JPH10115302A - Method and device for controlling pressure of hydraulic cylinder - Google Patents

Method and device for controlling pressure of hydraulic cylinder

Info

Publication number
JPH10115302A
JPH10115302A JP28920096A JP28920096A JPH10115302A JP H10115302 A JPH10115302 A JP H10115302A JP 28920096 A JP28920096 A JP 28920096A JP 28920096 A JP28920096 A JP 28920096A JP H10115302 A JPH10115302 A JP H10115302A
Authority
JP
Japan
Prior art keywords
pressure
cylinder
fluid
hydraulic cylinder
upper chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28920096A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yonetani
和幸 米谷
Sousuke Satou
霜介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seidensha Electronics Co Ltd
Original Assignee
Seidensha Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seidensha Electronics Co Ltd filed Critical Seidensha Electronics Co Ltd
Priority to JP28920096A priority Critical patent/JPH10115302A/en
Publication of JPH10115302A publication Critical patent/JPH10115302A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9221Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92441Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time
    • B29C66/92443Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • B29C66/9292Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
    • B29C66/92921Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams in specific relation to time, e.g. pressure-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/002Globes

Abstract

PROBLEM TO BE SOLVED: To detect and control the pressure of a hydraulic cylinder, including a transient pressure during pressurizing, with high accuracy. SOLUTION: A tool horn 4 is moved up and down by a hydraulic cylinder 5 to ultrasonically weld a work. An upper room pressure P1 and a lower room pressure P2 are detected by pressure sensors 19, 20 and a pressure difference between them is determined by a calculation controller 21. The pressure of the hydraulic cylinder 5 is calculated on the basis of the pressure difference. The pressure is compared with a set value F' to control a three-position solenoid valve 15 and an ultrasonic oscillator 22 on the basis of the compared results.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体圧シリンダの
加圧力制御方法およびその装置に係り、特に超音波加工
装置に適用するのに好適な流体圧シリンダの加圧力制御
方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a pressure of a hydraulic cylinder, and more particularly to a method and an apparatus for controlling a pressure of a hydraulic cylinder suitable for application to an ultrasonic machining apparatus.

【0002】[0002]

【従来の技術】図3は、超音波加工装置に適用されてい
る従来の流体圧シリンダを示すもので、図中、符号1は
超音波振動子2からの振動が伝達される固定ホーンであ
り、この固定ホーン1は、固定フランジ1aを介しケー
ス3に固定されているとともに、固定ホーン1の下端部
には、工具ホーン4が連結されている。そして、これら
を昇降駆動する流体圧シリンダ5は、ピストンロッド8
の下端部が前記ケース3に連結されており、流体圧シリ
ンダ5の駆動により工具ホーン4が昇降してワーク9の
溶着が行なわれるようになっている。
2. Description of the Related Art FIG. 3 shows a conventional hydraulic cylinder applied to an ultrasonic machining apparatus. In FIG. 3, reference numeral 1 denotes a fixed horn to which vibration from an ultrasonic vibrator 2 is transmitted. The fixed horn 1 is fixed to the case 3 via a fixed flange 1a, and a tool horn 4 is connected to a lower end of the fixed horn 1. The hydraulic cylinder 5 that drives these up and down is provided with a piston rod 8
Is connected to the case 3 so that the tool horn 4 is moved up and down by driving the fluid pressure cylinder 5 so that the work 9 is welded.

【0003】前記流体圧シリンダ5は、上ポート6aお
よび下ポート6bを介し上室10および下室11に選択
的に圧力流体が供給されるシリンダ本体6と、このシリ
ンダ本体6内を往復動するピストン7およびピストンロ
ッド8とを備えて複動型の片ロッドシリンダを構成して
おり、前記上ポート6aには、レギュレータ12が接続
され、また前記下ポート6bには、スピードコントロー
ルバルブ13が接続されている。
The fluid pressure cylinder 5 reciprocates in a cylinder body 6 through which an upper chamber 10 and a lower chamber 11 are selectively supplied with pressurized fluid via an upper port 6a and a lower port 6b. A double-acting single-rod cylinder is provided with the piston 7 and the piston rod 8, and a regulator 12 is connected to the upper port 6a, and a speed control valve 13 is connected to the lower port 6b. Have been.

【0004】ところで、一般に溶着時には、ワーク9へ
の加圧力および超音波をかけるタイミングが非常に重要
であるが、前記従来の流体圧シリンダ5においては、上
室10に供給される圧力流体の圧力を、レギュレータに
より調整して加圧力の調整を行なうとともに、超音波を
かけるタイミングを、リミット発振により一義的に決定
する方法が採られている。
In general, at the time of welding, the timing of applying a pressure to the work 9 and applying ultrasonic waves are very important. In the conventional hydraulic cylinder 5, the pressure of the pressure fluid supplied to the upper chamber 10 is high. Is adjusted by a regulator to adjust the pressing force, and the timing of applying ultrasonic waves is uniquely determined by limit oscillation.

