JPH10114701A - Production of acetic acid - Google Patents

Production of acetic acid

Info

Publication number
JPH10114701A
JPH10114701A JP27085596A JP27085596A JPH10114701A JP H10114701 A JPH10114701 A JP H10114701A JP 27085596 A JP27085596 A JP 27085596A JP 27085596 A JP27085596 A JP 27085596A JP H10114701 A JPH10114701 A JP H10114701A
Authority
JP
Japan
Prior art keywords
acetic acid
reaction
carbon monoxide
methyl formate
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27085596A
Other languages
Japanese (ja)
Inventor
Kenichi Nakamura
健一 中村
Futoshi Kawako
太 河高
Yoshikazu Shima
義和 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP27085596A priority Critical patent/JPH10114701A/en
Publication of JPH10114701A publication Critical patent/JPH10114701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acetic acid producing process having improved economical efficiency, space time yield, degree of conversion by isomerizing methyl formate under the pressence of a rhodium catalyst, an iodine compound and carbon monoxide by using a specific equipment and a piston flow system. SOLUTION: Acetic acid is obtained by carrying out the isomerization of methyl fomate under the presence of 100-10,000ppm of the rhodium catalyst (e.g. rhodium iodide) in the reaction medium, 5-20wt.%. of the iodine compound (e.g. methyl iodide) in the reaction medium, partial pressure 0.1-50 atmospheric pressure of carbon monoxide, using a pipe and/or tower type reactor, having <0.1% of water, in the piston flow type system, under the condition of 1-100 atmospheric pressure of total pressure, at 100-240 deg.C. Following this process, acetic acid is obtained free from the restriction of high purity production system of carbon monoxide and reducing the energy cost regard for the purification of the product acetic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は酢酸を製造する方法に関
する。更に詳しく説明すれば、ぎ酸メチルを原料に用い
て、一酸化炭素加圧下に反応させて酢酸を製造する方法
に関する。酢酸は、酢酸エステル類、無水酢酸、酢酸ビ
ニル、テレフタル酸の原料として工業的に用いられる基
礎化学品である。
The present invention relates to a method for producing acetic acid. More specifically, the present invention relates to a method for producing acetic acid by reacting methyl formate as a raw material under carbon monoxide pressure. Acetic acid is a basic chemical used industrially as a raw material for acetic esters, acetic anhydride, vinyl acetate, and terephthalic acid.

【0002】[0002]

【従来技術】メタノールをロジウム化合物とヨウ化メチ
ルとの存在下、反応液に水を共存させ一酸化炭素と反応
させて酢酸を製造する方法はモンサント法として広く工
業的に実施されている。また、近年モンサント法の改良
法として反応液中の水分濃度を5重量%以下に下げるこ
とにより、副反応である水性ガスシフト反応を抑え酢酸
の生産性を高める技術が開示されている(特開昭60−
239434号、特開昭60−54334号)。以後、
改良モンサント法と記す。しかし、これらメタノールの
カルボニル化反応に関する従来技術によれば酢酸の製造
に際し、酢酸の製造量に対応する以上の量の高純度一酸
化炭素が必要となる。モンサント法ではカルボニル化工
程の設備費とほぼ同額の一酸化炭素発生設備費がかかる
という欠点を有している。メタノールのカルボニル化反
応による酢酸製造では水の共存が必須であり、反応液中
の水分濃度が改良法に示されるように5重量%以下に低
下したとしても、水性ガスシフト反応を完全に抑えるこ
とは出来ず、また、製品酢酸を得るためには蒸留工程に
おいて水の分離に多大のエネルギーを必要とする欠点を
有している。また、メタノールのカルボニル化反応では
液相触媒中への一酸化炭素の溶解を促進させるため撹拌
機を有する完全混合槽型反応器を用いるため、撹拌動力
を必要とする欠点を有している。
2. Description of the Related Art A method for producing acetic acid by reacting methanol with carbon monoxide in the presence of a rhodium compound and methyl iodide in the presence of a rhodium compound and methyl iodide is widely practiced industrially as the Monsanto process. In recent years, as an improved method of the Monsanto method, a technique has been disclosed in which the water concentration in a reaction solution is reduced to 5% by weight or less to suppress a water gas shift reaction which is a side reaction and increase the productivity of acetic acid (Japanese Patent Application Laid-open No. Sho. 60-
239434, JP-A-60-54334). Since then
Described as the improved Monsanto method. However, according to the prior art relating to the carbonylation reaction of methanol, the production of acetic acid requires an amount of high-purity carbon monoxide that is larger than the amount of acetic acid produced. The Monsanto method has a disadvantage in that the cost of generating carbon monoxide is approximately the same as the cost of the carbonylation step. The coexistence of water is essential in the production of acetic acid by the carbonylation reaction of methanol, and even if the water concentration in the reaction solution is reduced to 5% by weight or less as shown in the improved method, it is impossible to completely suppress the water gas shift reaction. In addition, there is a disadvantage that a large amount of energy is required for separating water in a distillation step in order to obtain a product acetic acid. Further, in the carbonylation reaction of methanol, since a complete mixing tank type reactor having a stirrer is used to promote the dissolution of carbon monoxide in the liquid phase catalyst, there is a disadvantage that a stirring power is required.

