JPH10115296A - Refrigerant compressor - Google Patents

Refrigerant compressor

Info

Publication number
JPH10115296A
JPH10115296A JP27003296A JP27003296A JPH10115296A JP H10115296 A JPH10115296 A JP H10115296A JP 27003296 A JP27003296 A JP 27003296A JP 27003296 A JP27003296 A JP 27003296A JP H10115296 A JPH10115296 A JP H10115296A
Authority
JP
Japan
Prior art keywords
refrigerant
rotary shaft
rotating shaft
refrigerant compressor
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27003296A
Other languages
Japanese (ja)
Inventor
Masazo Okajima
政三 岡島
Ayumi Mori
あゆみ 森
Kazuhisa Ishikawa
和久 石川
Takeo Komatsubara
健夫 小松原
Masahiko Kamata
正彦 鎌田
Kouchiyou Suga
幸頂 菅
Hiroyuki Suma
浩之 須摩
Kyoji Ito
恭二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK, Sanyo Electric Co Ltd filed Critical Nihon Denshi Kogyo KK
Priority to JP27003296A priority Critical patent/JPH10115296A/en
Priority to TW086114840A priority patent/TW408212B/en
Priority to US08/948,002 priority patent/US6139296A/en
Priority to EP97117617A priority patent/EP0835949B1/en
Priority to SG1997003719A priority patent/SG60125A1/en
Priority to DE69709598T priority patent/DE69709598T2/en
Priority to KR1019970052201A priority patent/KR100508582B1/en
Priority to IDP973418A priority patent/ID18849A/en
Publication of JPH10115296A publication Critical patent/JPH10115296A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • F05C2201/0439Cast iron
    • F05C2201/0442Spheroidal graphite cast iron, e.g. nodular iron, ductile iron

Landscapes

  • Compressor (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a friction coefficient and improve a wear resistance by using a rotary shaft applied a plasma sulfonitriding process on the surface. SOLUTION: A refrigerant poured from a suction pipe 19 in a cylinder 7 is discharged in a discharge muffler 17 and discharged from the discharge pipe 20 to the outside of an air-tight vessel 1 through an electric element 2. An oil 18 poured in the bottom of the air-tight vessel 1 is sucked up through the hollow hole 21 of the rotary shaft 8 by a vacuum phenomenon by the high speed rotation of the rotary shaft 8 and supplied to the slide surface of the slide member of the roller 10 and vane 12 of the rotation compression element 3 and the slide surface between the rotary shaft 8 and upper/lower bearings 13, 14 and a lubrication is carried out. The refrigerant compressed in the cylinder 7 prevents the leak to a low pressure side. The rotary shaft 8 is made by high elastic FCD and the plasma sulfonitriding process is applied on its surface and a front layer part contained sulphur is formed by the chemical reaction of iron and sulphur on the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒圧縮機に関す
るものであり、さらに詳しくはオゾン層を破壊する危険
がないHFC系冷媒などを使用する冷凍装置に使用され
る冷媒圧縮機であって、回転軸の摺動面の耐摩耗性を向
上した冷媒圧縮機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant compressor, and more particularly, to a refrigerant compressor used in a refrigeration system using an HFC-based refrigerant or the like which does not have a risk of destructing an ozone layer. The present invention relates to a refrigerant compressor having improved wear resistance of a sliding surface of a rotating shaft.

【0002】[0002]

【従来の技術】冷凍機の冷媒としては従来ジクロロジフ
ルオロメタン(R−12)や共沸混合冷媒のR−22と
モノクロロペンタフルオロエタン(R−115a)とか
らなるR−502が用いられており、これらの冷媒は、
通常の冷凍装置に好適であり、冷媒と相溶性のある鉱物
油やアルキルベンゼン系油等の冷凍機油を使用した冷凍
サイクルは、信頼性、耐久性など高い品質レベルに至っ
ている。
2. Description of the Related Art Conventionally, dichlorodifluoromethane (R-12) or R-502 composed of azeotropic refrigerant R-22 and monochloropentafluoroethane (R-115a) has been used as a refrigerant for a refrigerator. , These refrigerants
A refrigeration cycle that is suitable for ordinary refrigeration equipment and uses refrigeration oil such as mineral oil or alkylbenzene-based oil that is compatible with the refrigerant has reached high quality levels such as reliability and durability.

