JPH10116640A - Connection structure for circuit - Google Patents

Connection structure for circuit

Info

Publication number
JPH10116640A
JPH10116640A JP13306097A JP13306097A JPH10116640A JP H10116640 A JPH10116640 A JP H10116640A JP 13306097 A JP13306097 A JP 13306097A JP 13306097 A JP13306097 A JP 13306097A JP H10116640 A JPH10116640 A JP H10116640A
Authority
JP
Japan
Prior art keywords
particles
circuit
connection
metal
connection structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13306097A
Other languages
Japanese (ja)
Other versions
JP3026432B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Yutaka Yamaguchi
豊 山口
Atsuo Nakajima
敦夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9133060A priority Critical patent/JP3026432B2/en
Publication of JPH10116640A publication Critical patent/JPH10116640A/en
Application granted granted Critical
Publication of JP3026432B2 publication Critical patent/JP3026432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure excellent in initial and long period connection reliability for various material circuits including a circuit having a surface contamination layer. SOLUTION: A circuit connection structure is formed by electrically connecting confronting-formed connection circuits via conductive particles mixed in insulating adhesive 5. In the connection structure, the conductive particles are made of mixture of particles which are formed by substantially coating high molecular core material surfaces with metal thin layers 2 and metal particles 4 which have higher rigidity than that of the high molecular core material 1, and coated particles 3 and the main metal component of the metal particles 4 are put in connection by connection members made of at least one kind or more of common materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は集積回路、液晶表示
パネルあるいはEL表示パネル等の接続用回路と、必要
とする他の電気部材との接続端子の接続構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection circuit for connecting circuits such as an integrated circuit, a liquid crystal display panel or an EL display panel, and connection terminals to other necessary electric members.

【0002】[0002]

【従来の技術】電子部品の小形薄形化に伴ない、これら
に用いる回路は高密度、高精細化している。これら微細
回路の接続は従来の半田やゴムコネクターなどでは対応
が困難であることから、最近では異方導電性の接着剤や
膜状物(以下接続部材という)が多用されるようになっ
てきた。この方法は、相対峙する回路間に導電性粒子を
所定量含有した接着剤よりなる接続部材層を設け、加圧
もしくは加熱加圧手段を構じることによって、回路間の
電気的接続と同時に隣接回路問には絶縁性を付与し、相
対峙する回路を接着固定するものである。しかしながら
この方法においては、回路間の導通は主として複数個の
導電材料、多くの場合には金属粒子の接触によって得ら
れるものであり、金属粒子が剛直であるために粒子/回
路間あるいは粒子/粒子間の接触面積が充分でない。さ
らに金属粒子の熱膨張率は接着剤に比べて一般的に1桁
程度小さいために、たとえば高温時においては金属粒子
の膨張量は接着剤に比べて少なく接続回路の間隙の変化
に対して追随(以下温度変化に対する追随性という)で
きないので、回路への金属粒子の接触面積や接触点数が
減少し接続抵抗の増加や導通不良を生じる。すなわち導
電性粒子を金属粒子とした場合、初期の接続性が得られ
たとしても温度変化を含む長期信頼性に劣る欠点を有し
ていた。
2. Description of the Related Art As electronic components have become smaller and thinner, circuits used in them have become higher in density and higher in definition. Since connection of these fine circuits is difficult to handle with conventional solder or rubber connectors, recently, anisotropic conductive adhesives and film-like materials (hereinafter referred to as connection members) have been frequently used. . In this method, a connection member layer made of an adhesive containing a predetermined amount of conductive particles is provided between opposing circuits, and a pressurizing or heating pressurizing means is provided, so that electrical connection between the circuits can be performed simultaneously. An insulating property is given to the adjacent circuit, and the opposing circuits are bonded and fixed. However, in this method, the continuity between the circuits is mainly obtained by contact of a plurality of conductive materials, often metal particles. The contact area between them is not enough. Further, since the coefficient of thermal expansion of the metal particles is generally about one order of magnitude smaller than that of the adhesive, for example, at a high temperature, the amount of expansion of the metal particles is smaller than that of the adhesive, and follows the change in the gap of the connection circuit. (Hereinafter referred to as followability with respect to temperature change), the contact area and the number of contact points of the metal particles with the circuit are reduced, resulting in an increase in connection resistance and poor conduction. That is, when metal particles are used as the conductive particles, even if the initial connectivity is obtained, there is a defect that the long-term reliability including the temperature change is inferior.

【0003】本発明者らは先に上記金属粒子を用いた場
合の欠点を解消し信頼性を著しく向上する方法として、
高分子核体の表面が金属薄層により実質的に被覆されて
なる導電性粒子(以下被覆粒子という)を用いる方法を
提案(特開昭62−188184号)した。この方法に
よれば、導電性粒子は回路接続時の加圧あるいは加熱加
圧により回路面あるいは導電性粒子相互間て押しつける
ように適度に変形するため充分な接触面積が得られるこ
とや、高分子核材は剛性や熱膨張収縮特性が金属粒子に
比べて接着剤の性質に極めて近いこと等から温度変化に
対する追随性を有するので接続信頼性を著しく向上する
ことができる。
The inventors of the present invention have previously proposed a method for solving the drawbacks when using the above-mentioned metal particles and remarkably improving the reliability.
A method using conductive particles (hereinafter referred to as coated particles) in which the surface of a polymer nucleus is substantially covered with a thin metal layer has been proposed (Japanese Patent Application Laid-Open No. Sho 62-188184). According to this method, a sufficient contact area can be obtained because the conductive particles are appropriately deformed so as to be pressed between circuit surfaces or between the conductive particles by pressurization or heating and pressurization at the time of circuit connection. Since the core material has a rigidity and a thermal expansion / shrinkage characteristic very close to those of the adhesive compared to the metal particles, the core material has a follow-up property to a temperature change, so that the connection reliability can be remarkably improved.

【0004】[0004]

【発明が解決しようとする課題】上記発明は、多くの回
路に対して優れた接続信頼性を示すが、回路の表面がC
r,Alおよび半田などの場合に接続低抗、特にその初
期低抗が高く接続部の信頼性性が不足する場合のあるこ
とが最近わかってきた。上記問題点について検討したと
ころ、これらの回路表面は水分等の吸着層や酸化層など
の汚染層を形成し易く、被覆粒子では接続時に高分子核
体が軟化変形するために、回路表面の汚染層を突き破る
ことができず純金属との接触が充分に得られないことが
原因であることがわかった。ほとんどの金属では、空気
中ては数オングストローム〜数百オングストロームの表
面酸化層が存在することが知られており、一般的に酸化
層は純金属に比べて導電性が低下したり、あるいは絶縁
性を示すようになる。本発明は汚染層とくに表面が酸化
し易い回路に対しても、優れた接続信頼性を有する回路
の接続構造を提供するものである。
The above-mentioned invention shows excellent connection reliability for many circuits, but the circuit surface has C
It has recently been found that in the case of r, Al, solder and the like, the connection resistance, especially the initial resistance, is high and the reliability of the connection part may be insufficient. After examining the above problems, these circuit surfaces are liable to form a contaminant layer such as an adsorption layer for water and the like and an oxidized layer. It was found that the cause was that the layer could not be penetrated and sufficient contact with the pure metal could not be obtained. It is known that most metals have a surface oxide layer of several Angstroms to several hundred Angstroms in air, and the oxide layer generally has lower conductivity or insulating properties than pure metal. Will be shown. The present invention provides a circuit connection structure having excellent connection reliability even for a contaminant layer, particularly a circuit whose surface is easily oxidized.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、相対
峙して形成された接続用回路が、絶縁性接着剤に配合さ
れた導電性粒子を介して電気的に接続された回路の接続
構造において、前記導電性粒子が高分子核材の表面を金
属薄層により実質的に被覆した粒子と前記高分子核材よ
り高い剛性を有する金属粒子との混合物からなり、前記
被覆粒子と金属粒子の主要金属成分がなくとも1種以上
の共通材料からなる接続部材により接続したことを特徴
とする回路の接続構造に関する。
That is, the present invention provides a connection structure of a circuit in which connection circuits formed facing each other are electrically connected via conductive particles mixed in an insulating adhesive. In, the conductive particles comprise a mixture of particles substantially covering the surface of the polymer nucleus material with a thin metal layer and metal particles having higher rigidity than the polymer nucleus material, the coated particles and the metal particles The present invention relates to a circuit connection structure characterized by being connected by a connection member made of at least one kind of common material without a main metal component.