【0003】メタノールとぎ酸メチルの混合原料をメタ
ノールのカルボニル化反応条件に導入し、一酸化炭素製
造設備能力の制約から開放されるという技術が開示され
ている(特開平7−291892号)。しかし、本発明
者らが検討したところ、メタノールのカルボニル化反応
条件の水共存下にぎ酸メチルを導入すると、ぎ酸メチル
の加水分解が起こりメタノールとぎ酸が生成し、ここで
生成したメタノールは一酸化炭素を消費するカルボニル
化反応により酢酸となる。反応系中で中間体として生成
するアセチルアイオダイドは水による加水分解を優先的
に起こすため、ぎ酸との反応により系中に一酸化炭素を
新たに発生することはなく、一酸化炭素使用量の低減化
をはかることは出来ない。 (1)メタノールのカルボニル化反応 CH3 OH+CH3 COOH→CH3 COOCH3 +H2 0 CH3 COOCH3 +HI→CH3 COOH+CH3 I CH3 I+CO→CH3 COI CH3 COI+H2 0→CH3 COOH+HI ─────────────────────────────── CH3 OH+CO → CH3 COOH (2)ぎ酸メチルの異性化反応 HCOOCH3 +CH3 COOH→CH3 COOCH3 +HCOOH CH3 COOCH3 +HI→CH3 COOH+CH3 I CH3 I+CO→CH3 COI CH3 COI+HCOOH→CH3 COOH+CO+HI ──────────────────────────────── HCOOCH3 → CH3 COOH また、ぎ酸は一部副生した酢酸メチルとのエステル交換
反応により酢酸とぎ酸メチルに変換されるが、アセチル
アイオダイドとの反応で消費されない副生ぎ酸量は副生
酢酸メチル量より多くなってくるため、触媒および副生
物のリサイクルを行うプロセスにおいてはぎ酸の蓄積が
起こりプロセスとして成り立たなくなるという欠点を有
している。
[0003] There is disclosed a technique in which a mixed raw material of methanol and methyl formate is introduced into a carbonylation reaction condition of methanol so as to be released from the restriction of a facility for producing carbon monoxide (JP-A-7-291892). However, the present inventors have examined that, when methyl formate is introduced in the presence of water under the carbonylation reaction conditions of methanol, hydrolysis of methyl formate occurs to produce methanol and formic acid, and the methanol generated here is Acetic acid is formed by a carbonylation reaction that consumes carbon monoxide. Acetyl iodide, which is produced as an intermediate in the reaction system, preferentially undergoes hydrolysis with water, so no new carbon monoxide is generated in the system due to the reaction with formic acid. Cannot be reduced. (1) Methanol carbonylation reaction CH 3 OH + CH 3 COOH → CH 3 COOCH 3 + H 20 CH 3 COOCH 3 + HI → CH 3 COOH + CH 3 I CH 3 I + CO → CH 3 COI CH 3 COI + H 20 → CH 3 COOH + HI ───────────────────────────── CH 3 OH + CO → CH 3 COOH (2) Isomerization reaction of methyl formate HCOOCH 3 + CH 3 COOH → CH 3 COOCH 3 + HCOOH CH 3 COOCH 3 + HI → CH 3 COOH + CH 3 I CH 3 I + CO → CH 3 COI CH 3 COI + HCOOH → CH 3 COOH + CO + HI ────────────── HCOOCH 3 → CH 3 COOH also formic acid with some by-produced methyl acetate A process that recycles catalyst and by-products because the amount of by-product formic acid that is converted to acetic acid and methyl formate by the stele exchange reaction but is not consumed in the reaction with acetyl iodide exceeds the amount of by-product methyl acetate. Has the disadvantage that formic acid accumulates and cannot be established as a process.

【0004】一方、ぎ酸メチルを一酸化炭素加圧下に加
熱し異性化することで酢酸を製造する方法として、ロジ
ウムを触媒とする場合(特開昭49ー3513)や、ロ
ジウム金属原子およびヨウ化リチウムとヨウ化メチルと
の混合物からなる均一触媒系を用いる場合(特開昭60
ー149542)が知られている。しかし、これらぎ酸
メチル異性化反応に関する従来技術によれば、モンサン
ト法に匹敵する空時収率を得ることが出来なかったり、
ぎ酸メチルの転化率が十分でないため未反応ぎ酸メチル
のリサイクル量が多くなった。また酢酸に変換可能な副
生物であるぎ酸と酢酸メチルの生成量が多く、これらの
リサイクルに大きなエネルギーを要するという欠点を有
していた。
On the other hand, as a method for producing acetic acid by heating and isomerizing methyl formate under carbon monoxide pressure, a method using rhodium as a catalyst (JP-A-49-3513) and a method using rhodium metal atom and iodine are disclosed. When using a homogeneous catalyst system comprising a mixture of lithium iodide and methyl iodide
149542) is known. However, according to the prior art relating to these methyl formate isomerization reactions, a space-time yield comparable to the Monsanto method cannot be obtained,
Since the conversion of methyl formate was not sufficient, the amount of unreacted methyl formate recycled increased. In addition, formic acid and methyl acetate, which are by-products that can be converted into acetic acid, are produced in large amounts, and they have a disadvantage that their recycling requires a large amount of energy.

【0005】[0005]

【発明が解決しようとする課題】ぎ酸メチルの異性化に
よる酢酸製造はメタノールのカルボニル化反応と異なり
水の共存が必須条件とはならないので、精製酢酸を得る
のに水との分離に多大なエネルギーを必要としない。本
発明の目的は、上記ぎ酸メチルの異性化による酢酸製造
法の欠点を克服し、モンサント法および改良モンサント
法を上回る経済性ある酢酸製造プロセスを提供すること
にある。
The production of acetic acid by isomerization of methyl formate is different from the carbonylation reaction of methanol in that the coexistence of water is not an essential condition. Does not require energy. An object of the present invention is to overcome the drawbacks of the method for producing acetic acid by isomerization of methyl formate and to provide a more economical method for producing acetic acid over the Monsanto method and the improved Monsanto method.

【0006】[0006]

【課題を解決するための手段】本発明者らは種々検討を
行ったところ、ぎ酸メチルを原料として用いることで、
酢酸の製造に際し、高純度一酸化炭素の製造設備の制約
から解放されるとともに、製品酢酸の精製に要するエネ
ルギーコストを最小にする酢酸の製造法を見出した。ま
た、問題であった空時収率や転化率を十分高めること、
および変換可能な副生物であるぎ酸と酢酸メチルの生成
量を最小限に留めことが、ぎ酸メチルの異性化反応に適
合した反応器と反応形式に変更することにより可能にな
った。
Means for Solving the Problems The present inventors have conducted various studies, and found that methyl formate is used as a raw material,
In the production of acetic acid, the inventors have found a method for producing acetic acid which is free from the restrictions of the production equipment for high-purity carbon monoxide and minimizes the energy cost required for purifying the product acetic acid. In addition, to sufficiently increase the space-time yield and conversion, which were problems,
The minimization of the production of formic acid and methyl acetate, which are convertible by-products, was made possible by changing the reactor and the reaction mode to those suitable for the isomerization reaction of methyl formate.