【0003】しかしながら、上記の冷媒は、オゾン破壊
が高く、大気中に放出されて地球上空のオゾン層に到達
すると、このオゾン層を破壊する。このオゾン層の破壊
は冷媒中の塩素基(Cl)により引き起こされる。そこ
で、塩素基の含有量の少ない冷媒、例えはクロロジフル
オロメタン(HCFC−22、R−22)、塩素基を含
まない冷媒、例えはジフルオロメタン(HFC−32、
R−32)、ペンタフルオロエタン(HFC−125、
R−125)や1,1,1,2−テトラフルオロエタン
(HFC−134a、R−134a)がこれらの代替冷
媒(以下、HFC系冷媒と称す)として考えられてい
る。HFC系冷媒に対して使用される冷凍機油として
は、HFC系冷媒と相溶性のない鉱物油やアルキルベン
ゼン系油などや、HFC系冷媒と相溶性のあるエステル
系冷凍機油、エーテル系冷凍機油、それらの混合油など
がある。
[0003] However, the above-mentioned refrigerant has high ozone depletion, and when released into the atmosphere and reaches the ozone layer above the earth, the ozone layer is destroyed. This destruction of the ozone layer is caused by chlorine groups (Cl) in the refrigerant. Therefore, a refrigerant having a low chlorine group content, such as chlorodifluoromethane (HCFC-22, R-22), a refrigerant containing no chlorine group, such as difluoromethane (HFC-32,
R-32), pentafluoroethane (HFC-125,
R-125) and 1,1,1,2-tetrafluoroethane (HFC-134a, R-134a) are considered as these alternative refrigerants (hereinafter referred to as HFC-based refrigerants). Refrigeration oils used for HFC-based refrigerants include mineral oils and alkylbenzene-based oils that are not compatible with HFC-based refrigerants, ester-based refrigeration oils that are compatible with HFC-based refrigerants, and ether-based refrigeration oils. And mixed oils.

【0004】従来、ロータリ式圧縮機、レシプロ式圧縮
機などの圧縮機の回転軸の表面は摺動面の耐摩耗性を向
上を計るために、塩浴軟窒化処理、イオン窒化処理、塩
浴浸硫窒化処理、電解浸硫窒化処理などの表面処理が行
われていたが、冷媒がHFC系冷媒に替わり、冷凍機油
がエステル系冷凍機油やエーテル系冷凍機油に移行する
と、これら従来の処理による化合物層[窒化物(ε−F
3 N)を主体とする]では、摩擦係数が高いなどのた
めに耐摩耗性が不足し、長期に亘り安定して運転できな
いため、改良した回転軸を備えたロータリ式圧縮機、レ
シプロ式圧縮機などの圧縮機が強く求められている。
Conventionally, the surface of the rotating shaft of a compressor such as a rotary compressor or a reciprocating compressor has been subjected to salt bath nitrocarburizing treatment, ion nitriding treatment, and salt bath in order to improve the wear resistance of the sliding surface. Surface treatments such as nitrosulphurizing and electrolytic sulphonitriding were performed, but when the refrigerant was replaced by HFC-based refrigerants and the refrigerating machine oil was transferred to ester-based or ether-based refrigerating machine oils, these conventional treatments Compound layer [Nitride (ε-F
e 3 N) as a main component], the friction coefficient is high, the wear resistance is insufficient, and stable operation cannot be performed for a long period of time. Therefore, a rotary compressor with an improved rotary shaft, a reciprocating type There is a strong demand for compressors such as compressors.

【0005】また、冷媒がHFC系冷媒に替わり、冷凍
機油がエステル系冷凍機油やエーテル系冷凍機油に移行
すると、回転軸の材質も高弾性のFCD(ダクタイル鋳
鉄)を使用する必要が生じるが、高弾性の材料、特にF
CDを使用すると、回転軸の中心孔(冷凍機油を冷媒圧
縮機の下部にあるオイル溜りから冷媒圧縮機の上部に循
環するための孔)は従来機械加工により開けられていた
ため、この機械加工が困難になる。経済的に容易に中心
孔を作成した高弾性の回転軸を備えた冷媒圧縮機が強く
求められている。
[0005] Further, when the refrigerant is replaced with an HFC-based refrigerant and the refrigerating machine oil is changed to an ester-based refrigerating machine oil or an ether-based refrigerating machine oil, it is necessary to use a highly elastic FCD (ductile cast iron) for the material of the rotating shaft. High elasticity material, especially F
When a CD is used, the center hole of the rotating shaft (the hole for circulating the refrigerating machine oil from the oil reservoir at the lower part of the refrigerant compressor to the upper part of the refrigerant compressor) has been opened by conventional machining. It becomes difficult. There is a strong need for a refrigerant compressor having a high elasticity rotating shaft whose center hole is easily made economically.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、冷凍
機油としてエステル系冷凍機油、エーテル系冷凍機油な
どを用いたり、HFC系冷媒を使用した場合でも、回転
軸の表面の摺動部における摩擦係数が低く、かつ耐摩耗
性の高い回転軸を備えた冷媒圧縮機を提供すること、お
よび、経済的に容易に中心孔を作成した高弾性の回転軸
を備えた冷媒圧縮機を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a refrigerating machine oil that uses an ester-based refrigerating machine oil, an ether-based refrigerating machine oil, or an HFC-based refrigerant. To provide a refrigerant compressor having a rotating shaft having a low coefficient of friction and high wear resistance, and to provide a refrigerant compressor having a high-elastic rotating shaft having a center hole easily and economically formed. That is.