【0006】[0006]

【発明の実施の形態】以下本発明を実施例を示した図面
を参照しながら説明する。図1の(a)〜(d)は本発
明にかかる接続部材の断面模式図である。接続部材は高
分子核材1の表面が金属薄層2により実質的に被覆して
なる被覆粒子3と、金属粒子4を絶縁性着剤5中に複合
して所定量分散したものであり、これらよりなる接続部
材を必要に応じて剥離可能なセパレータ6上に構成した
ものである。この時、基本的には被覆粒子3と金属粒子
4はいずれもが単独あるいは複合(凝集)して回路間を
接続するものとする。具体的にはその粒径が図1(a)
の如く被覆粒立子3>金属粒子4でも、また図1(b)
のように両者の粒径がほぼ同等の場合でも、金属粒子4
は回路面への食い込み分があるので被覆粒子3は接続時
に変形性を有することから可能てある。さらに図1
(c)のように被覆粒子3<金属粒子4の場合は、被覆
粒子3が凝集して存在しその凝集径が金属粒子4の粒子
径以上であれば適用できる。被覆粒子3およぴ金属粒子
4は独立状でも、図1(d)のように双方が凝集して存
在したり、これらが混在してもよい。また被覆粒子3と
金属粒子4とは、接着剤の薄層や吸着剤等により強制的
に相互を付着した状態がさらに好ましい。信頼性向上の
点から最適な状態は図1(a)および図1(d)であ
る。これらの導電性粒子の粒子径は、接続すべき回路の
絶縁巾(スペース)よりも小さくすることが隣接回路と
の絶縁性を保持することから必要である。また、以上の
導電性粒子の粒径よりも小さな絶縁性粒子の添加も、隣
接回路との絶縁性を保持することから好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing embodiments. 1A to 1D are schematic cross-sectional views of a connecting member according to the present invention. The connecting member is a composite particle 3 in which the surface of a polymer core material 1 is substantially covered with a thin metal layer 2 and a metal particle 4 are compounded in an insulating adhesive 5 and dispersed in a predetermined amount. The connecting member made of these is formed on a separator 6 that can be peeled off as necessary. At this time, basically, both the coating particles 3 and the metal particles 4 are singly or combined (aggregated) to connect the circuits. Specifically, the particle size is as shown in FIG.
As shown in FIG.
As shown in FIG.
This is possible because the coated particles 3 have a deformability at the time of connection because there is a bite into the circuit surface. Further FIG.
In the case where the coated particles 3 <the metal particles 4 as shown in (c), the present invention can be applied as long as the coated particles 3 are present in an aggregated state and the aggregate diameter is equal to or larger than the particle diameter of the metal particles 4. The coating particles 3 and the metal particles 4 may be independent, or both may be agglomerated as shown in FIG. It is more preferable that the coating particles 3 and the metal particles 4 are forcibly attached to each other by a thin layer of an adhesive or an adsorbent. FIGS. 1A and 1D show the optimum state from the viewpoint of improving the reliability. It is necessary that the particle diameter of these conductive particles be smaller than the insulation width (space) of the circuit to be connected in order to maintain the insulation with the adjacent circuit. Further, addition of insulating particles smaller than the above-described particle size of the conductive particles is also preferable because the insulating property with the adjacent circuit is maintained.

【0007】被覆粒子3と金属粒子4との総量すなわち
導電性粒子の添加量は絶縁性接着剤5の固形分に対して
0.1〜15体積%好ましくは0.5〜10体積%であ
り、被覆粒子3と金属粒子4の総量に対する被覆粒子3
の占める量は体積で5〜95%好ましくは25〜95%
である。導電性粒子の含有量が0.1体積%以下では満
足する導電性が得られず、15体積%以上では面方向に
おいて粒子が連結する機会が増すことから、隣接回路と
の絶縁性が低下するので好ましくない。金属粒子の添加
量は本発明を構成する上で重要なことであるが、比較的
広い範囲でその効果の発現が可能である。本発明にかか
る構成材料について以下説明する。被覆粒子3は高分子
核材1の表面が金属薄層2により実質的に被覆されてな
る、粒子径が1〜50μmの粒子をその基本とする。高
分子核材1は完全な充実体、内部に気泡を有する発泡
体、内部が気体からなる中空体、小粒子の集まりにより
核材を形成する凝集体などのいずれでもよく、これらを
単独もしくは複合して用いることができる。
The total amount of the coating particles 3 and the metal particles 4, that is, the amount of the conductive particles added is 0.1 to 15% by volume, preferably 0.5 to 10% by volume, based on the solid content of the insulating adhesive 5. , Coated particles 3 based on the total amount of coated particles 3 and metal particles 4
Accounts for 5 to 95%, preferably 25 to 95% by volume
It is. When the content of the conductive particles is 0.1% by volume or less, satisfactory conductivity cannot be obtained, and when the content is 15% by volume or more, the chances of the particles being connected in the plane direction increase, so that the insulation with the adjacent circuit decreases. It is not preferable. The addition amount of the metal particles is important for constituting the present invention, but the effect can be exhibited in a relatively wide range. The constituent materials according to the present invention will be described below. The coated particles 3 are basically particles having a particle diameter of 1 to 50 μm, in which the surface of the polymer core material 1 is substantially covered with the thin metal layer 2. The polymer core material 1 may be any of a completely solid body, a foam having bubbles therein, a hollow body having a gas inside, an aggregate forming a core material by a collection of small particles, and the like. Can be used.