【0007】すなわち、本発明は、ぎ酸メチルを原料と
し、ロジウム触媒、ヨウ素化合物および一酸化炭素の存
在下に反応させることを特徴とする酢酸の製造法に関す
るものである。ぎ酸メチルの製造方法としては、メタノ
ールの一酸化炭素によるカルボニル化法、メタノールの
脱水素法、ぎ酸のメタノールによるエステル化法、ホル
ムアルデヒドの二量化法、合成ガスからのメタノール/
ぎ酸メチルの併産法、二酸化炭素と水素からのメタノー
ル/ぎ酸メチル併産法が知られている。ぎ酸メチルの製
造法としてはどの方法でもかまわないが、本法の適用に
はメタノールの脱水素法で製造されたぎ酸メチルの使用
が最も好ましい。本発明とメタノールの脱水素法で製造
されたぎ酸メチルを原料として使用すればメタノールの
カルボニル化反応で必要な大規模な高純度一酸化炭素製
造設備を必要としない。また、両法を適用することによ
りメタノールのみを原料とする酢酸の製造プロセスとな
る。脱水素法ぎ酸メチルの製造は、メタノール製造プラ
ントに隣接して行い、原料ぎ酸メチルを遠隔の酢酸プラ
ントに輸送してもよいし、メタノールを遠隔地より輸送
し、酢酸プラントに隣接した脱水素法のぎ酸メチル製造
プラントで、ぎ酸メチルを製造してもよい。
That is, the present invention relates to a method for producing acetic acid, comprising reacting methyl formate as a raw material in the presence of a rhodium catalyst, an iodine compound and carbon monoxide. Methods for producing methyl formate include carbonylation with methanol and carbon monoxide, dehydrogenation of methanol, esterification of formic acid with methanol, dimerization of formaldehyde, and methanol /
A co-production method of methyl formate and a co-production method of methanol / methyl formate from carbon dioxide and hydrogen are known. Although any method may be used for producing methyl formate, the use of methyl formate produced by a dehydrogenation method of methanol is most preferable for the application of this method. If methyl formate produced by the present invention and the methanol dehydrogenation method is used as a raw material, a large-scale high-purity carbon monoxide production facility required for methanol carbonylation reaction is not required. Further, by applying both methods, a production process of acetic acid using only methanol as a raw material is obtained. Dehydrogenation Methyl formate is produced adjacent to a methanol production plant, and the raw material methyl formate may be transported to a remote acetic acid plant, or methanol may be transported from a remote location and dehydrated adjacent to the acetic acid plant. Methyl formate may be produced in the methyl formate production plant of the elementary method.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0008】本発明における酢酸製造の触媒としては元
素周期律表の第8族の各金属を使用できるが、特にロジ
ウムが高い活性を有しているため好ましい。ロジウムの
使用形態としては、反応条件下に可溶性であって、反応
系中でロジウムカルボニル錯体種を成形し得るものであ
ればどのようなものでもかまわない。工業的にはヨウ化
ロジウムなどが挙げられるが、これに限定されるもので
はない。反応液中のロジウム濃度は100〜10,00
0ppm、好ましくは200〜3,000ppmであ
る。
As the catalyst for the production of acetic acid in the present invention, metals of Group 8 of the periodic table can be used, but rhodium is particularly preferred because of its high activity. Rhodium may be used in any form as long as it is soluble under the reaction conditions and can form a rhodium carbonyl complex species in the reaction system. Industrially, rhodium iodide and the like are exemplified, but not limited thereto. The rhodium concentration in the reaction solution is 100 to 10,000.
0 ppm, preferably 200 to 3,000 ppm.

【0009】本発明において酢酸を製造する際、ヨウ素
化合物を反応系に添加することが好ましい。ヨウ素化合
物としてはヨウ化メチルとヨウ化リチウムが特に好まし
く。特開昭60ー149542号で公知のようにヨウ化
リチウムとヨウ化メチルとを混合して使用することが最
も好ましい。ヨウ化メチルは反応系に直接添加できる
し、反応系でヨウ化メチルが生ずるような方法で添加し
てもかまわない。反応液中のヨウ化メチルの濃度が高い
と、ぎ酸メチルの異性化反応が促進されるが、ヨウ化メ
チルは回収して、反応器に再循環させる必要があり、循
環工程の設備規模、エネルギーの使用量から経済的に最
も有利な反応液中のヨウ化メチルの濃度は5〜20wt
%の範囲である。ヨウ化リチウムは反応系に直接添加で
きるし、反応系でヨウ化リチウムが生ずるような方法で
添加してもかまわない。反応液中のヨウ化リチウムの濃
度が高いと、ぎ酸メチルの異性化反応が促進されるが、
反応条件下に可溶限界濃度以下である必要がある。濃度
が高すぎると、触媒循環液量が増大し反応器が大型化す
ることや、製品酢酸へのヨウ素イオンの混入量が増大す
ること、プロセス全体の腐食性が増加するなどの問題点
が指摘される。しかるにヨウ化リチウムの濃度は2〜2
0wt%が好ましい。
In the production of acetic acid in the present invention, it is preferable to add an iodine compound to the reaction system. As the iodine compound, methyl iodide and lithium iodide are particularly preferred. It is most preferable to use a mixture of lithium iodide and methyl iodide as known in JP-A-60-149542. Methyl iodide can be directly added to the reaction system, or may be added in such a manner that methyl iodide is generated in the reaction system. When the concentration of methyl iodide in the reaction solution is high, the isomerization reaction of methyl formate is promoted, but it is necessary to recover methyl iodide and recycle it to the reactor. The most economically advantageous concentration of methyl iodide in the reaction solution is 5 to 20 wt.
% Range. Lithium iodide can be directly added to the reaction system, or may be added in such a manner that lithium iodide is generated in the reaction system. When the concentration of lithium iodide in the reaction solution is high, the isomerization reaction of methyl formate is promoted,
It must be below the solubility limit under the reaction conditions. If the concentration is too high, problems such as an increase in the amount of circulating catalyst and an increase in the size of the reactor, an increase in the amount of iodine ions mixed into the product acetic acid, and an increase in the corrosiveness of the entire process are pointed out. Is done. However, the concentration of lithium iodide is 2 to 2
0 wt% is preferred.