【0007】[0007]

【課題を解決するための手段】本発明者等は上記の課題
を解決すべく研究を重ねた結果、回転軸の表面にプラズ
マ浸硫窒化処理を施すことにより摩擦係数が低く、耐摩
耗性が向上すること、および、回転軸の鋳造段階で消失
模型型またはシェル中子を用いて中心孔を作成すること
により前記課題を解決できることを見いだし、本発明を
完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted various studies to solve the above-mentioned problems, and as a result, by subjecting the surface of the rotating shaft to plasma sulphiditriding, the friction coefficient is low and the wear resistance is low. The present invention has been found to be improved and that the above problem can be solved by creating a center hole using a vanishing model or a shell core at the stage of casting the rotating shaft, thereby completing the present invention.

【0008】すなわち、本発明の請求項1の発明は、回
転軸によって駆動される圧縮要素を備え、吸入したHF
C系冷媒あるいはHFC系冷媒を主体とする冷媒をこの
圧縮要素により圧縮して吐出するようにした冷媒圧縮機
であって、前記回転軸として表面にプラズマ浸硫窒化処
理を施した回転軸を用いることを特徴とする冷媒圧縮機
である。
That is, the invention of claim 1 of the present invention comprises a compression element driven by a rotary shaft,
A refrigerant compressor in which a refrigerant mainly composed of a C-based refrigerant or an HFC-based refrigerant is compressed and discharged by the compression element, and uses a rotating shaft having a surface subjected to a plasma nitrosulphurizing process as the rotating shaft. It is a refrigerant compressor characterized by the above-mentioned.

【0009】本発明の請求項2の発明は、請求項1記載
の冷媒圧縮機において、前記回転軸としてFCD製回転
軸を使用することを特徴とする。
According to a second aspect of the present invention, in the refrigerant compressor according to the first aspect, an FCD rotary shaft is used as the rotary shaft.

【0010】本発明の請求項3の発明は、請求項2記載
の冷媒圧縮機において、前記回転軸の鋳造段階で消失模
型型またはシェル中子を用いて中心孔を作成した中空F
CD製回転軸を使用することを特徴とする。
According to a third aspect of the present invention, there is provided the refrigerant compressor according to the second aspect, wherein a center hole is formed using a vanishing model or shell core in the casting step of the rotating shaft.
It is characterized by using a rotating shaft made of CD.

【0011】本発明の請求項4の発明は、請求項1ない
し請求項3記載の冷媒圧縮機において、冷凍機油がエス
テル系潤滑油、エーテル系潤滑油あるいはこれらの混合
物であることを特徴とする。
According to a fourth aspect of the present invention, in the refrigerant compressor according to any one of the first to third aspects, the refrigerating machine oil is an ester lubricating oil, an ether lubricating oil, or a mixture thereof. .

【0012】[0012]

【発明の実施の形態】以下本発明を図1〜3に基づいて
説明する。図1に、蒸発気化したHFC系冷媒を圧縮し
て凝縮器に吐出する本発明の冷媒圧縮機a、同冷媒を凝
縮液化する凝縮器b、同冷媒の圧力を減じるキャピラリ
チューブc、液化冷媒を蒸発させる蒸発器dなどを順次
冷媒管でつないで形成した冷凍装置の冷凍サイクルを示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. FIG. 1 shows a refrigerant compressor a of the present invention which compresses an evaporated HFC-based refrigerant and discharges the refrigerant to a condenser, a condenser b which condenses and liquefies the refrigerant, a capillary tube c which reduces the pressure of the refrigerant, and a liquefied refrigerant. 3 shows a refrigeration cycle of a refrigeration apparatus in which evaporators d and the like for evaporating are sequentially connected by a refrigerant pipe.