【0008】高分子核材の形状はほぼ球状が代表的であ
るが、その形状については特に問わない。高分子核材1
の材質としては、ポリスチレンやエポキシ樹脂などの各
種プラスチック類またはスチレンブタジェンゴムやシリ
コーンゴム等のゴム類およぴデンプンやセルロース等の
天然高分子類があり、これらを主成分として架橋剤や硬
化剤および老化防止剤などの添加剤を用いることが出来
る。これら高分子核材は、既にクロマトグラム用充填
剤、標準粒子、化粧品用途などに、たとえば東洋曹達工
業(株)、日本合成ゴム(株)、トーレ(株)、鐘紡
(株)などから市販されており入手可能である。金属薄
層2は導電性を有する各種の金属、金属酸化物、合金等
が用いられる。金属元素の例としては、Zn,Al,S
b,Au,Ag,Sn,Fe,Cu,Pb,Ni,P
d,Ptなどがあり、これら単独もしくは複合して用い
ることができ、さらに特殊な目的たとえば硬度や表面張
力の調整および密着性の改良などのためにMo,Mn,
Cd,Si,およびCrなどの他の元索や化合物なども
添加できる。導電性と耐腐食性の点から、Ni,Ag,
Au,Sn,Cuが好ましく適用でき、これらはまた単
層もしくは複層以上としても形成可能である。これらを
用いて被覆層を形成する方法としては、蒸着法、スパッ
タリング法、イオンプレーティング法、溶射法などの乾
式法や、めっき法などが適用できるが、湿式の分散系に
よることから均一厚みの被覆層を得ることのできる無電
解めっき法が好ましい。被覆層の厚みは0.01〜5μ
m程度が適用できるが、0.05〜1.0μmが好まし
い。ここで厚みはたとえば金属下地層のある場合はその
層をも含むものとする。
The shape of the polymer core material is typically substantially spherical, but the shape is not particularly limited. Polymer core material 1
Examples of the material include various plastics such as polystyrene and epoxy resin, rubbers such as styrene-butadiene rubber and silicone rubber, and natural polymers such as starch and cellulose. And additives such as antioxidants. These polymer core materials are already commercially available for use as fillers for chromatograms, standard particles, cosmetics, and the like, for example, from Toyo Soda Kogyo Co., Ltd., Nippon Synthetic Rubber Co., Ltd., Toray Co., Ltd., and Kanebo Co., Ltd. And available. As the thin metal layer 2, various metals, metal oxides, alloys, and the like having conductivity are used. Examples of metal elements include Zn, Al, S
b, Au, Ag, Sn, Fe, Cu, Pb, Ni, P
d, Pt, etc., which can be used alone or in combination. Further, for special purposes such as adjustment of hardness and surface tension and improvement of adhesion, Mo, Mn, and the like can be used.
Other elements and compounds such as Cd, Si, and Cr can also be added. From the viewpoints of conductivity and corrosion resistance, Ni, Ag,
Au, Sn, and Cu are preferably applicable, and they can also be formed as a single layer or multiple layers. As a method of forming a coating layer using these, a vapor deposition method, a sputtering method, an ion plating method, a dry method such as a thermal spraying method, or a plating method can be applied. An electroless plating method capable of obtaining a coating layer is preferred. The thickness of the coating layer is 0.01-5 μm
m can be applied, but 0.05 to 1.0 μm is preferable. Here, the thickness includes, for example, a metal base layer, if any.

【0009】被覆層の厚みが薄いと導電性が低下し、厚
みが増すと回路接続時における高分子核材の変形が起り
難いことから回路への接触面積が減少するので好ましく
ない。被覆粒子3の粒径は0.5〜50μmが適用可能
である。0.5μm以下ては充填粒子数が多くなり回路
との接着面積が実質的に滅少するために回路との接着性
が低下し、50μm以上では粒子が隣接回路間に存在し
た時に絶縁性が失なわれるので接続部材の分解能をはか
る上で好ましくない。粒子は接続部材中に独立もしくは
凝集して存在することが出来る。金属粒子4は粒子径
0.01〜50μmであり、回路接続時において高分子
核材1より剛性が高く耐腐食性に優れた粒子より選択さ
れる。粒子径が0.01μm以下では、回路表面の汚染
層を突き破る能力に欠けるので本発明の実施に不適であ
り、粒子径50μm以上では隣接回路間に粒子が存在し
た時に絶縁性が失なわれるので好ましくない。好ましい
粒子径の範囲は0.03〜30μmである。金属粒子の
形状については、球状であることが好ましいが特に限定
しない。特に好ましい形状は粒子の表面に突起物や凹凸
を多数有するものであり、この形状および剛性の高さに
より回路表面の汚染層への食い込み能力が増加する。こ
れらの金属粒子としては、Zn,Al,Sb,U,C
d,Ga,Ca,Au,Ag,Co,Sn,Se,F
e,Cu,Th,Pb,Ni,Pd,Be,Mg,Mn
などがあり、これらを単独もしくは複合して用いること
が可能である。またこれらの金属はめっき等にょり2層
以上の構成とすることも可能である。上記金属粒子で
は、耐腐食性に優れかつ入手が容易であることから、N
i,Ag,Auが好ましく適用できる。また本発明の変
形性を有しない粒子として、上記した金属粒子の他に接
続時の剛性が高分子核材よりも高く被覆粒子に比べて変
形し難い組成物、たとえはガラス、セラミック、アルミ
ナ等の無機物や高剛性の高分子材料などを核材とし、そ
の表面を金属めっき等により導電性被膜を形成した粒子
を用いることも可能である。また、上記に例示のよう
に、被覆粒子と金属粒子の主要金属成分が少なくとも1
種以上の共通した金属材料よりなることが好ましく導電
性と腐食性からNi,Ag,Auが特に好ましい。
If the thickness of the coating layer is small, the conductivity is reduced, and if the thickness is increased, the polymer core material is hardly deformed at the time of circuit connection, so that the contact area with the circuit is undesirably reduced. The particle size of the coating particles 3 is 0.5 to 50 μm. If the particle size is 0.5 μm or less, the number of the filled particles increases, and the adhesion area with the circuit is substantially reduced. Since this is lost, it is not preferable in measuring the resolution of the connecting member. The particles can exist independently or aggregated in the connecting member. The metal particles 4 have a particle size of 0.01 to 50 μm, and are selected from particles having higher rigidity and higher corrosion resistance than the polymer core material 1 at the time of circuit connection. When the particle diameter is 0.01 μm or less, the ability to break through the contaminant layer on the circuit surface is lacking, which is not suitable for the practice of the present invention. When the particle diameter is 50 μm or more, insulation is lost when particles exist between adjacent circuits. Not preferred. The preferred range of the particle size is 0.03 to 30 μm. The shape of the metal particles is preferably spherical, but is not particularly limited. A particularly preferred shape is one having a large number of protrusions and irregularities on the surface of the particle, and the shape and high rigidity increase the ability to penetrate the contaminated layer on the circuit surface. These metal particles include Zn, Al, Sb, U, C
d, Ga, Ca, Au, Ag, Co, Sn, Se, F
e, Cu, Th, Pb, Ni, Pd, Be, Mg, Mn
These can be used alone or in combination. Further, these metals can be formed into two or more layers by plating or the like. Since the above metal particles have excellent corrosion resistance and are easily available,
i, Ag, and Au can be preferably applied. In addition, as the non-deformable particles of the present invention, in addition to the above-described metal particles, a composition that has a higher rigidity at the time of connection than the polymer core material and is less deformable than the coated particles, such as glass, ceramic, and alumina. It is also possible to use particles having a core formed of an inorganic material or a high-rigidity polymer material and having a conductive film formed on the surface by metal plating or the like. Further, as exemplified above, the main metal component of the coating particles and the metal particles is at least one.
Ni, Ag, and Au are particularly preferable in terms of conductivity and corrosiveness.