【0010】本発明において酢酸を製造する際の反応液
中の水分濃度は、0.1重量%以下の実質的無水の条件
が好ましい。ぎ酸メチルの異性化反応ではメタノールの
カルボニル化反応と異なり反応系中での水の共存は必須
でない。水の共存は、副反応として水性ガスシフトを併
発し、反応ガス中に実質的に不必要な二酸化炭素および
有害な水素の蓄積を招く。その結果、ロジウムカルボニ
ル錯体の保持に必要な一酸化炭素分圧を保持するために
不必要な反応ガスのパージや反応圧力の高圧化を行う必
要を生じる。水分濃度0.1重量%以下の実質的無水の
条件下で反応を行った場合、二酸化炭素および有害な水
素の発生はほとんど無視でき、わずかに生成した場合に
おいても、副生ガスは生成液に溶解し反応系外に排出さ
れるため、反応器で蓄積されることはない。即ち、反応
ガスのパージや反応圧力の高圧化を行う必要はなく、一
酸化炭素の損失やリサイクルガスの必要以上の昇圧はな
い。これに対して含水率が多い場合、水性ガスシフト反
応による一酸化炭素のロスと二酸化炭素、水素等の副生
が多く起こる。系中で二酸化炭素等が蓄積すると、一酸
化炭素分圧が低下するので、実質的無水の条件に比べ反
応ガスを多量にパージし、一酸化炭素を補ってやらなけ
ればならない。また、水の共存下では、ぎ酸メチルの加
水分解が起こり、メタノールとぎ酸が生成する。ここで
生成したメタノールは一酸化炭素を消費するカルボニル
化により酢酸となるが、水分濃度0.1重量%以下の実
質的無水の条件下ではぎ酸メチルの加水分解が起こらな
いため、一酸化炭素を消費しない。また、系中でのぎ酸
の蓄積を防げる。メタノールのカルボニル化反応におけ
る反応液中水分濃度は、モンサント法で15重量%、改
良モンサント法で5重量%であり、反応液からの酢酸の
精製では酢酸と水の分離に多大なエネルギーを消費する
ことが知られている。本発明のぎ酸メチルの異性化によ
る酢酸製造では実質的無水の条件下で反応を行うため酢
酸の精製に要するエネルギーはモンサント法の3分の1
以下、改良モンサント法の2分の1以下という大幅なエ
ネルギーの削減を達成できる。
In the present invention, the concentration of water in the reaction solution for producing acetic acid is preferably substantially anhydrous under 0.1% by weight. Unlike the carbonylation reaction of methanol, coexistence of water in the reaction system is not essential in the isomerization reaction of methyl formate. The coexistence of water is accompanied by a water gas shift as a side reaction, resulting in the accumulation of substantially unnecessary carbon dioxide and harmful hydrogen in the reaction gas. As a result, it becomes necessary to purge unnecessary reaction gas and increase the reaction pressure to maintain the carbon monoxide partial pressure necessary for holding the rhodium carbonyl complex. When the reaction is carried out under a substantially anhydrous condition with a water concentration of 0.1% by weight or less, the generation of carbon dioxide and harmful hydrogen is almost negligible. Since it is dissolved and discharged out of the reaction system, it does not accumulate in the reactor. In other words, there is no need to purge the reaction gas or increase the reaction pressure, and there is no loss of carbon monoxide or pressure increase of the recycle gas more than necessary. On the other hand, when the water content is high, loss of carbon monoxide due to the water gas shift reaction and many by-products such as carbon dioxide and hydrogen occur. When carbon dioxide or the like accumulates in the system, the carbon monoxide partial pressure decreases. Therefore, a large amount of the reaction gas must be purged as compared with the condition of substantially anhydrous water to supplement carbon monoxide. In addition, in the coexistence of water, methyl formate is hydrolyzed to produce methanol and formic acid. The methanol produced here is converted to acetic acid by carbonylation consuming carbon monoxide. However, under substantially anhydrous conditions having a water concentration of 0.1% by weight or less, hydrolysis of methyl formate does not occur. Do not consume. In addition, accumulation of formic acid in the system can be prevented. The water concentration in the reaction solution in the carbonylation reaction of methanol is 15% by weight in the Monsanto method and 5% by weight in the improved Monsanto method. In the purification of acetic acid from the reaction solution, a large amount of energy is consumed for separating acetic acid and water. It is known. In the production of acetic acid by isomerization of methyl formate according to the present invention, the reaction is carried out under substantially anhydrous conditions, so that the energy required for purification of acetic acid is one-third that of the Monsanto method.
In the following, a significant energy reduction of less than half of the improved Monsanto method can be achieved.

【0011】本発明は、一酸化炭素存在下で実施され
る。使用される高純度一酸化炭素は必ずしも純粋である
必要はない。微量の不活性ガス、例えば二酸化炭素、窒
素、メタンが妨害因子になることはない。一酸化炭素の
分圧としてはロジウムカルボニル錯体の保持に必要な圧
を有していればよい。必要量は実質的無水の条件下で実
施されるぎ酸メチルの異性化反応では、シフト反応によ
る一酸化炭素のロスがないので生成液に溶解し反応系外
に排出される量のみ補ってやればよく、ほとんど無視す
ることができる。大規模酢酸製造プラントの場合でも、
この程度の一酸化炭素使用量であれば大規模な一酸化炭
素製造設備を必要としない。一酸化炭素ボンベの使用で
も対応可能であるが、最も好適に工業的に小規模の一酸
化炭素を得る方法として、ぎ酸メチル分解による一酸化
炭素を得る方法がある。この方法を用いると、必要な分
圧を保持するための一酸化炭素をコンプレッサーなしに
準備することができる。
The present invention is carried out in the presence of carbon monoxide. The high-purity carbon monoxide used need not necessarily be pure. Traces of inert gases such as carbon dioxide, nitrogen and methane do not interfere. The partial pressure of carbon monoxide only needs to have a pressure necessary for holding the rhodium carbonyl complex. In the isomerization of methyl formate, which is carried out under substantially anhydrous conditions, there is no loss of carbon monoxide due to the shift reaction, so only the amount dissolved in the product liquid and discharged out of the reaction system can be compensated. Good, almost negligible. Even in large acetic acid production plants,
With such an amount of carbon monoxide, a large-scale facility for producing carbon monoxide is not required. Although the use of a carbon monoxide cylinder can be used, the most suitable industrial method for obtaining small-scale carbon monoxide is a method for obtaining carbon monoxide by decomposition of methyl formate. Using this method, carbon monoxide to maintain the required partial pressure can be prepared without a compressor.