【0013】図2は、本発明の冷媒圧縮機の一例の縦断
面図である。図3は、図2に示した本発明の冷媒圧縮機
の横断面図である。図2及び図3において、1は密閉容
器で、この容器内には上側に電動要素2が、下側にこの
電動要素によって駆動される回転圧縮要素3が夫々収納
されている。電動要素2は有機系材料で絶縁された巻線
4を有する固定子5とこの固定子の内側に設けられた回
転子6とで構成されている。回転圧縮要素3はシリンダ
7と、回転軸8の偏心部9によってシリンダ7の内壁に
沿って回転させるローラー10と、このローラーの周面
に圧接されてシリンダ7内を吸込側と吐出側とに区画す
るようにバネ11で押圧されるベーン12と、シリンダ
7の開口を封じるとともに、回転軸8を軸支する上部軸
受13及び下部軸受14とで構成されている。
FIG. 2 is a longitudinal sectional view of an example of the refrigerant compressor of the present invention. FIG. 3 is a cross-sectional view of the refrigerant compressor of the present invention shown in FIG. 2 and 3, reference numeral 1 denotes a closed container, in which an electric element 2 is accommodated on the upper side, and a rotary compression element 3 driven by the electric element is accommodated on the lower side. The electric element 2 includes a stator 5 having a winding 4 insulated with an organic material and a rotor 6 provided inside the stator. The rotary compression element 3 includes a cylinder 7, a roller 10 that rotates along an inner wall of the cylinder 7 by an eccentric portion 9 of a rotation shaft 8, and a pressure contact with a peripheral surface of the roller to move the inside of the cylinder 7 into a suction side and a discharge side. It is composed of a vane 12 pressed by a spring 11 so as to be partitioned, and an upper bearing 13 and a lower bearing 14 that seal the opening of the cylinder 7 and support the rotating shaft 8.

【0014】そして、上部軸受13にはシリンダ7の吐
出側と連通する吐出孔15が設けられている。また、上
部軸受13には吐出孔15を開閉する吐出弁16と、こ
の吐出弁を覆うように吐出マフラ17とが取付けられて
いる。
The upper bearing 13 is provided with a discharge hole 15 communicating with the discharge side of the cylinder 7. A discharge valve 16 for opening and closing the discharge hole 15 and a discharge muffler 17 are attached to the upper bearing 13 so as to cover the discharge valve.

【0015】密閉容器1内の底部にはHFC系冷媒、例
えば、R134aとR32とR125との3種混合冷媒
あるいはR32とR125との2種混合冷媒が封入され
ている。
An HFC-based refrigerant, for example, a refrigerant mixture of three kinds of R134a, R32 and R125 or a refrigerant mixture of two kinds of R32 and R125 is sealed in the bottom of the closed vessel 1.

【0016】そして、冷凍機油としてのエステル系冷凍
機油やエーテル系冷凍機油など(オイル)18は回転圧
縮要素3の摺動部材であるローラー10とベーン12と
の摺動面を潤滑している。
An oil 18 such as an ester-based refrigerating machine oil or an ether-based refrigerating machine oil as a refrigerating machine oil lubricates a sliding surface between the roller 10 and the vane 12 which are sliding members of the rotary compression element 3.

【0017】回転圧縮要素3のシリンダ7内に流入して
ローラー10とベーン12との協働で圧縮される冷媒は
上述のように、例えばR407C[R134aとR32
とR125との混合冷媒]やR410A[R32とR1
25との混合冷媒]などである。
As described above, the refrigerant flowing into the cylinder 7 of the rotary compression element 3 and compressed by the cooperation of the roller 10 and the vane 12 is, for example, R407C [R134a and R32C].
Refrigerant mixture of R32 and R125] or R410A [R32 and R1
25 mixed refrigerant].

【0018】19は密閉容器1に取付けてシリンダ7の
吸込側に冷媒を案内する吸込管、20は密閉容器1の上
壁に取付けられて回転圧縮要素3で圧縮されて電動要素
2を介して密閉容器1外に冷媒を吐出する吐出管であ
る。
Reference numeral 19 denotes a suction pipe which is attached to the closed vessel 1 and guides the refrigerant to the suction side of the cylinder 7. Reference numeral 20 denotes a suction pipe which is attached to the upper wall of the closed vessel 1 and is compressed by the rotary compression element 3 via the electric element 2. This is a discharge pipe for discharging the refrigerant to the outside of the closed container 1.

【0019】吸込管19からシリンダ7内の吸込側に流
入した冷媒はローラー10とベーン12との協働で圧縮
され、吐出孔15を通って吐出弁16を開放して吐出マ
フラ17内に吐出される。この吐出マフラ内の冷媒は電
動要素2を介して吐出管20から密閉容器1外に吐出れ
さる。そして、密閉容器1の底部に入れられたオイル1
8は、回転軸8の高速回転によって上方開放端にできる
渦流による真空現象によって回転軸8の中空孔21を通
って吸い上げられ、回転圧縮要素3のローラー10やベ
ーン12等の摺動部材の摺動面、回転軸8と上部軸受1
3、下部軸受14との摺動面などに供給されて潤滑を行
っている。また、シリンダ7内で圧縮された冷媒が低圧
側にリークしないようにしている。
The refrigerant flowing from the suction pipe 19 to the suction side in the cylinder 7 is compressed by the cooperation of the roller 10 and the vane 12, is discharged through the discharge hole 15, opens the discharge valve 16, and is discharged into the discharge muffler 17. Is done. The refrigerant in the discharge muffler is discharged from the discharge pipe 20 to the outside of the closed container 1 via the electric element 2. Then, the oil 1 put in the bottom of the closed container 1
8 is sucked up through the hollow hole 21 of the rotating shaft 8 by a vacuum phenomenon caused by a vortex generated at the upper open end by the high speed rotation of the rotating shaft 8, and slides on sliding members such as the roller 10 and the vane 12 of the rotating compression element 3. Moving surface, rotating shaft 8 and upper bearing 1
3. The lubrication is performed by being supplied to a sliding surface with the lower bearing 14. Further, the refrigerant compressed in the cylinder 7 is prevented from leaking to the low pressure side.