【0005】[0005]

【発明が解決しようとする課題】前記従来の流体圧シリ
ンダの加圧力制御方法においては、上室10側の流体の
圧力を制御するのみであるので、下室11側の圧力によ
っては、工具ホーン4に予定した加圧力を加えることが
できないおそれがあるとともに、加圧途中の過渡的な加
圧力を知ることも困難であり、また頻繁に加圧力を変え
たい場合や、加圧中に加圧力を変えるような多段階加圧
の場合等にも、その制御が容易でないという問題があ
る。また、発振のタイミングが一義的に決定されるた
め、加圧力不足の状態でワーク9に超音波振動が加えら
れたり、あるいは逆に過加圧状態でワーク9に超音波振
動が加えられるおそれがあり、このような場合には、良
好な溶着結果が得られないという問題がある。
In the conventional pressure control method for a hydraulic cylinder, since only the pressure of the fluid in the upper chamber 10 is controlled, the tool horn may be controlled depending on the pressure in the lower chamber 11. 4 may not be able to be applied, and it is difficult to know the transient applied pressure during pressurization. There is also a problem that the control is not easy even in the case of multi-stage pressurization in which the pressure is changed. Further, since the oscillation timing is uniquely determined, there is a possibility that ultrasonic vibration is applied to the work 9 in a state where the pressing force is insufficient, or conversely, ultrasonic vibration is applied to the work 9 in an over-pressurized state. In such a case, there is a problem that a good welding result cannot be obtained.

【0006】本発明は、かかる現況に鑑みなされたもの
で、流体圧シリンダの加圧力を精度よく検出,制御する
ことができるとともに、加圧途中の過渡的な加圧力を知
ることもでき、また頻繁に加圧力を変える必要がある場
合や、加圧中に加圧力を変える多段階加圧の場合等に
も、充分に対応することができる流体圧シリンダの加圧
力制御方法およびその装置を提供することを目的とす
る。
The present invention has been made in view of such a situation, and it is possible to accurately detect and control the pressurizing force of a fluid pressure cylinder, and to know a transient pressurizing force during pressurization. Provided is a method and apparatus for controlling a pressure of a fluid pressure cylinder, which can sufficiently cope with a case where the pressure needs to be changed frequently or a multi-stage pressurization in which the pressure is changed during pressurization. The purpose is to do.

【0007】本発明の他の目的は、超音波加工装置に適
用した場合に、発振のタイミング等を加圧力に応じ制御
して高品位の溶着管理を行なうことができる流体圧シリ
ンダの加圧力制御方法およびその装置を提供するにあ
る。
Another object of the present invention is to control the timing of oscillation and the like in accordance with the pressing force when applied to an ultrasonic processing apparatus, and to control the pressing force of a hydraulic cylinder capable of performing high-quality welding management. A method and an apparatus therefor are provided.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
本発明は、シリンダ本体内に形成された上室および下室
に選択的に圧力流体を供給してピストンおよびピストン
ロッドを往復動させる複動型の流体圧シリンダにおい
て、前記上室および下室の圧力をそれぞれ検出するとと
もに、その差圧に基づき流体圧シリンダの推進力を求
め、この推進力を変化させて加圧力を制御するようにし
たことを特徴とする。そして、両室の差圧に基づき流体
圧シリンダの推進力を求め、この推進力を変化させて加
圧力を制御するようにしているので、流体圧シリンダの
加圧力を精度よく検出することが可能となるとともに、
加圧途中の過渡的な加圧力を知ることが可能となり、ま
た頻繁に加圧力を変える必要がある場合や、加圧中に加
圧力を変える多段階加圧の場合等にも、充分に対応する
ことが可能となる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a method for selectively supplying a pressurized fluid to an upper chamber and a lower chamber formed in a cylinder body to reciprocate a piston and a piston rod. In a dynamic type hydraulic cylinder, the pressure in the upper chamber and the lower chamber is detected respectively, the thrust of the hydraulic cylinder is determined based on the differential pressure, and the thrust is changed to control the pressing force. It is characterized by having done. Then, the thrust of the fluid pressure cylinder is obtained based on the pressure difference between the two chambers, and the thrust is changed to control the pressure, so that the pressure of the fluid pressure cylinder can be accurately detected. And
It is possible to know the transient pressure during pressurization, and it is fully compatible with the case where it is necessary to change the pressure frequently and the case of multi-stage pressurization where the pressure is changed during pressurization. It is possible to do.

【0009】本発明はまた、ピストンロッドに、超音波
加工用の工具ホーンを取付けるようにしたことを特徴と
する。そしてこれにより、超音波加工の際に発振のタイ
ミング等を加圧力に応じ制御することが可能となり、こ
れにより高品位の溶着管理が可能となる。
The present invention is also characterized in that a tool horn for ultrasonic machining is attached to the piston rod. This makes it possible to control the timing of oscillation and the like in accordance with the pressing force during ultrasonic processing, thereby enabling high-quality welding management.