【0010】本発明で用いられる絶縁性接着剤5として
は、基本的には絶縁性を示す通常の接着性シート類に用
いられている配合が適用可能である。かかる接着剤の成
分としては凝集カを付与するポリマーと、その他必要に
応じて用いる粘着付与剤、粘着性調整剤、架橋剤、老化
防止剤、分散剤等からなっている。これらポリマー種と
しては、エチレン酢酸ビニル共重合体、エチレン−酢酸
ビニル共重合体変性物、ポリエチレン、エチレン−プロ
ピレン共重合体、エチレン−アクリル酸共重合体、エチ
レン−アクリル酸エステル共重合体、エチレン−アクリ
ル酸塩共重合体、アクリル酸エステル系ゴム、ポリイソ
ブチレン、アタクテックポリプロピレン、ポリビニルブ
チラール、アクリロニトリル−ブタジェン共重合体、ス
チレン−ブタジェンブロック共重合体、スチレンーイソ
プレンブロック共重合体、ポリブタジェン、エチルセル
ロース、フェノキシ、ポリエステル、エポキシ、ポリア
ミド、およびポリウレタン、天然ゴム、シリコーン系ゴ
ム、ポリクロロプレン等の合成ゴム類、ポリビニルエ一
テルなどが適用可能てあり、単独あるいは2種以上併用
して用いられる。粘着付与剤としては、ジシクロペンタ
ジェン樹脂、ロジン、変性ロジン、テルペン樹脂、キシ
レン樹脂、テルペン−フェノール樹脂、アルキルフェノ
ール樹脂、クマロン−インデン樹脂等があり、これらを
必要に応じて、単独あるいは2種以上併用して用いる。
粘着性調整剤としてはたとえはジオクチルフタレートを
はじめとする各種可塑剤類等が代表的である。架橋剤は
ポリマーの凝集力を高めることが必要な場合に用いら
れ、ポリマの官能基と反応する多官能性物質であり、た
とえはポリイソシアネート、メラミン樹脂、尿素樹脂、
フェノール樹脂、アミン類、酸無水物、過酸化物等があ
げられ、さらに光硬化性の場合の増感剤としてべンゾフ
ェノン、ベンゾキノン等でもよい。老化防止剤は、ボリ
マーバインダの熱、酸素、光等に対する安定性を高める
ことが必要な場合に用いるものでたとえは金属石ケン類
を代表とする安定剤や、アルキルフェノール類などの酸
化防止剤、ベンゾフェノン系、ベンゾトリアゾール系な
どの紫外線吸収剤等があり、やはり必要に応じて単独あ
るいは2種以上併用して用いられる。分散剤は、導電性
粒子の分散性向上のために用いる場合がある。この例と
してはたとえば界面活性剤があり、ノニオン系、カチオ
ン系、アニオン系、両性のうち1種あるいは2種以上併
用して用いることができる。
As the insulating adhesive 5 used in the present invention, there can be basically applied the compounding used for ordinary adhesive sheets having insulating properties. The components of the adhesive include a polymer that imparts cohesion, and other optional tackifiers, tackifiers, crosslinking agents, antioxidants, dispersants, and the like. These polymer species include ethylene-vinyl acetate copolymer, modified ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic ester copolymer, ethylene -Acrylate copolymer, acrylate rubber, polyisobutylene, atactic polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, polybutadiene, Ethyl cellulose, phenoxy, polyester, epoxy, polyamide, polyurethane, natural rubber, silicone rubber, synthetic rubbers such as polychloroprene, polyvinyl ether, etc. can be applied, alone or in combination of two or more. Used in. Examples of the tackifier include dicyclopentadiene resin, rosin, modified rosin, terpene resin, xylene resin, terpene-phenol resin, alkylphenol resin, coumarone-indene resin, and the like. These are used in combination.
Representative examples of the tackifier include various plasticizers such as dioctyl phthalate. Crosslinkers are used when it is necessary to increase the cohesion of the polymer and are polyfunctional substances that react with the functional groups of the polymer, such as polyisocyanates, melamine resins, urea resins,
Examples include phenolic resins, amines, acid anhydrides, peroxides, and the like, and benzophenone, benzoquinone, and the like may be used as a sensitizer in the case of photocurability. Anti-aging agents are used when it is necessary to enhance the stability of the polymer binder against heat, oxygen, light, etc., for example, stabilizers such as metal soaps and antioxidants such as alkylphenols And benzophenone-based and benzotriazole-based ultraviolet absorbers, etc., and if necessary, used alone or in combination of two or more. The dispersant may be used for improving the dispersibility of the conductive particles. Examples of this include a surfactant, which can be used alone or in combination of two or more of nonionic, cationic, anionic and amphoteric.

【0011】本発明にかかる接続部材の製造法として
は、ポリマおよぴその他必要に応じて使用する添加剤か
らなる接着剤組成物を溶剤に溶解するか懸濁状に媒体中
に分散しあるいは熱溶融させて液状とした後に導電性粒
子をボールミルや攪拌装置などの通常の分散方法により
混合し、導電性粒子混合接着剤組成物を得る。溶剤を用
いる場合については、高分子核材上に金属層の形成され
た導電性粒子は溶剤に対する溶解性がほとんどないため
溶剤を用いることも可能であるが、接着剤を溶解し高分
子核材を溶解しない溶剤を選択することがさらに好まし
い。この手段としては、たとえは接着剤をエマルション
化して水媒体中に導電性粒子を分散することもよい方法
である。上記導電性粒子混合接着剤組成物は、接続を要
する一方あるいは双方の回路上にスクリーン印刷やロ一
ルコータ等の手段を用いて直接回路上に接続部材層を形
成してもよく、またフィルム状の連続長尺体としてもよ
い。連続長尺体としての接着剤フィルムを得るには紙や
プラスチックフィルム等に必要に応じて剥離処理を行な
ったセパレータ上に前記手段により接続部材層を形成後
連続的に巻重してもよいし、接着層の粘着性がない場合
においてはセパレータを用いずに巻重することも可能で
あり、さらに接着剤の補強用として、たとえは不織布等
の芯材を用いることも可能である。上記製法において接
着剤組成物中に溶剤あるいは分散媒を含む場合において
は溶剤乾燥時の厚み方向の体積収縮現象を利用して導電
性粒子が厚み方向により密な配列を有する接着剤フィル
ムを得ることが可能であり、又無溶剤下のホットメルト
塗工においては、製造時の溶剤による環境汚染を防止す
ることができる。接着剤フィルムの厚みは、導電性粒子
の粒径および接続部材の特性を考慮して相対的に決定す
るが、1〜100μmの厚みが好ましい。1μm以下で
は充分な接着性が碍られず、100μm以上では充分な
導電性を得る為に多量の導電性粒子の混合を必要とする
ことから実用的でない。この埋由からさらに好ましい厚
みは5〜50μmである。
The method of manufacturing the connecting member according to the present invention includes dissolving an adhesive composition comprising a polymer and other additives used as necessary in a solvent, or dispersing the adhesive composition in a medium in a suspended state, or After being melted into a liquid by heat melting, the conductive particles are mixed by an ordinary dispersion method such as a ball mill or a stirrer to obtain a conductive particle mixed adhesive composition. When a solvent is used, the solvent can be used because the conductive particles having the metal layer formed on the polymer core material have almost no solubility in the solvent, but it is possible to use a solvent. More preferably, a solvent that does not dissolve is selected. As this means, for example, it is a good method to emulsify the adhesive and disperse the conductive particles in an aqueous medium. The conductive particle-mixed adhesive composition may form a connection member layer directly on a circuit using screen printing or a roll coater on one or both circuits requiring connection, May be used as a continuous long body. In order to obtain an adhesive film as a continuous elongated body, the connecting member layer may be continuously wound after forming the connecting member layer on the separator which has been subjected to a peeling treatment as necessary on paper or a plastic film. When the adhesive layer does not have tackiness, it is possible to wind without using a separator, and for reinforcing the adhesive, for example, a core material such as a nonwoven fabric can be used. When a solvent or a dispersion medium is contained in the adhesive composition in the above-mentioned manufacturing method, an adhesive film having conductive particles having a denser arrangement in the thickness direction is obtained by utilizing the volume shrinkage phenomenon in the thickness direction when the solvent is dried. In hot-melt coating in the absence of a solvent, it is possible to prevent environmental pollution caused by the solvent during the production. The thickness of the adhesive film is relatively determined in consideration of the particle size of the conductive particles and the characteristics of the connection member, and is preferably 1 to 100 μm. If it is 1 μm or less, sufficient adhesiveness cannot be obtained, and if it is 100 μm or more, it is not practical because a large amount of conductive particles must be mixed in order to obtain sufficient conductivity. From this reason, a more preferable thickness is 5 to 50 μm.