【0020】上記回転軸8は高弾性のFCD製であり、
その表面にプラズマ浸硫窒化処理が施されているので表
面は摩擦係数が低く、また耐摩耗性が高い。したがって
冷媒がHFC系冷媒に替わり、冷凍機油がエステル系冷
凍機油やエーテル系冷凍機油に移行しても、回転軸8と
上部軸受13、下部軸受14との摺動面などにおいて被
膜が剥離するなどがない。プラズマ浸硫窒化処理により
摩擦係数が低く、耐摩耗性が高い表面が得られるのは、
プラズマ浸硫窒化処理により回転軸8の表面の鉄と硫黄
が化学反応し(硫化鉄が生成する)硫黄が含まれた表層
部ができるため摩擦係数が低くなり、鉄と窒素が化学反
応し化合物層(FeN、Fe34 などが生成する)が
できるため耐摩耗性が高い表面が得られるものと考えら
れるが、この考え方に限定されるものではない。
The rotating shaft 8 is made of a high elasticity FCD.
Since the surface has been subjected to the plasma sulphonitriding treatment, the surface has a low coefficient of friction and a high abrasion resistance. Therefore, even if the refrigerant is replaced with an HFC-based refrigerant and the refrigerating machine oil is shifted to an ester-based refrigerating machine oil or an ether-based refrigerating machine oil, the coating is peeled off at the sliding surface between the rotating shaft 8 and the upper bearing 13 and the lower bearing 14. There is no. The surface with low friction coefficient and high wear resistance is obtained by plasma sulphiditriding.
Iron and sulfur on the surface of the rotating shaft 8 undergo a chemical reaction (generate iron sulfide) due to the plasma sulphidizing and nitriding treatment, so that a sulfur-containing surface layer is formed, thereby lowering the friction coefficient. It is considered that a layer having high wear resistance can be obtained because a layer (FeN, Fe 3 N 4, etc. is formed) is obtained, but the present invention is not limited to this concept.

【0021】本発明で用いるプラズマ浸硫窒化処理の条
件は特に限定されない。処理条件の具体例としては、例
えば、炉中、1〜2時間かけて540〜570℃に回転
軸8を加熱して、N2 /H2 =1:1の雰囲気中で約2
時間処理し、引き続き540〜570℃でN2 /H2
混合ガス雰囲気中で約3時間処理した後、約2時間かけ
て炉冷(3トール)する方法を挙げることができる。ま
た、上記回転軸8は鋳造段階で消失模型型またはシェル
中子を用いて中心孔21を作成したので、後機械加工に
より孔開けする必要がない。
The conditions for the plasma sulphidizing and nitriding used in the present invention are not particularly limited. As a specific example of the processing conditions, for example, the rotating shaft 8 is heated to 540 to 570 ° C. in a furnace for 1 to 2 hours, and is heated in an atmosphere of N 2 / H 2 = 1: 1 for about 2 hours.
And then N 2 / H 2 S at 540-570 ° C.
After the treatment in a mixed gas atmosphere for about 3 hours, a method of cooling in a furnace (3 Torr) for about 2 hours can be given. In addition, since the rotary shaft 8 has the center hole 21 formed by using the disappearing model or the shell core at the casting stage, there is no need to drill the hole by post-machining.

【0022】本発明の冷媒圧縮機の形式は上記のような
密閉型圧縮機でもよく、また開放型圧縮機でもよく特に
限定されない。具体的には、例えば、回転式圧縮機、レ
シプロ式圧縮機、振動式圧縮機、マルチベーン式回転式
圧縮機、スクロール式圧縮機などを例示することができ
る。
The type of the refrigerant compressor of the present invention may be a closed type compressor as described above, or may be an open type compressor, and is not particularly limited. Specifically, for example, a rotary compressor, a reciprocating compressor, a vibration compressor, a multi-vane rotary compressor, a scroll compressor and the like can be exemplified.