【0012】本発明における必要な一酸化炭素分圧は、
0.1〜50atmである。反応の全圧は1〜100a
tm、好ましくは10〜50atmである。反応温度は
100〜240゜C、好ましくは180〜210゜Cで
ある。実質的無水の条件下で実施されるぎ酸メチルの異
性化反応では、メタノールのカルボニル化において18
5゜C以上の温度で急激に進行するシフト反応が起こら
ないので、185゜C以上の温度で反応速度を向上させ
ることができる。
The required carbon monoxide partial pressure in the present invention is:
0.1 to 50 atm. Total reaction pressure is 1-100a
tm, preferably 10 to 50 atm. The reaction temperature is 100 to 240 ° C, preferably 180 to 210 ° C. In a methyl formate isomerization reaction carried out under substantially anhydrous conditions, methanol
Since a shift reaction that rapidly proceeds at a temperature of 5 ° C. or more does not occur, the reaction rate can be improved at a temperature of 185 ° C. or more.

【0013】本発明のぎ酸メチル異性化反応では、酢酸
に変換可能な副生物であるぎ酸と酢酸メチルが、ぎ酸メ
チルと酢酸のエステル交換反応により生成する。これ
ら、ぎ酸と酢酸メチルは反応生成液から回収して反応器
に循環される。原料に加えられた循環液はエステル交換
の逆反応により再びぎ酸メチルと酢酸にもどることが可
能である。定常状態においては反応器中でぎ酸と酢酸メ
チルはある平衡濃度を保って等モル存在することにな
る。循環工程の設備規模、エネルギーの使用量から経済
的に最も有利な反応液中のぎ酸と酢酸メチルの濃度は、
0.1〜10重量%である。
In the methyl formate isomerization reaction of the present invention, formic acid and methyl acetate, which are by-products that can be converted into acetic acid, are produced by a transesterification reaction between methyl formate and acetic acid. These formic acid and methyl acetate are recovered from the reaction solution and circulated to the reactor. The circulating liquid added to the raw material can be returned to methyl formate and acetic acid again by a reverse transesterification reaction. In a steady state, formic acid and methyl acetate are present in the reactor in equimolar with a certain equilibrium concentration. The concentration of formic acid and methyl acetate in the reaction solution, which is economically most advantageous from the equipment scale of the circulation process and the amount of energy used,
0.1 to 10% by weight.

【0014】本反応はバッチ反応方式でも連続反応方式
でも実施できるが、連続反応形式が好ましい。特に、今
回本発明者らは管型および/または塔型反応装置を用
い、押出し流れ形式で反応を実施することが最適である
ことを見出した。メタノールのカルボニル化反応では溶
液中への一酸化炭素の溶解が必要であり、反応速度がメ
タノール濃度に対して0次であるため、撹拌機を有する
完全混合槽形式で実施されている。これに対してぎ酸メ
チル異性化反応では、液中に存在するぎ酸から一酸化炭
素が供給されるため、あたかも分子状の一酸化炭素が液
中に存在するかのごとく見なすことができ、強制的撹拌
により溶液中に一酸化炭素を溶解する必要がない。せい
ぜいロジウムカルボニル錯体の安定性を保持できる一酸
化炭素が存在すればよく、そのためには所定の一酸化炭
素分圧があれば十分である。また、ぎ酸メチル異性化反
応では反応速度がぎ酸メチル濃度に対して1次であるた
め、従来出願されていた特許で実施されてる完全混合槽
形式の反応では、ぎ酸メチルの転化率が十分に上がら
ず、空時収率が低く、変換可能な副生物の溶液濃度が高
い等の欠点を克服することができなかった。
This reaction can be carried out by a batch reaction system or a continuous reaction system, but a continuous reaction system is preferred. In particular, the present inventors have now found that it is optimal to carry out the reaction in the form of an extrusion flow using a tubular and / or column type reactor. In the carbonylation reaction of methanol, it is necessary to dissolve carbon monoxide in the solution, and since the reaction rate is 0th order with respect to the methanol concentration, the reaction is carried out in a complete mixing tank type having a stirrer. On the other hand, in the methyl formate isomerization reaction, carbon monoxide is supplied from formic acid present in the liquid, so that it can be regarded as if molecular carbon monoxide is present in the liquid, There is no need to dissolve carbon monoxide in the solution due to forced agitation. At most, carbon monoxide that can maintain the stability of the rhodium carbonyl complex only needs to be present, and for that purpose, a predetermined carbon monoxide partial pressure is sufficient. In addition, in the methyl formate isomerization reaction, the reaction rate is first order with respect to the methyl formate concentration. Therefore, in the complete mixing tank type reaction which is carried out in the conventionally applied patent, the conversion of methyl formate is low. However, it has not been possible to overcome the drawbacks such as insufficient increase, low space-time yield, and high solution concentration of convertible by-products.