【0010】本発明はまた、シリンダ本体内に形成され
た上室および下室に選択的に圧力流体を供給してピスト
ンおよびピストンロッドを往復動させる複動型の流体圧
シリンダにおいて、前記上室および下室の圧力をそれぞ
れ検出する圧力センサと、これら両圧力センサからの検
出信号によりその差圧に基づき流体圧シリンダの加圧力
を演算する演算手段と、この演算手段からの出力信号に
より前記各室への圧力流体の給排および停止を制御する
制御手段とをそれぞれ設けるようにしたことを特徴とす
る。そして、前記両圧力センサにより各室の圧力をそれ
ぞれ検出するとともに、演算手段により両室の差圧に基
づき流体圧シリンダの加圧力を演算するようにしている
ので、下室の圧力がどのように変化しても、流体圧シリ
ンダの加圧力を精度よく検出することが可能となるとと
もに、加圧途中の過渡的な加圧力を知ることも可能とな
る。また、演算手段からの出力信号により各室への圧力
流体の給排および停止を制御する制御手段を設けるよう
にしているので、頻繁に加圧力を変える必要がある場合
や、加圧中に加圧力を変える多段階加圧の場合等にも、
充分に対応することが可能となる。
The present invention also relates to a double-acting hydraulic cylinder for selectively supplying a pressurized fluid to an upper chamber and a lower chamber formed in a cylinder body to reciprocate a piston and a piston rod. A pressure sensor for detecting the pressure in the lower chamber and a pressure sensor for detecting the pressure in the lower chamber; a calculating means for calculating the pressure of the fluid pressure cylinder based on the differential pressure based on the detection signals from the two pressure sensors; And control means for controlling supply and discharge and stop of the pressure fluid to and from the chamber. The pressures of the respective chambers are respectively detected by the pressure sensors, and the pressure of the fluid pressure cylinder is calculated based on the pressure difference between the two chambers by the calculating means. Even if it changes, it is possible to accurately detect the pressing force of the fluid pressure cylinder and also to know the transient pressing force during pressurization. In addition, since control means for controlling the supply and discharge and stop of the pressure fluid to and from each chamber based on the output signal from the arithmetic means is provided, it is necessary to frequently change the pressurizing force, Even in the case of multi-stage pressurization that changes the pressure,
It is possible to respond sufficiently.

【0011】本発明はさらに、ピストンロッドに、超音
波加工用の工具ホーンを取付けるようにしたことを特徴
とする。そしてこれにより、超音波加工の際に発振のタ
イミング等を加圧力に応じ制御することが可能となり、
これにより高品位の溶着管理が可能となる。
The present invention is further characterized in that a tool horn for ultrasonic machining is attached to the piston rod. And by this, it becomes possible to control the timing of oscillation and the like according to the pressing force during ultrasonic processing,
This enables high-quality welding management.

【0012】[0012]

【発明の実施の形態】以下、本発明を図面を参照して説
明する。図1は、本発明の実施の一形態に係る流体圧シ
リンダの加圧力制御装置を示すもので、図中、符号1は
超音波振動子2からの振動が伝達される固定ホーンであ
り、この固定ホーン1は、固定フランジ1aを介しケー
ス3に固定されているとともに、固定ホーン1の下端部
には、工具ホーン4が連結されている。そして、これら
を昇降駆動する流体圧シリンダ5は、そのピストンロッ
ド8の下端部が前記ケース3に連結されており、流体圧
シリンダ5の駆動により工具ホーン4が昇降してワーク
9の溶着が行なわれるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a pressure control device for a hydraulic cylinder according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a fixed horn to which vibration from an ultrasonic vibrator 2 is transmitted. The fixed horn 1 is fixed to the case 3 via a fixed flange 1 a, and a tool horn 4 is connected to a lower end of the fixed horn 1. The lower end of the piston rod 8 of the fluid pressure cylinder 5 that drives these up and down is connected to the case 3, and the tool horn 4 is moved up and down by driving the fluid pressure cylinder 5 to weld the work 9. It is supposed to be.

【0013】前記流体圧シリンダ5は、図1に示すよう
に、上ポート6aおよび下ポート6bを介し上室10お
よび下室11に選択的に圧力流体が供給されるシリンダ
本体6と、このシリンダ本体6内を往復動するピストン
ロッド7およびピストンロッド8とを備えて複動型の片
ロッドシリンダを構成している。
As shown in FIG. 1, the fluid pressure cylinder 5 includes a cylinder body 6 for selectively supplying a pressurized fluid to an upper chamber 10 and a lower chamber 11 via an upper port 6a and a lower port 6b. The piston rod 7 and the piston rod 8 that reciprocate in the main body 6 constitute a double-acting single rod cylinder.