【0023】[0023]

【実施例】以下本発明を実施例および比較例により具体
的に説明するが、本発明はこの実施例に限定されるもの
ではない。 (実施例1)鋳造段階で消失模型型シェル中子を用いて
中心孔21を作成した回転軸8を炉中に入れて、1〜2
時間かけて570℃に回転軸8を加熱して、N2 /H2
=1:1ガスを供給する雰囲気中で2時間処理し、引き
続き570℃でN2 /H2 =1:1とN2 /H2 S=9
9:1の混合ガスを供給する雰囲気中で3時間処理した
後、2時間かけて炉冷(3トール)してプラズマ浸硫窒
化処理を行った。プラズマ浸硫窒化処理を行ったこの回
転軸8を備えた回転式圧縮機、凝縮機、膨張弁、蒸発器
を配管で連結したベンチスタンド試験装置を使用し下記
の試験条件で耐久試験を行い、回転式圧縮機の回転軸の
摺動部の摩耗度を測定した。
EXAMPLES The present invention will be described below in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. (Embodiment 1) A rotating shaft 8 having a center hole 21 formed by using a vanishing model shell core in a casting stage is put into a furnace, and the core is put into a furnace.
The rotary shaft 8 is heated to 570 ° C. over time, and N 2 / H 2
= 1: 1 gas was 2 hours in an atmosphere supplying, N 2 / H 2 = 1 at subsequently 570 ° C.: 1 and N 2 / H 2 S = 9
After treating for 3 hours in an atmosphere supplying a 9: 1 mixed gas, the furnace was cooled (3 torr) for 2 hours to perform plasma sulphiditriding. A durability test was performed under the following test conditions using a bench stand test apparatus in which a rotary compressor, a condenser, an expansion valve, and an evaporator equipped with the rotary shaft 8 having been subjected to the plasma sulphiditriding process were connected by piping. The degree of wear of the sliding part of the rotary shaft of the rotary compressor was measured.

【0024】圧力条件:高圧27〜28kg/cm2
G、低圧:4.6kg/cm2 ・G 運転周波数:100HZ、運転時間:1000hr、 冷媒:デュポン社製R407C[R134aとR32と
R125との52:23:25の混合冷媒] ケース上部温度:95〜100℃ 摺動部の各材料は以下の通りである。 ベーン:高速度工具鋼(High Speed Ste
el) ローラー:鋳鉄組成(wt%):T.C(トータルカー
ボン):3.0〜3.7 Si:1.5〜2.5,Mn:0.5〜1.0, P:0.2〜0.3,S:0.15以下 Ni:0.15〜0.4,Cr:0.5〜1.2 MO:0.15〜0.4 残部は鉄
Pressure conditions: high pressure 27-28 kg / cm 2 ·
G, Low pressure: 4.6 kg / cm 2 · G Operating frequency: 100 HZ, Operating time: 1000 hr, Refrigerant: DuPont R407C [52:23:25 mixed refrigerant of R134a, R32 and R125] Upper case temperature: 95 100100 ° C. Each material of the sliding portion is as follows. Vane: High Speed Tool Steel
e) Roller: Cast iron composition (wt%): T.I. C (total carbon): 3.0 to 3.7 Si: 1.5 to 2.5, Mn: 0.5 to 1.0, P: 0.2 to 0.3, S: 0.15 or less Ni : 0.15 to 0.4, Cr: 0.5 to 1.2 MO: 0.15 to 0.4 The balance is iron

【0025】潤滑油組成物(オイル):ポリオールエス
テル系油(フレオールα68S、ジャパンエナジー社
製)を基油とし、この基油に対して0.1〜2.0重量
%のトリクレジルフォスフェート(TCP)と0.01
〜10重量%のエポキシとの添加剤(EP)を添加含有
したもの。さらに、基油には0.05〜0.5重量%の
2,6−ジ−t−ブチル−パラクレゾールが添加されて
いる。
Lubricating oil composition (oil): A polyol ester-based oil (Freol α68S, manufactured by Japan Energy Co., Ltd.) is used as a base oil, and 0.1 to 2.0% by weight of tricresyl phosphate based on the base oil. (TCP) and 0.01
One containing an additive (EP) with epoxy of 10 to 10% by weight. Further, 0.05 to 0.5% by weight of 2,6-di-t-butyl-paracresol is added to the base oil.

【0026】試験の結果、回転軸8の摩耗度は1であっ
た。数字は摩耗度を5段階評価で表したものであり、5
は悪い、3迄が許容される範囲、1は良好であることを
示す。
As a result of the test, the degree of wear of the rotating shaft 8 was 1. The numbers represent the degree of abrasion on a five-point scale.
Is bad, 3 is an acceptable range, and 1 is good.