【0015】しかし、本発明者らが適用した管型および
/または塔型反応装置を用い、押出し流れ形式で反応を
実施することにより、高い空時収率、高い転化率、変換
可能な副生ぎ酸および酢酸メチルの溶液濃度を低くする
ことが可能となった。管型および/または塔型反応装置
を用い、押出し流れ形式で反応を実施する場合、原料液
を反応管上部より供給し、生成液を反応管下部より抜出
す所謂ダウンフロー形式でも、その逆のアップフロー形
式でも適用可能である。共存させる一酸化炭素は、溶解
ガスとして反応系からパージされた分については反応器
上部の気相部に供給してもよいし、反応器下部より液相
部にあたかも気泡塔反応器のように供給しても問題がな
い。また、撹拌機を有する完全混合槽反応器の撹拌を停
止して反応を実施することも可能でありメタノールのカ
ルボニル化反応装置をそのまま使用することが出来る。
反応器の径と長さにもとくに制限はなく、いかなる形状
の反応器にも適用可能である。
However, by carrying out the reaction in the form of an extrusion flow using the tubular and / or column type reactor applied by the present inventors, a high space-time yield, a high conversion and a convertible by-product can be obtained. It became possible to lower the solution concentration of formic acid and methyl acetate. In the case where the reaction is carried out in the form of an extrusion flow using a tubular and / or column type reactor, the so-called down flow type in which the raw material liquid is supplied from the upper part of the reaction tube and the product liquid is withdrawn from the lower part of the reaction tube, and vice versa. Applicable in upflow format. The carbon monoxide to be coexisted may be supplied to the gas phase at the upper part of the reactor as a dissolved gas, or may be supplied to the liquid phase from the lower part of the reactor as if it were a bubble column reactor. There is no problem in supplying. It is also possible to stop the stirring in the complete mixing tank reactor having a stirrer to carry out the reaction, and the methanol carbonylation reactor can be used as it is.
There is no particular limitation on the diameter and length of the reactor, and it can be applied to reactors of any shape.

【0016】[0016]

【発明の効果】押出し流れ形式で反応を実施することに
より、今まで撹拌機を有する完全混合槽反応器で必要で
あった撹拌動力も必要なくなり、エネルギーの使用量も
大幅に低減することが可能となった。また、従来のメタ
ノールのカルボニル化反応では大きな発熱量のため、気
液分離器における蒸発潜熱による除熱が律速であり酢酸
プラントの生産量を決定する大きな因子であったが、ぎ
酸メチル異性化反応では反応熱が3分の2であり、その
制約から解放される酢酸製造プロセスを構築することが
可能となった。
By carrying out the reaction in the form of an extrusion flow, the stirring power required for a complete mixing tank reactor having a stirrer is no longer required, and the energy consumption can be greatly reduced. It became. In addition, the heat generated by the latent heat of vaporization in the gas-liquid separator was the rate-limiting factor due to the large amount of heat generated in the conventional carbonylation reaction of methanol, and was a major factor in determining the production of the acetic acid plant. In the reaction, the heat of reaction was two-thirds, and it was possible to construct an acetic acid production process that was released from the restriction.

【0017】[0017]

【実施例】以下に実施例に基づいて本発明をより詳細に
説明するが、本発明はこれらの実施例により限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0018】[0018]

【触媒原料液の調整】撹拌機を備えたジルコニウム製5
Lオートクレーブに、酢酸2400g、無水ヨウ化リチ
ウム573g、無水3ヨウ化ロジウム39.6gを仕込
んだ。一酸化炭素5kg/cm2を張込み、続いてパー
ジを行い系中のガスを一酸化炭素で置換した。この操作
を2度行った。続いて、一酸化炭素2kg/cm2を室
温で張込み、撹拌しながら130゜Cに昇温し、130
゜Cで1時間反応させて可溶性のロジウムカルボニルを
生成し、触媒原料液を調整した。以下で行う実施例およ
び比較例の実験では、触媒原料液にぎ酸メチル等の必要
成分を添加し原料液を調整し実施した。
[Preparation of catalyst raw material liquid] Zirconium 5 equipped with stirrer
An L autoclave was charged with 2400 g of acetic acid, 573 g of anhydrous lithium iodide, and 39.6 g of anhydrous rhodium triiodide. 5 kg / cm 2 of carbon monoxide was charged, followed by purging and replacing the gas in the system with carbon monoxide. This operation was performed twice. Subsequently, 2 kg / cm 2 of carbon monoxide was charged at room temperature, and the temperature was raised to 130 ° C. while stirring, and 130 ° C.
The mixture was reacted at ゜ C for 1 hour to produce soluble rhodium carbonyl, and a catalyst raw material liquid was prepared. In the experiments of the following Examples and Comparative Examples, necessary components such as methyl formate were added to the catalyst raw material liquid to adjust the raw material liquid.