【0012】このようにして得られた接着剤フィルムは
かなりの透明性を有する。接着剤フィルムが透明性を有
すると製造時の品質管埋が行い易く外観上の見映えもよ
い。また表示素子類の接着等においては、被着体を透視
できる構成をとることも可能となる。得られた接着剤フ
ィルムを用いて回路を接続する方法としては、たとえば
回路に接着剤フィルムを仮貼付した状態でセパレータの
ある場合にはセパレータを剥離し、あるいは接着剤組成
物を回路上に塗布し必要に応じて溶剤除去後の状態で、
その面に他の接続すべき回路を熱プレスあるいは加熱ロ
一ル等で貼付ければよい。図2(a)〜(d)はかかる
方法により回路を接続した状態を模式的に示したもの
で、熱と圧力によって接着剤5が軟化流動するとともに
被覆粒子3も軟化変形し相互に接触するので両回路7.
7´間の導通接着が可能となる。この時金属粒粒子4
は、回路7の表面に存在する汚染層を突き破り回路7と
接触することができるので、良好な回路接続を得ること
が可能となる。本発明になる各構成材料の作用について
説明する。絶縁性接着剤は接続回路(厚み方向)同士を
接着し、合わせて隣接回路(面方向)間の絶縁材料とし
て作用する。導電性粒子は接続回路間で電気的接続を与
え、隣接回路間(絶縁回路部)は回路面に比べて一般的
に凹状であり接続回路間ほど圧力がかからないためと、
粒径を隣接回路間よりも小さな50μm以下としたり、
添加量0.5〜15体積%として粒子の面方向における
連結を防止することにより絶縁性が保たれる。
The adhesive film thus obtained has considerable transparency. When the adhesive film has transparency, the quality can be easily filled at the time of production and the appearance can be improved. Further, in the bonding of display elements and the like, it is possible to adopt a configuration in which the adherend can be seen through. As a method of connecting a circuit using the obtained adhesive film, for example, if there is a separator in a state where the adhesive film is temporarily attached to the circuit, the separator is peeled off, or the adhesive composition is applied on the circuit. If necessary, after removing the solvent,
Another circuit to be connected may be attached to the surface by a hot press or a heating roll. FIGS. 2A to 2D schematically show a state in which circuits are connected by such a method. The adhesive 5 softens and flows due to heat and pressure, and the coated particles 3 also soften and deform and come into contact with each other. Therefore, both circuits7.
Conductive bonding between the 7's becomes possible. At this time, metal particles 4
Can break through the contaminant layer present on the surface of the circuit 7 and come into contact with the circuit 7, so that good circuit connection can be obtained. The operation of each constituent material according to the present invention will be described. The insulating adhesive bonds the connection circuits (in the thickness direction) together and acts as an insulating material between adjacent circuits (in the surface direction). The conductive particles provide electrical connection between the connection circuits, and between adjacent circuits (insulated circuit portion) is generally concave compared to the circuit surface and is not applied as much pressure as between the connection circuits.
The particle size is less than 50 μm smaller than between adjacent circuits,
Insulating properties are maintained by adding 0.5 to 15% by volume of the particles to prevent connection of the particles in the plane direction.

【0013】このとき本発明では導電性粒子として回路
接続時の加圧もしくは加熱加圧により変形性を有する粒
子と有しない粒子とを複合して用いることにより、各種
材質の回路に対して、初期の接続低抗値の低下およぴ長
期接続信頼性を合わせて得ることが可能となる。すなわ
ち金属粒子は回路接続時の加圧もしくは加熱加圧により
接着剤や被覆粒子に比べて軟化および変形性を有しない
ので、回路表面の金属酸化層などの汚染層に食い込んで
回路の純金属層と接触可能となるために特に初期状態に
おいて優れた導電性が得られる。一方、高分子核材の表
面が金属薄層により実質的に被覆されてなる被覆粒子
は、金属が薄層なるが故に回路接続時の加熱や加圧もし
くは加熱加圧により高分子核材が軟化あるいは変形可能
てあり回路面あるいは粒粒子相互間で押しつけるように
適度に変形し接触面積を大きく保つことが可能である。
また同じく金属が薄層であるため、この粒子の熱膨張率
は接着剤と近似させることが可能であるので温度変化に
対する追随性があり接触面積を大きく保つことと合わせ
て、特に優れた長期接続信頼性が得られる。また導電粒
子として、高分子核材の表面が金属薄層により実質的に
被覆されてなる被覆粒子と金属粒子とを複合して用いる
ことにより、剛性に優れた金属粒子は接続時の加圧や加
熱加圧により研磨剤的に作用して粒子表面や回路表面の
新鮮面を作り出すことや、あるいは接触面に存在する絶
縁性接着剤薄層を破壊することも考えられる。この過程
は前述した汚染層への食い込み現象と同じく、接着剤と
回路により外界と閉鎖された実質的な無酸素雰囲気下で
行なわれるので、酸化劣化のない金属接触による理想的
な接続が可能となる。なお金属粒子は、被覆粒子の金属
薄層を一部破壊して高分子核材に達することも考えらる
が、この場合は金属層の影響が少なくなって粒子が自由
に熱膨張できるので、熱膨張収縮時に接着剤と被覆粒子
との変位差が少なくなり温度変化に対する追随性が向上
することから、接続信頼性はさらに向上する。さらに金
属粒子は、回路接続時の加圧もしくは加熱加圧により回
路表面の汚染層や被覆粒子の表面にその一部が押込めら
れて存在するために、これらの界面において接触面積が
増大することから信頼性を向上する作用も合せて有する
と考えられる。
At this time, in the present invention, particles having deformability and particles having no deformability are used in combination by pressurization or heating and pressurization at the time of circuit connection as conductive particles, so that circuits of various materials can be initially used. It is possible to obtain a lower connection resistance value and a long-term connection reliability. In other words, metal particles do not soften and deform as compared to adhesives or coated particles due to pressure or heat and pressure during circuit connection, so they penetrate into contaminant layers such as metal oxide layers on the circuit surface and become pure metal layers of the circuit. And excellent electrical conductivity, particularly in the initial state. On the other hand, the coated particles, in which the surface of the polymer core material is substantially covered with a thin metal layer, are softened by heating, pressurizing, or heating / pressing during circuit connection because the metal is a thin layer. Alternatively, it can be deformed and can be appropriately deformed so as to press against the circuit surface or between the particles, thereby keeping the contact area large.
Also, since the metal is a thin layer, the coefficient of thermal expansion of these particles can be approximated to that of the adhesive, so they have the ability to follow the temperature change and maintain a large contact area. Reliability is obtained. In addition, as the conductive particles, by using a composite of coated particles and metal particles in which the surface of the polymer nucleus material is substantially covered with a thin metal layer, metal particles having excellent rigidity can be subjected to pressure during connection or pressure. It is also conceivable to act as an abrasive by heating and pressing to create a fresh surface of the particle surface or circuit surface, or to destroy a thin insulating adhesive layer existing on the contact surface. This process is performed in a substantially oxygen-free atmosphere that is closed to the outside world with an adhesive and a circuit, similar to the phenomenon of biting into the contaminated layer described above. Become. In addition, it is conceivable that the metal particles may partially break the thin metal layer of the coated particles to reach the polymer core material, but in this case, the influence of the metal layer is reduced and the particles can thermally expand freely, Since the difference in displacement between the adhesive and the coated particles during thermal expansion and contraction is reduced and the ability to follow a temperature change is improved, the connection reliability is further improved. In addition, the contact area increases at the interface between metal particles, because part of the metal particles are pressed into the surface of the contaminated layer or the coated particles by pressurization or heating and pressurization when connecting the circuit. Therefore, it is considered that it also has the effect of improving reliability.