【0027】(比較例1)プラズマ浸硫窒化処理の代わ
りにイオン窒化処理を施した回転軸8を用いた以外は実
施例1と同様にして試験した。試験の結果、回転軸8の
摩耗度は4であった。
(Comparative Example 1) A test was performed in the same manner as in Example 1 except that the rotating shaft 8 subjected to ion nitriding was used instead of the plasma sulphating and nitriding. As a result of the test, the degree of wear of the rotating shaft 8 was 4.

【0028】[0028]

【発明の効果】この発明は上記のように構成したことに
より、冷凍機油としてエステル系冷凍機油やエーテル系
冷凍機油などを用いたり、HFC系冷媒を使用した場合
でも、回転軸の表面の摺動部における摩擦係数が低く、
耐摩耗性が高く、この回転軸を備えた冷媒圧縮機は、長
期に亘り安定して運転することができる。また経済的に
容易に回転軸の中心孔を作成できる。
According to the present invention, as described above, even if an ester-based refrigerant oil or an ether-based refrigerant oil is used as the refrigerating machine oil or an HFC-based refrigerant is used, the surface of the rotating shaft slides. Coefficient of friction in the part is low,
The refrigerant compressor having high wear resistance and having this rotating shaft can be operated stably for a long period of time. In addition, the center hole of the rotating shaft can be easily created economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 冷凍装置の冷凍回路図である。FIG. 1 is a refrigeration circuit diagram of a refrigeration apparatus.

【図2】 本発明の冷媒圧縮機の一例の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of an example of the refrigerant compressor of the present invention.

【図3】 図2の冷媒圧縮機の横断面図である。FIG. 3 is a cross-sectional view of the refrigerant compressor of FIG.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 電動要素 3 回転圧縮要素 4 巻線 5 固定子 6 回転子 7 シリンダ 8 回転軸 9 偏心部 10 ローラー 11 バネ 12 ベーン 13 上部軸受 14 下部軸受 15 吐出孔 16 吐出弁 17 吐出マフラ 18 オイル 19 吸込管 20 吐出管 21 中空孔 DESCRIPTION OF SYMBOLS 1 Closed container 2 Electric element 3 Rotary compression element 4 Winding 5 Stator 6 Rotor 7 Cylinder 8 Rotation axis 9 Eccentric part 10 Roller 11 Spring 12 Vane 13 Upper bearing 14 Lower bearing 15 Discharge hole 16 Discharge valve 17 Discharge muffler 18 Oil 19 suction pipe 20 discharge pipe 21 hollow hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 和久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 小松原 健夫 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 鎌田 正彦 東京都町田市相原町2851−2 (72)発明者 菅 幸頂 神奈川県相模原市宮下本町1−2−15 (72)発明者 須摩 浩之 神奈川県津久井郡津久井町大井362−1− 405 (72)発明者 伊藤 恭二 愛知県豊明市間米町榎山900−56−606 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuhisa Ishikawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Takeo Komatsubara 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Masahiko Kamada 281-2-2, Aihara-cho, Machida-shi, Tokyo (72) Inventor Sachicho Suga 1-2-15, Miyashita-honmachi, Sagamihara-shi, Kanagawa (72) Inventor Suma Hiroyuki 362-1-405 Oi, Tsukui-cho, Tsukui-gun, Kanagawa Prefecture (72) Inventor Kyoji Ito 900-56-606