【0014】前記シリンダ本体6の上ポート6aには、
図1に示すように、センタークローズ型の三位置ソレノ
イドバルブ15が接続されており、この三位置ソレノイ
ドバルブには、フィルタ16,フィルタレギュレータ1
7,チェックバルブ18およびレギュレータ12を介し
て、図示しない流体圧源が接続されている。また、前記
シリンダ本体6の下ポート6bには、スピードコントロ
ールバルブ13を介し前記三位置ソレノイドバルブ15
が接続されている。
The upper port 6a of the cylinder body 6 has:
As shown in FIG. 1, a center-closed three-position solenoid valve 15 is connected to the three-position solenoid valve.
7, a fluid pressure source (not shown) is connected via the check valve 18 and the regulator 12. The lower port 6b of the cylinder body 6 is connected to the three-position solenoid valve 15 via a speed control valve 13.
Is connected.

【0015】この三位置ソレノイドバルブ15は、図1
に示すように、第1ソレノイド15aがON,第2ソレ
ノイド15bがOFFでレギュレータ12が上ポート6
aに接続され、圧力流体が上室10に供給されてピスト
ン7が下降するとともに、第1ソレノイド15aがOF
F,第2ソレノイド15bがONでレギュレータ12が
下ポート6bに接続され、圧力流体が下室11に供給さ
れてピストン7が上昇するようになっている。また、両
ソレノイド15a,15bがOFFで三位置ソレノイド
バルブ15が図1に示すクローズの状態になり、両室1
0,11内に圧力流体が封入されてピストン7が所定位
置で停止するようになっている。
The three-position solenoid valve 15 is shown in FIG.
As shown in the figure, the first solenoid 15a is ON, the second solenoid 15b is OFF, and the regulator 12 is
a, the pressurized fluid is supplied to the upper chamber 10, the piston 7 descends, and the first solenoid 15a
F, the second solenoid 15b is ON, the regulator 12 is connected to the lower port 6b, and the pressurized fluid is supplied to the lower chamber 11 so that the piston 7 rises. Further, when the two solenoids 15a and 15b are OFF, the three-position solenoid valve 15 is in the closed state shown in FIG.
A pressure fluid is sealed in 0, 11 so that the piston 7 stops at a predetermined position.

【0016】前記上室10および下室11の圧力は、図
1に示すように、圧力センサ19,20により常時検出
されるようになっており、その検出信号は、演算制御装
置21に入力されるようになっている。そして、この演
算制御装置21は、前記両圧力センサ19,20からの
検出信号から両室10,11の差圧を演算するととも
に、演算した差圧に基づき流体圧シリンダ5の加圧力を
演算するようになっている。
As shown in FIG. 1, the pressures in the upper chamber 10 and the lower chamber 11 are constantly detected by pressure sensors 19 and 20, and the detection signals are input to an arithmetic and control unit 21. It has become so. The arithmetic and control unit 21 calculates the differential pressure between the two chambers 10 and 11 from the detection signals from the two pressure sensors 19 and 20, and calculates the pressing force of the fluid pressure cylinder 5 based on the calculated differential pressure. It has become.

【0017】この演算制御装置21にはまた、図1に示
すように、加圧力の設定値F’が入力されるようになっ
ており、演算制御装置21は、この設定値F’と流体圧
シリンダ5の加圧力とを比較し、その比較結果に応じて
第1ソレノイド15aのON/OFF信号S1 ,第2ソ
レノイド15bのON/OFF信号S2 ,および超音波
振動子2を駆動する超音波発振器22の制御信号S3
それぞれ出力するようになっている。
As shown in FIG. 1, a set value F 'of the pressurizing force is input to the arithmetic and control unit 21. The pressing force of the cylinder 5 is compared, and the ON / OFF signal S 1 of the first solenoid 15 a, the ON / OFF signal S 2 of the second solenoid 15 b, and the ultrasonic oscillator 2 for driving the ultrasonic vibrator 2 according to the comparison result. It has a control signal S 3 of the wave generator 22 to output respectively.

【0018】次に、本実施の形態の作用について説明す
る。図1に示す初期状態においては、圧力センサ19に
より上室圧力P1 が検出されるとともに、圧力センサ2
0により下室圧力P2 が検出され、これら両検出信号
は、演算制御装置21に入力される。
Next, the operation of the present embodiment will be described. In the initial state shown in FIG. 1, the upper chamber pressure P 1 is detected by the pressure sensor 19 and the pressure sensor 2
The lower chamber pressure P 2 is detected by 0, both these detection signals are inputted to the arithmetic and control unit 21.

【0019】演算制御装置21では、前記両検出信号の
入力により上室圧力P1 と下室圧力P2 との差圧が求め
られるとともに、この差圧と設定値F’とが比較され
る。そして、この比較結果に基づき所定のON/OFF
信号S1 ,S2 が出力される。
The arithmetic and control unit 21 obtains a differential pressure between the upper chamber pressure P 1 and the lower chamber pressure P 2 based on the input of the two detection signals, and compares this differential pressure with a set value F ′. Then, a predetermined ON / OFF is determined based on the comparison result.
Signals S 1 and S 2 are output.

【0020】ところで、初期状態における両信号S1
2 は、第1ソレノイド15aがON,第2ソレノイド
15bがOFFの信号となり、三位置ソレノイドバルブ
15は、図1に示すクローズの位置から下降側に切換え
られ、供給圧力PO の圧力流体が上室10に供給され
る。これにより、ピストン7が下降し、工具ホーン4が
所定の加圧力Fでワーク9に押付けられる。その後、所
定のタイミングで演算制御装置21から出力される制御
信号S3 により超音波発振器22が起動され、ワーク9
の超音波溶着がなされる。
Incidentally, both signals S 1 ,
S 2, the first solenoid 15a is ON, the second solenoid 15b is a signal OFF, the three position solenoid valve 15 is switched to the descending side from the position of closing shown in FIG. 1, the pressure fluid supply pressure P O It is supplied to the upper chamber 10. As a result, the piston 7 descends, and the tool horn 4 is pressed against the work 9 with a predetermined pressing force F. Thereafter, ultrasonic generator 22 is activated by the control signal S 3 output from the arithmetic and control unit 21 at a predetermined timing, the workpiece 9
Is ultrasonically welded.

【0021】ここで、ピストンロツド8の下端に取付け
られている工具ホーン4等の可動部の総重量をM,ピス
トン7の受圧面積をSとすると、流体圧シリンダ5によ
る加圧力Fは、
Here, assuming that the total weight of the movable parts such as the tool horn 4 attached to the lower end of the piston rod 8 is M, and the pressure receiving area of the piston 7 is S, the pressing force F by the fluid pressure cylinder 5 is

【0022】[0022]

【数1】 (Equation 1)

【0023】で表わされる。上室圧力P1 と下室圧力P
2 との差圧は、上室圧力P1 が供給圧力PO に達した
後、工具ホーン4がワーク9に接触すると変化し始め、
下室圧力P2 が零になった後は、
## EQU2 ## The upper chamber pressure P 1 and a lower chamber pressure P
After the upper chamber pressure P 1 reaches the supply pressure P O , the differential pressure with respect to 2 starts to change when the tool horn 4 comes into contact with the work 9,
After the lower chamber pressure P 2 has become zero,

【0024】[0024]

【数2】 (Equation 2)

【0025】で一定となる。図2はこの状態を示したグ
ラフである。図2の上側のグラフは、上室圧力P1 と下
室圧力P2 との変化を示し、また図2の下側のグラフ
は、これに対応する加圧力Fの変化を示している。
Is constant. FIG. 2 is a graph showing this state. The upper graph in Figure 2 shows changes in the upper chamber pressure P 1 and the lower chamber pressure P 2, also lower graph of Figure 2 shows the change in pressure force F corresponding thereto.

【0026】図2からも明らかなように、上室圧力P1
は、三位置ソレノイドバルブ15の切換後次第に上昇し
て時間T1 で供給圧力PO に達し、その後一定となる。
一方、下室圧力P2 は、工具ホーン4がワーク9に接触
する時間T1 までは一定であり、工具ホーン4がワーク
9に接触した後次第に下降し、上室圧力P1 と一致する
時間T3 を経た後、時間T4 で零となる。したがって、
加圧力Fは、時間T2までは零でその後上昇し始め、時
間T3 でMとなった後、時間T4 で(PO ・S+M)に
達する。そして、その後一定となる。
As is clear from FIG. 2, the upper chamber pressure P 1
The three-position reaches the supply pressure P O in the subsequently rises and time as soon as T 1 of the solenoid valve 15, becomes constant thereafter.
On the other hand, the lower chamber pressure P 2 is constant until the time T 1 at which the tool horn 4 contacts the workpiece 9, gradually decreases after the tool horn 4 contacts the workpiece 9, and coincides with the upper chamber pressure P 1. after passing through the T 3, it becomes zero at time T 4. Therefore,
Pressure F is until time T 2 begins to rise then zero, after becoming a M at time T 3, at time T 4 reaches (P O · S + M) . Then, it becomes constant thereafter.

【0027】なお、図2に示すグラフは、供給圧力PO
の圧力流体を上室10に連続して供給した場合の変化を
示したものであり、例えば時間T3 で三位置ソレノイド
バルブ15を図1に示すクローズ状態に戻せば、圧力流
体が両室10,11内に封入され、加圧力FはMで一定
となる。
The graph shown in FIG. 2 shows the supply pressure P O
And shows the change when the pressure fluid supplied continuously to the upper chamber 10 of, for example, by returning the time T 3 in three positions solenoid valve 15 to the closed state shown in FIG. 1, the pressure fluid both chambers 10 , 11 and the pressure F is constant at M.

【0028】前記演算制御装置21からの制御信号S3
は、時間T2 以降予め定められている任意のタイミング
で出力される。これにより、例えば最大加圧力をFma
xとした場合、Fmaxが0%,すなわち工具ホーン4
がワーク9に接触した時点で制御信号S3 を出力させて
発振を開始させたり、あるいは加圧力が1/2Fmax
になった時点で発振を開始させたりすることが可能とな
る。また、加圧力が1/2Fmaxになった時点で発振
を開始して0.5秒間溶着を行ない、その後75%Fm
axで1秒間保持した後に工具ホーン4を上昇させる等
の制御も可能となる。
The control signal S 3 from the arithmetic and control unit 21
Is output at any timing are predetermined time T 2 later. Thereby, for example, the maximum pressing force is set to Fma
x, Fmax is 0%, that is, tool horn 4
There or to start oscillation to output a control signal S 3 at the time of the contact with the workpiece 9, or the pressure 1 / 2Fmax
It becomes possible to start the oscillation at the time when the state becomes. When the pressure becomes 1/2 Fmax, oscillation starts and welding is performed for 0.5 seconds.
Control such as raising the tool horn 4 after holding for 1 second at ax is also possible.

【0029】本発明者は、図1に示すワーク9に代えて
ロードセルを設置し、演算制御装置21で演算された加
圧力Fとロードセルで測定した実加圧力との比較実験を
行なった。
The inventor of the present invention installed a load cell in place of the work 9 shown in FIG. 1, and performed an experiment for comparing the applied pressure F calculated by the arithmetic and control unit 21 with the actual applied pressure measured by the load cell.

【0030】その結果、演算制御装置21で演算された
加圧力Fとロードセルで測定した実加圧力とが非常によ
く一致することが確認された。また、演算制御装置21
に入力される設定値F’を種々変化させても、演算され
た加圧力Fと測定した実加圧力とが非常によく一致する
ことも確認された。
As a result, it was confirmed that the applied pressure F calculated by the arithmetic and control unit 21 and the actual applied pressure measured by the load cell matched very well. The arithmetic and control unit 21
It was also confirmed that the calculated pressurizing force F and the measured actual pressurizing force matched very well even when the set value F ′ input to the sample was variously changed.

【0031】しかして、上室10および下室11の各圧
力を常時検出し、その差圧に基づいて流体圧シリンダ5
の加圧力を演算するようにしているので、加圧力を精度
よく検出,制御することができるとともに、加圧途中の
過渡的な加圧力を知ることもできるので、超音波発振の
タイミング等を加圧力に応じて制御することにより、高
品位の溶着管理を行なうことができる。
Thus, the pressures in the upper chamber 10 and the lower chamber 11 are constantly detected, and based on the differential pressure, the hydraulic cylinder 5
Calculates the applied pressure of the pressure, so that the applied pressure can be accurately detected and controlled, and the transient pressure applied during pressurization can be known. By controlling according to the pressure, high-quality welding management can be performed.

【0032】なお、前記実施の形態においては、超音波
加工装置に適用される流体圧シリンダ5の加圧力制御を
例に採って説明したが、流体圧シリンダ5を用いる各種
機器に汎く適用することができる。
In the above embodiment, the control of the pressure of the hydraulic cylinder 5 applied to the ultrasonic machining apparatus has been described as an example. However, the present invention is generally applied to various devices using the hydraulic cylinder 5. be able to.

【0033】[0033]

【発明の効果】以上説明したように本発明は、上室およ
び下室の圧力をそれぞれ検出するとともに、その差圧に
基づき流体圧シリンダの推進力を求め、この推進力を変
化させて加圧力を制御するようにしているので、流体圧
シリンダの加圧力を精度よく検出することができるとと
もに、加圧途中の過渡的な加圧力を知ることもでき、ま
た頻繁に加圧力を変える必要がある場合や、加圧中に加
圧力を変える多段階加圧の場合等にも、充分に対応する
ことができる。
As described above, the present invention detects the pressures in the upper chamber and the lower chamber, obtains the thrust of the fluid pressure cylinder based on the differential pressure, and changes the thrust to apply the pressing force. Control, it is possible to accurately detect the pressure of the fluid pressure cylinder, to know the transient pressure during pressurization, and to change the pressure frequently. In this case, it is possible to sufficiently cope with a case where the pressing force is changed during the pressurization.

【0034】本発明はまた、ピストンロッドに、超音波
加工用の工具ホーンを取付けるようにしているので、超
音波加工の際に、発振のタイミング等を加圧力に応じ制
御したり、加圧力を多段階に変化させたりすることがで
き、これにより高品位の溶着管理を行なうことができ
る。
According to the present invention, since a tool horn for ultrasonic machining is mounted on the piston rod, the timing of oscillation and the like can be controlled in accordance with the applied pressure or the applied pressure can be controlled during the ultrasonic machining. It can be changed in multiple stages, so that high-quality welding control can be performed.

【0035】本発明はまた、両圧力センサにより各室の
圧力をそれぞれ検出するとともに、演算手段により両室
の差圧に基づき流体圧シリンダの加圧力を演算するよう
にしているので、下室の圧力がどのように変化しても、
流体圧シリンダの加圧力を精度よく検出することができ
るとともに、加圧途中の過渡的な加圧力を知ることもで
きる。また、演算手段からの出力信号により各室への圧
力流体の給排および停止を制御する制御手段を設けるよ
うにしているので、頻繁に加圧力を変える必要がある場
合や、加圧中に加圧力を多段階加圧の場合等にも、充分
に対応することができる。
According to the present invention, the pressure in each chamber is detected by both pressure sensors, and the pressure of the fluid pressure cylinder is calculated by the calculating means based on the pressure difference between the two chambers. No matter how the pressure changes,
The pressure of the fluid pressure cylinder can be accurately detected, and the transient pressure during pressurization can be known. In addition, since control means for controlling supply and discharge and stop of the pressure fluid to and from each chamber based on an output signal from the arithmetic means is provided, it is necessary to frequently change the pressurizing force or to apply the pressurizing force during pressurizing. It is possible to sufficiently cope with the case where the pressure is multi-stage pressurized.

【0036】本発明はさらに、ピストンロツドに超音波
加工用の工具ホーンを取付けるようにしているので、超
音波加工の際に、発振のタイミング等を加圧力に応じ制
御したり、加圧力を多段階に変化させたりすることがで
き、これにより、高品位の溶着管理を行なうことができ
る。
According to the present invention, since a tool horn for ultrasonic machining is attached to the piston rod, the timing of oscillation and the like can be controlled in accordance with the pressure during the ultrasonic machining, or the pressure can be adjusted in multiple stages. Or the like, whereby high-quality welding management can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る流体圧シリンダの
加圧力制御装置を示す構成図である。
FIG. 1 is a configuration diagram showing a pressure control device for a hydraulic cylinder according to an embodiment of the present invention.

【図2】上室圧力および下室圧力の変化とこれに対応す
る加圧力の変化とを示すグラフである。
FIG. 2 is a graph showing changes in upper chamber pressure and lower chamber pressure and corresponding changes in pressure.

【図3】超音波加工装置に適用される従来の流体圧シリ
ンダを示す説明図である。
FIG. 3 is an explanatory view showing a conventional hydraulic cylinder applied to an ultrasonic processing apparatus.

【符号の説明】[Explanation of symbols]

1 固定ホーン 2 超音波振動子 3 ケース 4 工具ホーン 5 流体圧シリンダ 6 シリンダ本体 6a 上ポート 6b 下ポート 7 ピストン 8 ピストンロッド 9 ワーク 10 上室 11 下室 12 レギュレータ 13 スピードコントロールバルブ 15 三位置ソレノイドバルブ 15a 第1ソレノイド 15b 第2ソレノイド 16 フィルタ 17 フィルタレギュレータ 19,20 圧力センサ 21 演算制御装置 22 超音波発振器 S1 ,S2 ON/OFF信号 S3 制御信号 F’ 設定値 P1 上室圧力 P2 下室圧力 PO 供給圧力 F 加圧力DESCRIPTION OF SYMBOLS 1 Fixed horn 2 Ultrasonic vibrator 3 Case 4 Tool horn 5 Fluid pressure cylinder 6 Cylinder main body 6a Upper port 6b Lower port 7 Piston 8 Piston rod 9 Work 10 Upper chamber 11 Lower chamber 12 Regulator 13 Speed control valve 15 Three-position solenoid valve 15a first solenoid 15b second solenoid 16 filter 17 filter regulator 19 pressure sensor 21 the arithmetic and control unit 22 ultrasonic generator S 1, S 2 ON / OFF signal S 3 control signal F 'setpoint P 1 upper chamber pressure P 2 Lower chamber pressure P O supply pressure F Pressure

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ本体内に形成された上室および
下室に選択的に圧力流体を供給してピストンおよびピス
トンロッドを往復動させる複動型の流体圧シリンダにお
いて、前記上室および下室の圧力をそれぞれ検出すると
ともに、その差圧に基づき流体圧シリンダの推進力を求
め、この推進力を変化させて加圧力を制御することを特
徴とする流体圧シリンダの加圧力制御方法。
1. A double-acting hydraulic cylinder for selectively supplying a pressurized fluid to an upper chamber and a lower chamber formed in a cylinder body to reciprocate a piston and a piston rod, wherein the upper chamber and the lower chamber are provided. A pressure control method for a fluid pressure cylinder, wherein the pressure of the fluid pressure cylinder is determined based on the differential pressure, the driving force of the fluid pressure cylinder is determined, and the pressure is controlled by changing the driving force.
【請求項2】 ピストンロッドには、超音波加工用の工
具ホーンが取付けられていることを特徴とする請求項1
記載の流体圧シリンダの加圧力制御方法。
2. A tool horn for ultrasonic machining is attached to a piston rod.
A pressure control method for a hydraulic cylinder according to the above.
【請求項3】 シリンダ本体内に形成された上室および
下室に選択的に圧力流体を供給してピストンおよびピス
トンロッドを往復動させる複動型の流体圧シリンダにお
いて、前記上室および下室の圧力をそれぞれ検出する圧
力センサと、これら両圧力センサからの検出信号により
その差圧に基づき流体圧シリンダの加圧力を演算する演
算手段と、この演算手段からの出力信号により前記各室
への圧力流体の給排および停止を制御する制御手段とを
具備することを特徴とする流体圧シリンダの加圧力制御
装置。
3. A double-acting hydraulic cylinder for selectively supplying a pressurized fluid to an upper chamber and a lower chamber formed in a cylinder body to reciprocate a piston and a piston rod, wherein the upper chamber and the lower chamber are provided. Pressure sensor for detecting the pressure of each of the pressure sensors, calculating means for calculating the pressing force of the fluid pressure cylinder based on the differential pressure based on the detection signals from these two pressure sensors, and output signals from the calculating means Control means for controlling the supply and discharge and stop of the pressure fluid.
【請求項4】 ピストンロッドには、超音波加工用の工
具ホーンが取付けられていることを特徴とする請求項3
記載の流体圧シリンダの加圧力制御装置。
4. A tool horn for ultrasonic machining is attached to the piston rod.
A pressure control device for a fluid pressure cylinder as described in the above.
JP28920096A 1996-10-10 1996-10-10 Method and device for controlling pressure of hydraulic cylinder Pending JPH10115302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28920096A JPH10115302A (en) 1996-10-10 1996-10-10 Method and device for controlling pressure of hydraulic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28920096A JPH10115302A (en) 1996-10-10 1996-10-10 Method and device for controlling pressure of hydraulic cylinder

Publications (1)

Publication Number Publication Date
JPH10115302A true JPH10115302A (en) 1998-05-06

Family

ID=17740082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28920096A Pending JPH10115302A (en) 1996-10-10 1996-10-10 Method and device for controlling pressure of hydraulic cylinder

Country Status (1)

Country Link
JP (1) JPH10115302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105280B1 (en) * 2008-03-27 2016-10-12 Herrmann Ultraschalltechnik GmbH & Co. KG Method of operating an ultrasound welding tool with fluid drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105280B1 (en) * 2008-03-27 2016-10-12 Herrmann Ultraschalltechnik GmbH & Co. KG Method of operating an ultrasound welding tool with fluid drive

Similar Documents

Publication Publication Date Title
KR100603243B1 (en) Air servo cylinder apparatus and controlling method therefor
JP4200284B2 (en) High speed driving method and system for pressure cylinder
WO2010058632A1 (en) Hydraulic actuator and hydraulic vibration test device
KR20000023010A (en) Bulging device and bulging method
US4408114A (en) Resistance welding with pressure control in response to deviation between welding voltage and time varying reference values therefor
CA2383535C (en) Pneumatic weld head
JP2003305573A (en) Pressure device for electric resistance welding machine
JPH10115302A (en) Method and device for controlling pressure of hydraulic cylinder
JPH10504371A (en) Hydraulic drive control device
US4387289A (en) Control system for resistance welding
JPH10113992A (en) Welding controller for ultrasonic welder
JP2002276611A (en) Hydraulic operation system, sheet metal working machine and industrial machine
JPS5935872A (en) Method and device for controlling filling in accumulator
JPH0932802A (en) Follow-up operation control method for fluid device and controller therefor
JP3975186B2 (en) Fluid processing equipment for fine holes
JP3358383B2 (en) Material testing machine
JPS6382339A (en) Material testing machine
JPH08206890A (en) Pressure reducing method and device for cold isostatic pressurization device
JPH07136770A (en) Equipment and method for resistance welding for airtight sealing
JPS592589B2 (en) flash welding equipment
JPH0726080Y2 (en) Slide top dead center position adjustment device for hydraulic drive press
JPH1043868A (en) Spot welding equipment
JPH04301741A (en) Material testing machine
JPS5932681A (en) Direct movement type reciprocating pumping device
JPH08109908A (en) Pulsating fluid pressure control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115