【0014】[0014]

【実施例】本発明を実施例によりさらに詳細に説明す
る。 美施例1〜13および比較例1〜2 (1)絶縁性接着剤溶液の作製 下記よりなる接着剤を混合溶解して固形分20%の接着
剤溶液を得た。 クレイトンG−1650(スチレン−エチレン−ブチレ
ン−スチレン型ブロックポリマー、シェル化学(株)製
商品名)…………60重量都 クリアロンP−120(水添テルペン樹脂、安原油脂
(株)製商品名)…40重量郡 トルエン………40重量部 (2)被覆粒子の作製 高分子核材として、ユニベックスCタイプ(球状フェノ
ール樹脂、ユニチカ(株)製商品名)をマイクロシーブ
を用いて分級し、平均粒径5,10,25,50μmの
粒子を得た。これらの粒子を用いて、下記方法により前
処理の後Niの無電解めっきを行ない、続いてAuの置
換めっきにより被覆層の厚みがNi 0.3μm/Au
0.05μmの複層構成を有する被覆粒子を作製し
た。 (イ)前処理 高分子核材をメチルアルコール中で強制的に攪拌して、
脱脂および粗化を兼ねた前処理を行ない、その後濾過に
よりメチルアルコールを分離した。 (ロ)活性化 次にサーキットプレップ3316(PdCl+HCl+
SnCl2系の活性化処理液、日本エレクトロプレーテ
ィングエンジニアース(株)製商品名)中に分散し、2
5℃−20分間の攪拌により活性化処理をおこなった。
この後水洗、濾過を行なった。 (ハ)無電解Niめっき 活性化処理後の粒子をブルーシューマー(無電解Niめ
っき液、浴能力300μdl、日本カニゼン 製商品
名)液中に浸漬し90℃−50分間強制攪拌を行なっ
た。所定時間後水洗した。めっき液量は粒子の表面積か
ら算出した。 (ニ)無電解Auめっき 以上で得られたNi被覆粒子の表面に、Auの置換めっ
きを行なった。めっき液はレクトロレスプレッブ(無電
解Auめっき液、日本エレクトロプレーティングエンジ
ニアース(株)製商品名)であり、90℃−30分間の
めっき処理を行ないその後で水を用いてよく洗浄し、つ
いで90℃−2時間の乾燥を行った。
EXAMPLES The present invention will be described in more detail with reference to Examples. Beauty Examples 1 to 13 and Comparative Examples 1 and 2 (1) Preparation of Insulating Adhesive Solution The following adhesive was mixed and dissolved to obtain an adhesive solution having a solid content of 20%. Clayton G-1650 (Styrene-ethylene-butylene-styrene type block polymer, trade name, manufactured by Shell Chemical Co., Ltd.) 60 weight capitalized Clearon P-120 (hydrogenated terpene resin, trade name, manufactured by Yasuhara Yushi Co., Ltd.) 40 weight parts Toluene 40 weight parts (2) Preparation of coated particles Univex C type (spherical phenol resin, trade name of Unitika Ltd.) was classified as a polymer core material using a microsieve, Particles having an average particle size of 5, 10, 25, and 50 μm were obtained. Using these particles, pretreatment is performed by the following method, and then electroless plating of Ni is performed, followed by displacement plating of Au so that the thickness of the coating layer is Ni 0.3 μm / Au.
Coated particles having a multilayer structure of 0.05 μm were produced. (B) Pretreatment The polymer core material is forcibly stirred in methyl alcohol,
Pretreatment was performed for both degreasing and roughening, and then methyl alcohol was separated by filtration. (B) Activation Next, circuit prep 3316 (PdCl + HCl +
An SnCl 2 -based activation treatment solution (trade name, manufactured by Nippon Electroplating Engineers Co., Ltd.)
The activation treatment was performed by stirring at 5 ° C. for 20 minutes.
Thereafter, washing with water and filtration were performed. (C) Electroless Ni Plating The particles after the activation treatment were immersed in a Blue Schumer (electroless Ni plating solution, bath capacity: 300 μdl, trade name, manufactured by Nippon Kanigen) solution and subjected to forced stirring at 90 ° C. for 50 minutes. After a predetermined time, it was washed with water. The plating solution amount was calculated from the surface area of the particles. (D) Electroless Au plating Au displacement plating was performed on the surface of the Ni-coated particles obtained above. The plating solution is Lectro Respreb (Electroless Au plating solution, trade name of Japan Electroplating Engineers Co., Ltd.), which is subjected to a plating treatment at 90 ° C. for 30 minutes, and then thoroughly washed with water, Then, drying was performed at 90 ° C. for 2 hours.

【0015】(3)金属粒子 用いた金属粒粒子は下記の4種類である。 (a)平均粒径0.05μm、ガス中蒸発法Ni、真空
冶金(株)製 (b)平均粒径2μm、カルボニルNi、インコ(株)
製 (c)平均粒立径2.5μm、(b)に0.1μmのA
uめっき層形成 (d)平均粒径25μm、アトマイズNi、三井金属工
業(株)製 なお(c)のAuめっきは、前項と同じAuめっき液に
より同様に作製した。 (4)接続部材の作製 上記した(1)〜(3)を所定量(固形分配合比、詳細
は第1表に示す)混合し、バーコータによりセパレータ
(シリコーン処理ポリエステルフィルム、厚み58μ
m)上に塗布し、100℃−5分間の乾燥を行ない、所
定の乾燥後の厚み(表1参照)を有する接続部材を作製
した。 (5)回路の接続 ライン巾0.1mm、ピッチ0.2mm、厚み35μm
のCu回路を有する全回路巾100mmのフレキシブル
回路板(FPC)に、接着巾3mm長さ100mmに切
断した接続部材を載置して、150℃−2kg/cm−
5秒の加熱加圧により接続部材付FPCを得た。その後
セパレータを剥離して、他の同一ピッチを有する透明導
電ガラス(Cr回路、および一部比較用としてITO回
路も使用、ガラス厚み1.1mm)と顕微鏡下で回路の
位置合わせを行ない、150℃−30kg/cm−20
秒間の加熱加圧により回路の接続を行なった。 (6)評価方法 上記により得た回路の接続体の熱衝撃試験前後における
接続低抗の測定結果を第1表に示した。接続低抗の測定
はマルチメータ(TR−6877、アドバンテスト
(株)製)により行ない1試料500点の接続抵抗の平
均値で表示した。熱衝撃試験は−40℃/30分〜10
0℃/50分を1サイクルとして300サイクルおこな
った。なお隣接回路間の絶縁低抗はいずれも10Ω以上
と良好であった。
(3) Metal Particles The following four types of metal particle particles were used. (A) 0.05 μm average particle size, Ni in gas evaporation method, manufactured by Vacuum Metallurgy Co., Ltd. (b) 2 μm average particle size, Ni carbonyl, Inc.
(C) Average grain diameter 2.5 μm, (b) 0.1 μm A
Formation of u-plated layer (d) Atomized Ni with an average particle size of 25 μm, manufactured by Mitsui Kinzoku Kogyo Co., Ltd. Au plating of (c) was similarly prepared using the same Au plating solution as in the previous section. (4) Preparation of connection member The above-mentioned (1) to (3) were mixed in a predetermined amount (solid content mixing ratio, details are shown in Table 1), and a separator (silicone-treated polyester film, 58 μm in thickness) was mixed with a bar coater.
m) and dried at 100 ° C. for 5 minutes to produce a connection member having a predetermined dried thickness (see Table 1). (5) Circuit connection Line width 0.1 mm, pitch 0.2 mm, thickness 35 μm
A connection member cut into a 3 mm adhesive width and a 100 mm length is placed on a flexible circuit board (FPC) having a total circuit width of 100 mm having a Cu circuit of 150 ° C. and 2 kg / cm −
An FPC with a connecting member was obtained by heating and pressing for 5 seconds. Thereafter, the separator is peeled off, and the circuit is aligned under a microscope with another transparent conductive glass having the same pitch (a Cr circuit and an ITO circuit is also used for some comparisons, glass thickness: 1.1 mm), and is subjected to 150 ° C. -30kg / cm-20
The circuit was connected by heating and pressing for 2 seconds. (6) Evaluation method Table 1 shows the measurement results of the connection resistance before and after the thermal shock test of the connection body of the circuit obtained as described above. The connection resistance was measured using a multimeter (TR-6877, manufactured by Advantest Co., Ltd.), and the average value of the connection resistance of 500 samples was displayed. Thermal shock test is -40 ° C / 30min-10
300 cycles were performed with 0 ° C./50 minutes as one cycle. The insulation resistance between adjacent circuits was as good as 10Ω or more.