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転軸によって駆動される圧縮要素を備
え、吸入したHFC系冷媒あるいはHFC系冷媒を主体
とする冷媒をこの圧縮要素により圧縮して吐出するよう
にした冷媒圧縮機であって、前記回転軸として表面にプ
ラズマ浸硫窒化処理を施した回転軸を用いることを特徴
とする冷媒圧縮機。
1. A refrigerant compressor comprising a compression element driven by a rotating shaft, wherein a compressed HFC-based refrigerant or a refrigerant mainly composed of an HFC-based refrigerant is compressed by the compression element and discharged. A refrigerant compressor characterized by using a rotating shaft having a surface subjected to a plasma sulphonitriding process as the rotating shaft.
【請求項2】 前記回転軸としてFCD製回転軸を使用
することを特徴とする請求項1記載の冷媒圧縮機。
2. The refrigerant compressor according to claim 1, wherein an FCD rotary shaft is used as the rotary shaft.
【請求項3】 前記回転軸の鋳造段階で消失模型型また
はシェル中子を用いて中心孔を作成した中空FCD製回
転軸を使用することを特徴とする請求項2記載の冷媒圧
縮機。
3. The refrigerant compressor according to claim 2, wherein a hollow FCD rotary shaft having a central hole formed by using a vanishing model or a shell core is used in the step of casting the rotary shaft.
【請求項4】 冷凍機油がエステル系潤滑油、エーテル
系潤滑油あるいはこれらの混合物であることを特徴とす
る請求項1ないし請求項3記載の冷媒圧縮機。
4. The refrigerant compressor according to claim 1, wherein the refrigerating machine oil is an ester lubricating oil, an ether lubricating oil, or a mixture thereof.
JP27003296A 1996-10-11 1996-10-11 Refrigerant compressor Pending JPH10115296A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP27003296A JPH10115296A (en) 1996-10-11 1996-10-11 Refrigerant compressor
TW086114840A TW408212B (en) 1996-10-11 1997-10-09 Method for treating metal surface, rotary shaft and vane for refrigerant compressor treated by the method, and refrigerant compressor using the same
US08/948,002 US6139296A (en) 1996-10-11 1997-10-09 Method for treating metal surface, rotary shaft for refrigerant compressor treated by the method, vane for refrigerant compressor treated by the method, and refrigerant compressor using the same
EP97117617A EP0835949B1 (en) 1996-10-11 1997-10-10 System of surface treated rotary shaft and vane for refrigerant compressor with refrigerant oil, and corresponding refrigerant compressor
SG1997003719A SG60125A1 (en) 1996-10-11 1997-10-10 Method for treating metal surface rotary shaft for refrigerant compressor treated by the method vane for refrigerant compressor treated by the method and refrigerant compressor using
DE69709598T DE69709598T2 (en) 1996-10-11 1997-10-10 System of surface-treated rotating shaft and blade in coolant compressors with coolant, as well as the corresponding coolant compressor
KR1019970052201A KR100508582B1 (en) 1996-10-11 1997-10-11 Method forr treating metal surface, rotary shaft for refrigerant compressor treated by the method, vane for refrigerant compressor treated by the method, and refrigerant compressor using the same
IDP973418A ID18849A (en) 1996-10-11 1997-10-13 METHODS FOR METAL SURFACE WORKING, ROTATED AXLE FOR COOLING COMPRESSORS WHICH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27003296A JPH10115296A (en) 1996-10-11 1996-10-11 Refrigerant compressor

Publications (1)

Publication Number Publication Date
JPH10115296A true JPH10115296A (en) 1998-05-06

Family

ID=17480591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27003296A Pending JPH10115296A (en) 1996-10-11 1996-10-11 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JPH10115296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064919A1 (en) * 2012-10-23 2014-05-01 パナソニック株式会社 Rotary compressor
US11365893B2 (en) 2017-03-13 2022-06-21 Lg Electronics Inc. Air conditioner
US11408691B2 (en) 2017-03-13 2022-08-09 Lg Electronics Inc. Air conditioner
US11447839B2 (en) 2017-03-13 2022-09-20 Lg Electronics Inc. Air conditioner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064919A1 (en) * 2012-10-23 2014-05-01 パナソニック株式会社 Rotary compressor
JP5685742B2 (en) * 2012-10-23 2015-03-18 パナソニックIpマネジメント株式会社 Rotary compressor
US9482231B2 (en) 2012-10-23 2016-11-01 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor having an oil groove in an inner peripheral surface of a bearing
US11365893B2 (en) 2017-03-13 2022-06-21 Lg Electronics Inc. Air conditioner
US11408691B2 (en) 2017-03-13 2022-08-09 Lg Electronics Inc. Air conditioner
US11447839B2 (en) 2017-03-13 2022-09-20 Lg Electronics Inc. Air conditioner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner

Similar Documents

Publication Publication Date Title
JP3557053B2 (en) Refrigerant compressor
CN100516524C (en) Method for Manufacturing vortex compressor and its cross ring
JPH07238885A (en) Sealed compressor
US6139296A (en) Method for treating metal surface, rotary shaft for refrigerant compressor treated by the method, vane for refrigerant compressor treated by the method, and refrigerant compressor using the same
KR20020066939A (en) The rotary compressor
JPH03281991A (en) Coolant compressor
JPH10115296A (en) Refrigerant compressor
JP2005155461A (en) Compressor
KR100508582B1 (en) Method forr treating metal surface, rotary shaft for refrigerant compressor treated by the method, vane for refrigerant compressor treated by the method, and refrigerant compressor using the same
JPH11236890A (en) Vane and refrigerant compressor using it
JPH0932776A (en) Closed compressor
JPH10103276A (en) Refrigerator
JP2000080992A (en) Vane and coolant compressor using it
JPH10169582A (en) Vane and coolant compressor using it
JPH10169581A (en) Vane and coolant compressor using it
JP2001099502A (en) Refrigerating device
JP2005155460A (en) Compressor
JP2001271774A (en) Rotary compressor
JP3708194B2 (en) Hermetic rotary compressor
JPH10141269A (en) Rotary compressor and refrigerating cycle device
JP2000136788A (en) Vertical compressor
JP2005155459A (en) Compressor
JPH0419386A (en) Coolant compressor
JPH0518357A (en) Refrigerant compressor
JPH10102079A (en) Lubricating oil composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531