【0019】実施例1 触媒原料液にぎ酸メチル等の必要成分を添加し、液組成
として、ぎ酸メチル17.0wt%、ヨウ化メチル1
5.0wt%、酢酸メチル0.86wt%、酢酸61.
5wt%、ぎ酸0.53wt%、ヨウ化リチウム5.0
wt%、Rh750ppm、水50ppmとなる原料液
を10kg調整した。液面検知装置、温度計、ガス吹込
みノズル、撹拌機を備えた、内径4cm、高さ20cm
のジルコニウム製オートクレーブを用意した。反応器上
部より原料液をフィードし、液面検知装置により液量が
200mlに達した時点で反応器下部の抜出しコントロ
ールバルブより生成液を抜出し、気液分離器に導入でき
るよう、また一酸化炭素は反応器下部のガス吹込みノズ
ルより、流量調節器を通して、パージガス量に見あった
量の一酸化炭素供給できるよう装置を製作した。撹拌を
全く実施せず、反応温度195゜Cで、反応器全圧が3
0kg/cm2で保圧になるように一酸化炭素を供給
し、原料液を900g/hrの速度で供給した。定常状
態に達した時点での生成液を気液分離器下部より抜出し
組成分析したところ、ぎ酸メチル1.70wt%、ヨウ
化メチル15.0wt%、酢酸メチル0.86wt%、
酢酸76.8wt%、ぎ酸0.53wt%、ヨウ化リチ
ウム5.0wt%であった。なお、生成液は900g/
hrの速度で得られ、ぎ酸メチルの転化率は90モル%
であった。ぎ酸と酢酸メチルの生成量と消費量は等し
く、生成液中のぎ酸と酢酸メチルを原料系に再循環させ
ると、副生はないとみなせた。ぎ酸メチルの酢酸への選
択率は99%以上であり、また未反応ぎ酸メチルも原料
系に再循環できる。空時収率は688g−酢酸/L・h
rが得られた。10時間の通液反応で気液分離器上部よ
り2Lのパージガスが得られ、ガス分析を実施したとこ
ろ、ガス組成で二酸化炭素が0.28vol%、水素が
0.08vol%、メタンが0.06vol%認められ
た。
Example 1 Necessary components such as methyl formate were added to a catalyst raw material liquid, and the liquid composition was changed to 17.0% by weight of methyl formate and 1 part of methyl iodide.
5.0 wt%, methyl acetate 0.86 wt%, acetic acid
5 wt%, formic acid 0.53 wt%, lithium iodide 5.0
10 kg of a raw material liquid containing wt%, Rh 750 ppm, and water 50 ppm was prepared. Equipped with liquid level detection device, thermometer, gas injection nozzle, stirrer, inner diameter 4 cm, height 20 cm
A zirconium autoclave was prepared. The raw material liquid is fed from the upper part of the reactor, and when the liquid level reaches 200 ml by the liquid level detecting device, the generated liquid is withdrawn from the withdrawal control valve at the lower part of the reactor so that it can be introduced into the gas-liquid separator. Manufactured an apparatus so as to supply the amount of carbon monoxide corresponding to the amount of purge gas from a gas injection nozzle at the bottom of the reactor through a flow rate controller. No stirring was performed, the reaction temperature was 195 ° C, and the total pressure of the reactor was 3
Carbon monoxide was supplied so as to maintain the pressure at 0 kg / cm 2 , and the raw material liquid was supplied at a rate of 900 g / hr. When the product liquid at the time of reaching the steady state was extracted from the lower part of the gas-liquid separator and analyzed for composition, 1.70 wt% of methyl formate, 15.0 wt% of methyl iodide, 0.86 wt% of methyl acetate,
Acetic acid was 76.8 wt%, formic acid was 0.53 wt%, and lithium iodide was 5.0 wt%. In addition, 900 g /
hr, the conversion of methyl formate is 90 mol%
Met. The production and consumption of formic acid and methyl acetate were equal, and it was considered that there was no by-product when formic acid and methyl acetate in the produced liquid were recycled to the raw material system. The selectivity of methyl formate to acetic acid is 99% or more, and unreacted methyl formate can be recycled to the raw material system. Space-time yield is 688 g-acetic acid / Lh
r was obtained. A purge gas of 2 L was obtained from the upper part of the gas-liquid separator by a liquid-passing reaction for 10 hours, and a gas analysis was carried out. As a result, the gas composition was 0.28 vol% of carbon dioxide, 0.08 vol% of hydrogen, and 0.06 vol% of methane. %Admitted.

【0020】比較例1 触媒原料液にぎ酸メチル等の必要成分を添加し、液組成
として、ぎ酸メチル17.0wt%、ヨウ化メチル1
5.0wt%、酢酸メチル0.86wt%、酢酸61.
0wt%、ぎ酸0.53wt%、ヨウ化リチウム5.0
wt%、Rh750ppm、水0.5wt%となる原料
液を10kg調整した。実施例1と同一の反応器に還流
冷却器を備え、その上部よりガスをパージ出来る装置を
用意した。500回転/分で撹拌を実施しながら、反応
温度195゜Cで、反応器全圧が30kg/cm2 で保
圧になるように一酸化炭素を供給し、原料液を900g
/hrの速度で供給した。同時に、還流冷却器上部より
ガスパージを実施した。定常状態に達した時点での生成
液を気液分離器下部より抜出し組成分析したところ、ぎ
酸メチル4.2wt%、ヨウ化メチル15.0wt%、
酢酸メチル1.50wt%、酢酸72.8wt%、ぎ酸
0.93wt%、ヨウ化リチウム5.0wt%であっ
た。なお、生成液は900g/hrの速度で得られた。
ぎ酸メチルの転化率は75.3モル%であり、ぎ酸と酢
酸メチルの副生はそれぞれ4.1モル%であり、酢酸選
択率は91.8モル%であった。空時収率は529g−
酢酸/L・hrが得られた。10時間の通液反応で還流
冷却器上部と気液分離器上部より合せて50Lのパージ
ガスが得られた。ガス分析を実施したところ、ガス組成
で二酸化炭素が1.12vol%、水素が0.28vo
l%、メタンが0.22vol%認められた。原料液の
含水量が多いとシフト反応が多く起っており、生成液の
溶解ガス量以上にパージガス量を多くしてやる必要があ
った。
COMPARATIVE EXAMPLE 1 Necessary components such as methyl formate were added to a catalyst raw material liquid, and as a liquid composition, 17.0% by weight of methyl formate, methyl iodide 1
5.0 wt%, methyl acetate 0.86 wt%, acetic acid
0 wt%, formic acid 0.53 wt%, lithium iodide 5.0
10 kg of a raw material liquid containing wt%, Rh750 ppm, and water 0.5 wt% was prepared. A reflux condenser was provided in the same reactor as in Example 1, and a device capable of purging gas from above was prepared. While stirring at 500 revolutions / minute, carbon monoxide was supplied at a reaction temperature of 195 ° C. so that the total pressure of the reactor was maintained at 30 kg / cm 2 , and 900 g of the raw material liquid was supplied.
/ Hr. At the same time, gas purging was performed from above the reflux condenser. When the product liquid at the time of reaching the steady state was extracted from the lower part of the gas-liquid separator and analyzed for composition, 4.2 wt% of methyl formate, 15.0 wt% of methyl iodide,
Methyl acetate was 1.50 wt%, acetic acid was 72.8 wt%, formic acid was 0.93 wt%, and lithium iodide was 5.0 wt%. The product liquid was obtained at a rate of 900 g / hr.
The conversion of methyl formate was 75.3 mol%, the by-products of formic acid and methyl acetate were each 4.1 mol%, and the acetic acid selectivity was 91.8 mol%. Space-time yield is 529 g-
Acetic acid / L · hr was obtained. In a 10-hour liquid-passing reaction, a total of 50 L of purge gas was obtained from the upper part of the reflux condenser and the upper part of the gas-liquid separator. When gas analysis was carried out, the composition of carbon dioxide was 1.12% by volume and hydrogen was 0.28% by volume.
1% and methane were found at 0.22 vol%. When the water content of the raw material liquid is large, a large amount of shift reaction occurs, and it is necessary to increase the purge gas amount beyond the dissolved gas amount of the product liquid.

