perform wire bonding without hitting a wire or chip can be made smaller than 900 microns. Therefore, DD ′ is set to 150 (Comparative Example 1), 190 (Example 4), 230 (Example 5), 270 (Example 6), and 35.
The distance was set to 0 (Example 7) microns, and the distance at which wire bonding could be performed without any problem was determined. As a result, between DD ′ is 19
It was found that it could be reduced to 0 microns. (Conventional example) As in the conventional case, b was set to 178 microns, c was set to 97 microns, and d was set to 96 microns, and all wire bonding was performed by the reverse method.

【0033】ワイヤボンディング中特に支障はなかっ
た。
There was no particular problem during wire bonding.

【0034】(比較例2)bを160ミクロンとし、一
段目の半導体チップのボンディングパッドと基板のA、
二段目の半導体チップのボンディングパッドと基板のB
とを、共にリバース法でワイヤボンディングした。
(Comparative Example 2) b was set to 160 μm, and the bonding pads of the first-stage semiconductor chip and A,
Second stage semiconductor chip bonding pad and substrate B
And were both wire-bonded by the reverse method.

【0035】二段目の半導体チップのワイヤボンディン
グ時に、ボンディングヘッドが二段目の半導体チップに
ぶつかり、チップが損傷を受けた。
At the time of wire bonding of the second-stage semiconductor chip, the bonding head hit the second-stage semiconductor chip, and the chip was damaged.

【0036】(比較例3)cを80ミクロンとして、二
段目の半導体チップのボンディングパッドと基板のB、
三段目の半導体チップのボンディングパッドと基板のC
とを、共にリバース法でワイヤボンディングした。
(Comparative Example 3) When c was set to 80 μm, the bonding pads of the second-stage semiconductor chip and the B,
Third stage semiconductor chip bonding pad and substrate C
And were both wire-bonded by the reverse method.

【0037】三段目のワイヤボンディング時に、二段目
のワイヤとボンディングヘッドがぶつかり、二段目のワ
イヤが変形した.以上のことから本発明の方法を用いれ
ば容易にMCM組立時に横方向の集積度を高くすること
が可能である。
During the third-stage wire bonding, the second-stage wire and the bonding head collided, and the second-stage wire was deformed. From the above, by using the method of the present invention, it is possible to easily increase the degree of integration in the lateral direction during MCM assembly.

【0038】[0038]

【発明の効果】本発明の方法によれば、ボンディングヘ
ッドのクランパーがワイヤに当たったり、半導体チップ
に当たらないような配置でワイヤボンディングできるた
め、基板上に設けるボンディングパッド間の間隔を詰め
て配置できる。その結果、チップ同士の間隔を詰めて配
置できる、すなわち、基板の面積を小さくできるので基
板のコストを低減できることになる。例えば、1ウエフ
ァー当たり4枚しかとれなかった基板が、6枚あるいは
それ以上の枚数をとることができるようになる。この
時、基板1枚当たりの単価は、ウエファー単価/4から
ウエファー単価/6となり、2/3に安くできる。
According to the method of the present invention, wire bonding can be performed so that the clamper of the bonding head does not hit the wire or the semiconductor chip. Therefore, the spacing between the bonding pads provided on the substrate is reduced. it can. As a result, the chips can be arranged with a reduced spacing, that is, the area of the substrate can be reduced, so that the cost of the substrate can be reduced. For example, instead of taking only four substrates per wafer, six or more substrates can be taken. At this time, the unit cost per substrate is reduced from wafer unit price / 4 to wafer unit price / 6, which can be reduced to 2/3.

【0039】本発明の方法をMCMの組立に用いればM
CMの製造コストを大幅に低減可能となる。
If the method of the present invention is used for assembling an MCM,
The production cost of CM can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるMCMを例示した図である。FIG. 1 is a diagram illustrating an MCM according to the present invention.

【図2】ウエッジボンディング法を用いて三層に積層さ
れた半導体チップと基板とをワイヤーボンディングする
例を説明する図である。
FIG. 2 is a diagram illustrating an example in which a semiconductor chip and a substrate stacked in three layers are wire-bonded using a wedge bonding method.

【図3】第二層の半導体チップと基板とボンディングす
るにフォワード法を用いた場合のワイヤのループ形状を
示した図である。
FIG. 3 is a diagram showing a loop shape of a wire when a forward method is used for bonding a semiconductor chip of a second layer and a substrate.

【図4】本実施例、従来例、比較例で用いた基板上のボ
ンディングパッドの配置状態を例示した図である。
FIG. 4 is a diagram exemplifying an arrangement state of bonding pads on a substrate used in a present example, a conventional example, and a comparative example.

【符号の説明】[Explanation of symbols]

1−−−メモリーIC 2−−−ロジックIC 3−−−ロジックIC 1 ---- Memory IC 2--Logic IC 3--Logic IC

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ウエッジボンディング法を用いて多層
半導体チップと基板とをボンディングするに際し、少な
くとも第二層の半導体チップと基板とをボンディングす
る方法としてフォワード法、すなわち半導体チップ上の
ボンディングパッドにワイヤをファースト・ボンディン
グし、基板上のボンディングパッドにセカンド・ボンデ
ィングする方法を採用することを特徴とする多層半導体
チップのワイヤーボンディング法。
When bonding a multilayer semiconductor chip and a substrate using a wedge bonding method, at least a forward method, that is, a method of bonding a wire to a bonding pad on a semiconductor chip, is used as a method of bonding at least a second layer semiconductor chip and a substrate. A wire bonding method for a multi-layer semiconductor chip, which employs a method of performing first bonding and second bonding to bonding pads on a substrate.
【請求項2】 最上層の半導体チップと基板とをボン
ディングする際にはリバース法とする請求項1記載のワ
イヤボンディング方法。
2. The wire bonding method according to claim 1, wherein a reverse method is used for bonding the uppermost semiconductor chip and the substrate.
【請求項3】 請求項1または2記載の方法を用いた
ことを特徴とするMCMの組立方法。
3. A method for assembling an MCM, comprising using the method according to claim 1.
【請求項4】 請求項3記載の方法を用いて組み立て
られたMCM。
4. An MCM assembled using the method of claim 3.
JP8267599A 1996-10-08 1996-10-08 Wire bonding method, assembling method using the bonding method, and assembled mcm Pending JPH10116849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267599A JPH10116849A (en) 1996-10-08 1996-10-08 Wire bonding method, assembling method using the bonding method, and assembled mcm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267599A JPH10116849A (en) 1996-10-08 1996-10-08 Wire bonding method, assembling method using the bonding method, and assembled mcm

Publications (1)

Publication Number Publication Date
JPH10116849A true JPH10116849A (en) 1998-05-06

Family

ID=17446980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267599A Pending JPH10116849A (en) 1996-10-08 1996-10-08 Wire bonding method, assembling method using the bonding method, and assembled mcm

Country Status (1)

Country Link
JP (1) JPH10116849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977439B2 (en) 2002-03-21 2005-12-20 Samsung Electronics Co., Ltd. Semiconductor chip stack structure
US7276437B2 (en) 1999-02-17 2007-10-02 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276437B2 (en) 1999-02-17 2007-10-02 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US7528011B2 (en) 1999-02-17 2009-05-05 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US6977439B2 (en) 2002-03-21 2005-12-20 Samsung Electronics Co., Ltd. Semiconductor chip stack structure

Similar Documents

Publication Publication Date Title
US7999378B2 (en) Semiconductor devices including semiconductor dice in laterally offset stacked arrangement
US8987053B2 (en) Semiconductor package including flip chip controller at bottom of die stack
JP3916854B2 (en) Wiring board, semiconductor device, and package stack semiconductor device
US6441476B1 (en) Flexible tape carrier with external terminals formed on interposers
JP4615189B2 (en) Semiconductor device and interposer chip
EP0680086B1 (en) Semiconductor device and method of producing said semiconductor device
US7879655B2 (en) Semiconductor device and a manufacturing method of the same
JPH0661406A (en) Semiconductor device, its manufacture, and tape carrier
JP2002222889A (en) Semiconductor device and method of manufacturing the same
JP2003179099A (en) Semiconductor device and method of manufacturing the same
US7396763B2 (en) Semiconductor package using flexible film and method of manufacturing the same
US8558393B2 (en) Semiconductor device
JP2800967B2 (en) Manufacturing method of stacked semiconductor device and semiconductor package thereby
JPH10116849A (en) Wire bonding method, assembling method using the bonding method, and assembled mcm
KR0163863B1 (en) Semiconductor package for multi chip mounting
JP2005150771A (en) Wiring board, semiconductor device, and package stacks semiconductor device
KR101141707B1 (en) Semiconductor package and method of manufacturing the same
JP2001085604A (en) Semiconductor device
JP2003133516A (en) Laminated semiconductor device
KR200225040Y1 (en) Stacked Semiconductor Packages
JPH0547999A (en) Semiconductor device and manufacture thereof
JPH06260530A (en) Semiconductor integrated circuit
JP2003332374A (en) Semiconductor device and its manufacturing method