【0016】(7)結果 各実施例ともCr回路に対して、良好な初期およぴ熱衝
撃試験後の接続抵抗を示すことがわかった。熱衝撃試験
は信頼性評価の中でも最も苛酷な試験であることから、
良好な信頼性を有することがわかる。比較例1は被覆粒
子のみの場合であるが、ITO回路の場合には初期およ
ぴ熱衝撃試験後ともに良好な接続低抗を示しているが、
Cr回路では初期低抗が50Ωと高い。一方比較例2は
金属粒子のみの場合であるが、ITOおよびCr回路と
もに良好な初期低抗は得られるものの、熱衝撃試験後の
低抗上昇が大きい。比較例1〜2の導電性粒子を併用し
た実施例9〜11においては、初期低抗およぴ熱衝撃試
験後ともに良好な信頼性がCrおよびITOの両回路に
対して得られた。なお接続部の断面を走査型電子顕微鏡
により観察したところ、実施例1〜4においては図2の
(d)て模式的に表わしたように、被覆粒子および金属
粒子は数個凝集して存在し、金属粒子は被覆粒子の周辺
や回路面との間に存在していた。同様に実施例5におい
ては図2(c)、実施例6においては図2(b)、実施
例6〜8および実施例12においては図2(a)のよう
に各々存在していた。
(7) Results It was found that each of the examples exhibited good initial and post-heat shock test connection resistance to the Cr circuit. Since the thermal shock test is the most severe test in the reliability evaluation,
It turns out that it has good reliability. Comparative Example 1 shows the case of only the coated particles. In the case of the ITO circuit, a good connection resistance was exhibited both at the initial stage and after the thermal shock test.
In the Cr circuit, the initial resistance is as high as 50Ω. On the other hand, Comparative Example 2 is a case of using only metal particles. Although good initial resistance is obtained in both the ITO and Cr circuits, the resistance increase after the thermal shock test is large. In Examples 9 to 11 in which the conductive particles of Comparative Examples 1 and 2 were used in combination, good reliability was obtained for both the Cr and ITO circuits after the initial low resistance and thermal shock tests. In addition, when the cross section of the connection part was observed with a scanning electron microscope, in Examples 1 to 4, as schematically shown in FIG. The metal particles were present around the coated particles and between the circuit surface. Similarly, FIG. 2C in Example 5, FIG. 2B in Example 6, and FIG. 2A in Examples 6 to 8 and Example 12 exist.

【0017】実施例14〜16 (1)絶縁性接着剤の作製 下記よりなる配合物を混合攪拌して、固形分29%の接
着剤溶液を作製した。 ニポール1032(ニトリルゴム、日本ゼオン(株)製
商品名)………50重量部 ヒタノール2400(アルキルフェノール樹脂、日立化
成工業(株)製商品名)………20重量部 エピコート1002(ビスフェノール型エポキシ樹脂、
油化シェルエポキシ(株)製商品名)……30重量部 キュアゾール29Z(2−フェニルイミダゾール、四国
化成工業(株)製商品名)………5重量部 イルガノックス1010(フェノール系酸化防止剤、チ
バガイギー社製商品名)………1.0重量郡 マークCDA−6(デカメチレンジカルボン酸ジサリチ
ロイルヒドラジド、アデカアーガス(株)製商品名……
…0.5重量部 メチルエチルケトン………250重量部 (2)被覆粒子 被覆粒子として、ファインパール(球状ポリスチレン樹
脂、往友化学工業(株)製商品名)をマイクロシーブを
用いて、ふるい目3μmパス品を得、さらに沈降分離し
て平均粒径1μmの粒子およびふるい目16μmオン2
5μmパス品の平均粒径20μmの2種の粒子を得た。
この粒粒子を用いて実施例1〜15と同様な前処理のあ
とNiの無電解めっきを、下記めっき液中に粒子を分散
攪拌しながら90℃−30分おこなった。めっき被膜の
厚み調節は粒子の表面積とめっき液中の有効Ni成分を
算出し、めっき液濃度を調節して行なった。すなわち本
実施例14〜16においては、被覆層はNiの単層とし
た。金属粒子、回路の接続条件および評価は実施例1〜
15と同様である。ただし本実施例においては回路接続
後に150℃、1時間の後硬化を行なった。結果を第1
表に示すが、いずれも良好な信頼性を示した。本実施例
においては、加熱硬化型の接着剤を用いたので、接続は
強固であり、信頼性の評価も良好であった。
Examples 14 to 16 (1) Preparation of Insulating Adhesive The following components were mixed and stirred to prepare an adhesive solution having a solid content of 29%. Nipol 1032 (Nitrile rubber, trade name, manufactured by Nippon Zeon Co., Ltd.) 50 parts by weight HITANOL 2400 (alkylphenol resin, trade name manufactured by Hitachi Chemical Co., Ltd.) 20 parts by weight Epicoat 1002 (bisphenol epoxy resin) ,
Yuka Shell Epoxy Co., Ltd.) 30 parts by weight Cureazole 29Z (2-phenylimidazole, trade name of Shikoku Chemicals Co., Ltd.) 5 parts by weight Irganox 1010 (phenolic antioxidant, Ciba-Geigy product name) 1.0 weight group Mark CDA-6 (decamethylenedicarboxylic acid disalicyloyl hydrazide, trade name of Adeka Argus Co., Ltd.)
0.5 parts by weight Methyl ethyl ketone 250 parts by weight (2) Coated particles As coated particles, fine pearl (spherical polystyrene resin, trade name, manufactured by Uchiyu Chemical Industry Co., Ltd.) is sieved using a micro sieve to a sieve of 3 μm. A pass product was obtained and further separated by sedimentation to obtain particles having an average particle diameter of 1 μm and a sieve of 16 μm on
Two types of particles having an average particle diameter of 20 μm of a 5 μm pass product were obtained.
After the same pretreatment as in Examples 1 to 15, Ni electroless plating was performed using these particles at 90 ° C. for 30 minutes while dispersing and stirring the particles in a plating solution described below. The thickness of the plating film was adjusted by calculating the surface area of the particles and the effective Ni component in the plating solution, and adjusting the plating solution concentration. That is, in Examples 14 to 16, the coating layer was a single layer of Ni. Metal particles, circuit connection conditions and evaluation were as in Examples 1 to
Same as 15. However, in this embodiment, post-curing was performed at 150 ° C. for one hour after the circuit was connected. First result
As shown in the table, all showed good reliability. In this example, since a heat-curable adhesive was used, the connection was strong and the reliability was good.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上詳述したように本発明になる回路の
接続構造によれば、導電性粒子として高分子核材の表面
が金属薄層により実質的に被覆されてなる粒子と、金属
粒子とを複合して用いることにより、また被覆粒子と金
属粒子の主要金属成分が少なくとも1種以上の共通した
金属材料よりなるため、表面汚染層を有する回路を含め
た各種材質の回路に対して優れた初期およぴ長期の接続
信頼性が合わせ得られる。
As described in detail above, according to the circuit connection structure according to the present invention, as the conductive particles, the particles in which the surface of the polymer nucleus material is substantially covered with the thin metal layer, and the metal particles And the main metal component of the coated particles and the metal particles is made of at least one kind of common metal material, so that it is excellent for circuits of various materials including circuits having a surface contamination layer. In addition, the initial and long-term connection reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる援続部材を示す断面模式図。FIG. 1 is a schematic sectional view showing a supporting member according to the present invention.