【0021】実施例2 実施例1で調整した原料と同一の原料を調整した。反応
装置は実施例1で使用したものと同一のものを使用した
が、一酸化炭素は反応器上部の気相部に供給できるよう
装置を改良した。撹拌を全く実施せず、反応温度205
゜Cで、反応器全圧が34kg/cm2で保圧になるよ
う一酸化炭素を供給し、原料液を1300g/hrの速
度で供給した。定常状態に達した時点での生成液を気液
分離器下部より抜出し組成分析したところ、ぎ酸メチル
1.70wt%、ヨウ化メチル15.0wt%、酢酸メ
チル0.86wt%、酢酸76.8wt%、ぎ酸0.5
3wt%、ヨウ化リチウム5.0wt%であった。な
お、生成液は1300g/hrの速度で得られた。ぎ酸
メチルの転化率は90モル%であり、ぎ酸と酢酸メチル
の副生はないとみなせた。空時収率は994g−酢酸/
L・hrが得られた。7時間の通液反応で気液分離器上
部より3Lのパージガスが得られ、ガス分析を実施した
ところ、ガス組成で二酸化炭素が0.28vol%、水
素が0.08vol%、メタンが0.06vol%認め
られた。
Example 2 The same raw material as that prepared in Example 1 was prepared. The reactor used was the same as that used in Example 1, but the device was improved so that carbon monoxide could be supplied to the gas phase at the top of the reactor. No stirring was performed and the reaction temperature was 205
At ゜ C, carbon monoxide was supplied such that the total pressure of the reactor was maintained at 34 kg / cm 2, and the raw material liquid was supplied at a rate of 1300 g / hr. The product liquid at the time of reaching the steady state was withdrawn from the lower part of the gas-liquid separator and subjected to composition analysis. As a result, methyl formate 1.70 wt%, methyl iodide 15.0 wt%, methyl acetate 0.86 wt%, acetic acid 76.8 wt %, Formic acid 0.5
3 wt% and lithium iodide 5.0 wt%. The product liquid was obtained at a rate of 1300 g / hr. The conversion of methyl formate was 90 mol%, and it was considered that there was no by-product of formic acid and methyl acetate. Space-time yield is 994 g-acetic acid /
L · hr was obtained. A purge gas of 3 L was obtained from the upper part of the gas-liquid separator by a 7-hour flow reaction, and gas analysis was carried out. As a result, the gas composition was 0.28 vol% of carbon dioxide, 0.08 vol% of hydrogen, and 0.06 vol% of methane. %Admitted.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ぎ酸メチルをロジウム触媒、ヨウ素化合物
および一酸化炭素の存在下に異性化して酢酸を製造する
方法において、管型および/または塔型反応装置を用
い、押出し流れ形式で反応させることを特徴とする酢酸
の製造方法。
1. A process for producing acetic acid by isomerizing methyl formate in the presence of a rhodium catalyst, an iodine compound and carbon monoxide, wherein the reaction is carried out in an extruded flow system using a tubular and / or column type reactor. A method for producing acetic acid, comprising:
【請求項2】反応液中の水分濃度が、0.1重量%以下
である請求項1記載の酢酸の製造方法。
2. The method for producing acetic acid according to claim 1, wherein the water concentration in the reaction solution is 0.1% by weight or less.
【請求項3】未反応ぎ酸メチル、副生ぎ酸および酢酸メ
チルを原料系に再循環させる請求項1又は2記載の酢酸
の製造方法。
3. The process for producing acetic acid according to claim 1, wherein unreacted methyl formate, by-product formic acid and methyl acetate are recycled to the raw material system.
JP27085596A 1996-10-14 1996-10-14 Production of acetic acid Pending JPH10114701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27085596A JPH10114701A (en) 1996-10-14 1996-10-14 Production of acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27085596A JPH10114701A (en) 1996-10-14 1996-10-14 Production of acetic acid

Publications (1)

Publication Number Publication Date
JPH10114701A true JPH10114701A (en) 1998-05-06

Family

ID=17491923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27085596A Pending JPH10114701A (en) 1996-10-14 1996-10-14 Production of acetic acid

Country Status (1)

Country Link
JP (1) JPH10114701A (en)

Similar Documents

Publication Publication Date Title
US5286900A (en) Process for preparing acetic acid, methyl acetate, acetic anhydride or mixtures thereof
KR930010407B1 (en) Process for production of dimethyl carbonate
JPS617222A (en) Manufacture of ethanol
EP0250189A1 (en) Process for carbonylating alcohol to carboxylic acid, especially methanol to acetic acid
JPH0723337B2 (en) Methanol carbonylation method
US4879401A (en) Process for removal of impurities in alkyl nitrite formation
EP2621880B1 (en) Pump around reactor for production of acetic acid
KR20100068198A (en) Method for preparing alcohol from carboxylic acid and derivatives thereof through one-step process
JP4662624B2 (en) Method for producing acetic anhydride
TWI606037B (en) Production of acetic acid with an increased production rate
US10550059B2 (en) Process for the production of acetic acid
KR100339856B1 (en) Acetic acid reactive distillation process based on dme/methanol carbonylation
US5554790A (en) Process for producing acetic anhydride and acetic acid
US5117046A (en) Preparation of alkylidene diesters
CN115282913A (en) Reaction system and method for preparing methyl propionate
JPH10114701A (en) Production of acetic acid
US5969183A (en) Process for producing acetic acid from methyl formate
RU2181355C2 (en) Method of preparing acetic acid and/or methyl acetate via isomerization and carbonylation
US11021429B1 (en) Methods for producing a methanol precursor, methanol, and a methyl ester from methane in high purities
JP3089106B2 (en) Methanol production method
JPH0470245B2 (en)
CN112759518B (en) Treatment method and system for byproduct nitric acid in process of preparing ethylene glycol from synthesis gas
US4252983A (en) Production of acetic anhydride and acetic acid from acetaldehyde
CA1192576A (en) Production of an acylium anion product and carboxylic acids and esters therefrom
KR100380017B1 (en) Manufacturing method of unsaturated carboxylic ester by continuous process