【図2】本発明になる接続部材を用いた回路の接続状況
を示す断面模式図。
FIG. 2 is a schematic sectional view showing a connection state of a circuit using the connection member according to the present invention.

【符号の説明】[Explanation of symbols]

1 高分子核材 2 金属薄層 5 被覆粒子 4 金属粒子 5 絶縁性接着剤 6 セパレータ 7 回路 DESCRIPTION OF SYMBOLS 1 Polymer core material 2 Metal thin layer 5 Coating particle 4 Metal particle 5 Insulating adhesive 6 Separator 7 Circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】相対峙して形成された接続用回路が、絶縁
性接着剤に配合された導電性粒子を介して電気的に接続
された回路の接続構造において、前記導電性粒子が高分
子核材の表面を金属薄層により実質的に被覆した粒子と
前記高分子核材より高い剛性を有する金属粒子との混合
物からなり、前記被覆粒子と金属粒子の主要金属成分が
少なくとも1種以上の共通材料からなる接続部材により
接続したことを特徴とする回路の接続構造。
In a connection structure of a circuit in which connection circuits formed opposite to each other are electrically connected via conductive particles mixed in an insulating adhesive, the conductive particles are made of a polymer. The core material comprises a mixture of particles substantially coated with a thin metal layer on the surface thereof and metal particles having higher rigidity than the polymer core material, wherein the coated particles and the main metal component of the metal particles are at least one or more. A connection structure for a circuit, wherein the connection is made by a connection member made of a common material.
【請求項2】被覆粒子と金属粒子の平均粒径を被覆粒子
≧金属粒子とした請求項1記載の回路の接続構造。
2. The circuit connection structure according to claim 1, wherein the average particle size of the coated particles and the metal particles is set to be coated particles ≧ metal particles.
【請求項3】少なくとも一方の接続用回路の表面が、C
r、Al、ITOまたは半田により構成されたものであ
る請求項1又は2記載の回路の接続構造。
3. The surface of at least one of the connection circuits is C
3. The circuit connection structure according to claim 1, wherein the circuit connection structure is made of r, Al, ITO, or solder.
JP9133060A 1997-05-23 1997-05-23 Circuit connection structure Expired - Fee Related JP3026432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9133060A JP3026432B2 (en) 1997-05-23 1997-05-23 Circuit connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9133060A JP3026432B2 (en) 1997-05-23 1997-05-23 Circuit connection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62137039A Division JPH083963B2 (en) 1987-05-29 1987-05-29 Circuit connection member

Publications (2)

Publication Number Publication Date
JPH10116640A true JPH10116640A (en) 1998-05-06
JP3026432B2 JP3026432B2 (en) 2000-03-27

Family

ID=15095898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9133060A Expired - Fee Related JP3026432B2 (en) 1997-05-23 1997-05-23 Circuit connection structure

Country Status (1)

Country Link
JP (1) JP3026432B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076534A (en) * 1999-09-03 2001-03-23 Toshiba Chem Corp Conductive paste
JP2007018760A (en) * 2005-07-05 2007-01-25 Asahi Kasei Electronics Co Ltd Anisotropic conduction film for glass base plate connection
WO2019131904A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Connection structure and method for producing same
CN112863732A (en) * 2014-10-29 2021-05-28 迪睿合株式会社 Method for manufacturing connection structure, and conductive material
US11414573B2 (en) 2016-08-30 2022-08-16 Showa Denko Materials Co., Ltd. Adhesive composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076534A (en) * 1999-09-03 2001-03-23 Toshiba Chem Corp Conductive paste
JP2007018760A (en) * 2005-07-05 2007-01-25 Asahi Kasei Electronics Co Ltd Anisotropic conduction film for glass base plate connection
CN112863732A (en) * 2014-10-29 2021-05-28 迪睿合株式会社 Method for manufacturing connection structure, and conductive material
US11414573B2 (en) 2016-08-30 2022-08-16 Showa Denko Materials Co., Ltd. Adhesive composition
WO2019131904A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Connection structure and method for producing same
CN111512502A (en) * 2017-12-28 2020-08-07 日立化成株式会社 Connection structure and method for manufacturing same
JPWO2019131904A1 (en) * 2017-12-28 2020-12-24 昭和電工マテリアルズ株式会社 Connection structure and its manufacturing method
CN111512502B (en) * 2017-12-28 2022-06-03 昭和电工材料株式会社 Connection structure and method for manufacturing same
US11355469B2 (en) 2017-12-28 2022-06-07 Showa Denko Materials Co., Ltd. Connection structure and method for producing same

Also Published As

Publication number Publication date
JP3026432B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
US4740657A (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
KR102114626B1 (en) Anisotropic conductive film, connection method, and assembly
US20090071703A1 (en) Conductive paste, circuit board, circuit article and method for manufacturing such circuit article
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
JPH04259766A (en) Connecting member for circuit
CA2168427A1 (en) Adhesive paste containing polymeric resin
KR20150013703A (en) Three-dimensional electrically conductive adhesive film
JPS6177278A (en) Connection member for circuit
KR101906025B1 (en) Anisotropic conductive film, connection method, and joined body
JPS6177279A (en) Connection member for circuit
JP2006216388A (en) Conductive fine particle and anisotropic conductive material
JP2504057B2 (en) Conductive particles
JP3420809B2 (en) Conductive particles and anisotropic conductive adhesive using the same
JP2005194306A (en) Conducting adhesive and platy member for window using the same
JPH10116640A (en) Connection structure for circuit
JPH05279644A (en) Anisotropically conductive adhesive sheet
JPH083963B2 (en) Circuit connection member
JPH0773067B2 (en) Circuit connection member
JPH0773066B2 (en) Circuit connection member
JP2007250464A (en) Conductive particulate, manufacturing method of conductive particulate, and anisotropic conductive material
JPS6178069A (en) Connection member for circuit
JPH0340899B2 (en)
US6111005A (en) Polymeric adhesive paste
JPH0697573B2 (en) Circuit connection member
JP6285191B2 (en) Anisotropic conductive film, method for producing the same, connection method and joined body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees