JPH10113945A - Device for sealing nitrogen gas for injection molding machine - Google Patents

Device for sealing nitrogen gas for injection molding machine

Info

Publication number
JPH10113945A
JPH10113945A JP26883396A JP26883396A JPH10113945A JP H10113945 A JPH10113945 A JP H10113945A JP 26883396 A JP26883396 A JP 26883396A JP 26883396 A JP26883396 A JP 26883396A JP H10113945 A JPH10113945 A JP H10113945A
Authority
JP
Japan
Prior art keywords
nitrogen gas
molding machine
injection molding
injection cylinder
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26883396A
Other languages
Japanese (ja)
Other versions
JP3216548B2 (en
Inventor
Kazuhiro Ikeda
和弘 池田
Yoshie Fujita
良衛 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP26883396A priority Critical patent/JP3216548B2/en
Publication of JPH10113945A publication Critical patent/JPH10113945A/en
Application granted granted Critical
Publication of JP3216548B2 publication Critical patent/JP3216548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a device for sealing nitrogen gas for an injection molding machine with the capability of directly obtaining nitrogen gas from air, and controlling the concentration and flow rate of nitrogen gas during the period of sealing operation. SOLUTION: The nitrogen gas sealing device for an injection molding machine is to seal nitrogen gas into an injection cylinder 1 of a screw type injection molding machine and substitute air within the injection cylinder 1 for nitrogen gas, and it is provided with separation means 1 for separating compressed air into nitrogen and oxygen via a film that allows oxygen, steam, and so on to penetrate therethrough readily and operates to seal nitrogen gas obtained by the separation means into the injection cylinder 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スクリュー式射出
成形機の射出シリンダ内に窒素ガスを封入し、射出シリ
ンダ内の気体を窒素ガスに置換する、射出成形機用窒素
ガス封入装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen gas filling apparatus for an injection molding machine, which fills an injection cylinder of a screw type injection molding machine with nitrogen gas and replaces the gas in the injection cylinder with nitrogen gas.

【0002】[0002]

【従来の技術】スクリュー式射出成形機(以下、成型機
と略称する。)は、円筒状をなす射出シリンダ内に、螺
旋状をなすスクリュを同軸をなすよう挿通し、原料樹脂
を射出シリンダ内にて加熱溶融後、スクリュを前進さ
せ、射出シリンダの先端に形成されたノズルを介して溶
融樹脂を金型内に射出することにより、成形を行うもの
である。
2. Description of the Related Art A screw type injection molding machine (hereinafter abbreviated as a molding machine) inserts a spiral screw coaxially into a cylindrical injection cylinder, and feeds raw material resin into the injection cylinder. After heating and melting at, the screw is moved forward, and the molten resin is injected into the mold through a nozzle formed at the tip of the injection cylinder to perform molding.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記成型機
の場合、射出シリンダ内の溶融樹脂が炭化して射出シリ
ンダやスクリュに付着し、この炭化樹脂が成形中に剥離
して成型品内に混入する結果、成型品が「焼け」を起こ
す場合がある。また、樹脂が炭化する原因としては、射
出シリンダ内における樹脂の滞留時間が長く、樹脂が熱
履歴を多く受けすぎる結果、樹脂性状が変化し、炭化に
至ると考えられる。
By the way, in the case of the above molding machine, the molten resin in the injection cylinder is carbonized and adheres to the injection cylinder and the screw, and this carbonized resin is separated during molding and mixed into the molded product. As a result, the molded product may cause "burn". The cause of the carbonization of the resin is considered to be that the residence time of the resin in the injection cylinder is long and the resin receives too much heat history, resulting in a change in the resin properties and carbonization.

【0004】一方、炭化樹脂としては、完全に炭化した
ものの他、樹脂中の有機ガスや空気等の気体を含むもの
があり、特に、後者は射出シリンダやスクリュに付着し
やすいため、「焼け」の原因となりやすい。そこで、射
出シリンダ内に窒素ガス等の不活性ガスを封入し、射出
シリンダ内の気体を不活性ガスに置換することにより、
炭化樹脂の発生を防止する方法が考案されている。
On the other hand, carbonized resins include those completely carbonized and those containing gases such as organic gas and air in the resin. In particular, the latter easily adheres to an injection cylinder or a screw, so that "burning" occurs. Easy to cause. Therefore, by filling an inert gas such as nitrogen gas in the injection cylinder, and replacing the gas in the injection cylinder with an inert gas,
Methods for preventing the generation of carbonized resin have been devised.

【0005】しかしながら、これらの方法は、いずれも
不活性ガスの封入方法及び封入タイミングに関するもの
で、不活性ガスの供給については、ボンベや圧力吸着法
によると開示されているのみであり、不活性ガス供給装
置の構成を具体的に示した例はない。本発明は上記事情
に鑑みてなされたもので、空気から直接窒素ガスを得る
ことが可能で、かつ封入時の窒素ガスの濃度及び流量を
調節可能な、射出成形機用窒素ガス封入装置(以下、封
入装置と略称する。)の提供をその目的としている。
However, these methods all relate to the method and timing of filling the inert gas, and the supply of the inert gas is disclosed only by a cylinder or a pressure adsorption method. There is no specific example of the configuration of the gas supply device. The present invention has been made in view of the above circumstances, and it is possible to obtain nitrogen gas directly from air, and to adjust the concentration and flow rate of nitrogen gas at the time of filling, a nitrogen gas filling device for an injection molding machine (hereinafter referred to as a nitrogen gas filling device). , An enclosing device).

【0006】[0006]

【課題を解決するための手段】本発明は、成形機の射出
シリンダ内に窒素ガスを封入して前記射出シリンダ内の
気体を窒素ガスに置換する封入装置であって、圧縮空気
を、酸素や水蒸気等が透過しやすい膜体を介して窒素と
酸素とに分離する分離手段を設け、この分離手段にて得
た窒素ガスを、前記射出シリンダ内に封入することをそ
の特徴としている。
SUMMARY OF THE INVENTION The present invention is a sealing device for sealing a nitrogen gas into an injection cylinder of a molding machine and replacing the gas in the injection cylinder with a nitrogen gas. Separation means for separating into nitrogen and oxygen through a film body through which water vapor or the like easily permeates is provided, and nitrogen gas obtained by this separation means is sealed in the injection cylinder.

【0007】この場合、前記分離手段を複数用意し、か
つこれら分離手段に圧縮空気を供給する流路に、窒素ガ
スの分離に使用される前記分離手段の数を切り換える切
換弁を設けることが望ましい。具体的には、前記流路内
に直列または並列に配設された前記分離手段のうち、特
定の前記分離手段への気体の供給を前記切換弁にて阻止
することにより、窒素ガスの分離に使用される前記分離
手段の数を切り換え可能である。
In this case, it is desirable to prepare a plurality of the separating means and to provide a switching valve for switching the number of the separating means used for separating the nitrogen gas in a flow path for supplying the compressed air to the separating means. . Specifically, of the separation means arranged in series or in parallel in the flow path, the supply of gas to the specific separation means is blocked by the switching valve, thereby enabling separation of nitrogen gas. The number of said separating means used can be switched.

【0008】一方、前記膜体としては、管状をなすポリ
イミド製の中空糸膜を用い、この中空糸膜内に圧縮空気
を通過させて酸素や水蒸気等を膜体外に透過させ、膜体
内に残留した窒素ガスを、封入用窒素ガスとして回収す
ることが望ましい。
On the other hand, a hollow fiber membrane made of polyimide is used as the membrane, and compressed air is passed through the hollow fiber membrane to allow oxygen, water vapor, etc. to permeate out of the membrane and remain in the membrane. It is desirable that the recovered nitrogen gas be recovered as nitrogen gas for filling.

【0009】[0009]

【発明の実施の形態】以下、図面に基づき、本発明の具
体的な実施形態について更に詳しく説明する。本発明に
係る封入装置の例を図1に示す。符合1は射出シリンダ
で、この射出シリンダ1は円筒状をなし、その先端に
は、成型時に金型(図示せず。)に連結されるノズル2
が形成され、かつ射出シリンダ1の周囲には、ヒータ3
が配設されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 shows an example of the sealing device according to the present invention. Reference numeral 1 denotes an injection cylinder. The injection cylinder 1 has a cylindrical shape, and has a nozzle 2 connected to a die (not shown) at the time of molding.
Are formed, and a heater 3 is provided around the injection cylinder 1.
Are arranged.

【0010】符合4は螺旋状をなすスクリュで、このス
クリュ4は、射出シリンダ1内に、基端側から射出シリ
ンダ1と同軸をなすよう挿通され、かつ射出シリンダ1
の軸方向に沿って前進後退可能とされている。また、射
出シリンダ1の側面には、温度測定用の熱電対5が埋設
され、かつこの熱電対5は、温度検知器6に接続されて
いる。
Reference numeral 4 denotes a spiral screw. The screw 4 is inserted into the injection cylinder 1 so as to be coaxial with the injection cylinder 1 from the base end side.
Can be moved forward and backward along the axial direction. A thermocouple 5 for temperature measurement is embedded on a side surface of the injection cylinder 1, and the thermocouple 5 is connected to a temperature detector 6.

【0011】符合7は射出シリンダ1の基端側に設けら
れた樹脂投入口で、この樹脂投入口7と原料樹脂貯留用
のホッパ8との間には、円管状をなすブラケット9が、
樹脂投入口7及びホッパ8と同軸をなすよう介在されて
いる。また、樹脂投入口7及びホッパ8とブラケット9
との間は、いずれも封止シート10により気密的に封止
されている。
Reference numeral 7 denotes a resin input port provided on the base end side of the injection cylinder 1. Between the resin input port 7 and a hopper 8 for storing raw material resin, a bracket 9 having a tubular shape is provided.
It is interposed coaxially with the resin inlet 7 and the hopper 8. Also, the resin inlet 7 and the hopper 8 and the bracket 9
Are hermetically sealed by the sealing sheet 10.

【0012】符合11は、封入窒素を放出するための窒
素放出管で、この窒素放出管11は、ブラケット9の内
周面から径方向内方に突出し、かつその先端は、ブラケ
ット9の軸線上にて90°屈曲して、樹脂投入口7側に
開口している。ここで、窒素放出管11のサイズ及び位
置は、樹脂の落下や成形に悪影響を及ぼさないよう予め
設定されている。また、窒素放出管11をブラケット9
の軸線上にて樹脂投入口7側に開口した理由は、窒素ガ
スを落下樹脂に対し均等に噴射し、かつ樹脂間隙に存在
する気体の窒素ガスへの置換を容易化するためである。
更に、樹脂の溶融に伴い発生するガスや熱による腐食等
の劣化を防止するため、ブラケット9及び窒素放出管1
1はいずれもSUS材製とされている。
Reference numeral 11 denotes a nitrogen discharge tube for discharging the sealed nitrogen. The nitrogen discharge tube 11 protrudes radially inward from the inner peripheral surface of the bracket 9, and its tip is located on the axis of the bracket 9. At 90 ° to open the resin inlet 7 side. Here, the size and position of the nitrogen release tube 11 are set in advance so as not to adversely affect the resin falling or molding. Also, the nitrogen discharge pipe 11 is connected to the bracket 9.
The reason for opening the resin inlet 7 side on the axis of is to inject nitrogen gas evenly to the falling resin and to facilitate replacement of the gas present in the resin gap with nitrogen gas.
Further, in order to prevent deterioration such as corrosion due to gas or heat generated when the resin is melted, the bracket 9 and the nitrogen discharge tube 1 are used.
1 are all made of SUS material.

【0013】一方、窒素放出管11の基端側は、接続ホ
ース12を介して封入装置本体(後述)に接続されてい
る。また、符合13は、接続ホース12の途中に設けら
れ、温度検知器6からの信号に応じ、自動的に接続ホー
ス12を開閉する電磁開閉弁である。
On the other hand, the base end of the nitrogen discharge tube 11 is connected to a sealing device main body (described later) via a connection hose 12. Reference numeral 13 denotes an electromagnetic on-off valve that is provided in the middle of the connection hose 12 and automatically opens and closes the connection hose 12 according to a signal from the temperature detector 6.

【0014】符合14は圧縮空気供給口で、圧縮空気供
給口14から窒素ガス分離器(分離手段)15に至る流
路16には、上流側から、エアフィルタ17、ミストフ
ィルタ18、及びレギュレータ19が直列に配設され、
これらエアフィルタ17ないしレギュレータ19によ
り、窒素ガス分離器15への不純物の混入及び窒素ガス
分離器15の破損を防止している。
Reference numeral 14 denotes a compressed air supply port, and an air filter 17, a mist filter 18, and a regulator 19 are provided in the flow path 16 from the compressed air supply port 14 to the nitrogen gas separator (separating means) 15 from the upstream side. Are arranged in series,
The air filter 17 and the regulator 19 prevent impurities from being mixed into the nitrogen gas separator 15 and damage to the nitrogen gas separator 15.

【0015】ここで、窒素ガス分離器15は、管状をな
すポリイミド製の中空糸膜(膜体)を備え、この中空糸
膜内に圧縮空気を通過させて酸素や水蒸気等を中空糸膜
外に透過、排除することにより、膜内に残留した窒素ガ
スを、封入用窒素ガスとして回収するものである。図1
の場合、2個の窒素ガス分離器15が、流路16内に直
列に配設されている。
Here, the nitrogen gas separator 15 is provided with a hollow polyimide fiber membrane (membrane body) that forms a tube. Compressed air is passed through the hollow fiber membrane to remove oxygen, water vapor, etc. from the outside of the hollow fiber membrane. The nitrogen gas remaining in the film is recovered as a nitrogen gas for encapsulation by permeating and excluding it. FIG.
In this case, two nitrogen gas separators 15 are arranged in series in the flow path 16.

【0016】符合20は、上記2個の窒素ガス分離器1
5間に配設された電磁切換弁(切換弁)で、この電磁切
換弁20は、上流側の窒素ガス分離器15にて回収され
た気体(窒素ガスが富化された圧縮空気)の供給先を、
下流側の窒素ガス分離器15か、あるいはこれら窒素ガ
ス分離器15から接続ホース12に至る流路16のいず
れかに切り換えるものである。
Reference numeral 20 denotes the two nitrogen gas separators 1
The solenoid-operated switching valve (switching valve) is provided between the first and second solenoid valves 5 and supplies the gas (compressed air enriched with nitrogen gas) collected by the nitrogen gas separator 15 on the upstream side. Ahead
The switching is made to either the nitrogen gas separator 15 on the downstream side or the flow path 16 from the nitrogen gas separator 15 to the connection hose 12.

【0017】すなわち、電磁切換弁20を切換え、これ
ら窒素ガス分離器15の双方に圧縮空気を連続して通過
させるか、下流側の窒素ガス分離器15への流路を遮断
し、上流側の窒素ガス分離器15にのみ圧縮空気を通過
させるか選択することにより、排出される窒素ガスの濃
度や流量の変更が可能となっている。また、図1の場
合、下流側の窒素ガス分離器15における吸入側及び排
出側の流路16が隣接して設けられており、その結果、
電磁切換弁20を上記吸入側及び排出側の流路16にま
たがって配設することにより、1つの電磁切換弁20に
て、下流側の窒素ガス分離器15における吸入側及び排
出側の流路16の双方を同時に遮断することが可能とな
っている。
That is, the electromagnetic switching valve 20 is switched so that the compressed air continuously passes through both of the nitrogen gas separators 15 or the flow path to the nitrogen gas separator 15 on the downstream side is shut off, and By selecting whether to allow compressed air to pass through only the nitrogen gas separator 15, it is possible to change the concentration and flow rate of the discharged nitrogen gas. In the case of FIG. 1, the flow paths 16 on the suction side and the discharge side of the nitrogen gas separator 15 on the downstream side are provided adjacent to each other.
By disposing the electromagnetic switching valve 20 over the suction-side and discharge-side flow paths 16, the suction-side and discharge-side flow paths in the nitrogen gas separator 15 on the downstream side can be controlled by one electromagnetic switching valve 20. 16 can be cut off at the same time.

【0018】符合21は、窒素ガス分離器15の上流側
及び下流側にそれぞれ設置された圧力計で、この圧力計
21は、酸素除去前後の流路16内の差圧を検出し、中
空糸膜の性能劣化を判断するためのものである。また、
符合22は、窒素ガス分離器15から接続ホース12に
至る流路16内に配設され、流路16からの窒素ガス供
給量を調整する浮遊式流量計である。そして、これら流
路16から浮遊式流量計22に至る部材により、封入装
置本体23が概略構成されている。
Reference numeral 21 denotes pressure gauges installed on the upstream side and the downstream side of the nitrogen gas separator 15, respectively. The pressure gauge 21 detects a differential pressure in the flow path 16 before and after oxygen removal, and detects a hollow fiber. This is for determining the performance degradation of the film. Also,
Reference numeral 22 denotes a floating flow meter that is provided in the flow path 16 from the nitrogen gas separator 15 to the connection hose 12, and adjusts the amount of nitrogen gas supplied from the flow path 16. The sealing device main body 23 is schematically constituted by members from the flow path 16 to the floating type flow meter 22.

【0019】次ぎに、上記構成を有する封入装置による
射出シリンダ1内への窒素ガスの封入及び窒素ガスの封
入停止について、図2に示すシーケンスチャートととも
に以下に説明する。
Next, the charging of the nitrogen gas into the injection cylinder 1 and the stop of the charging of the nitrogen gas by the charging device having the above configuration will be described below with reference to a sequence chart shown in FIG.

【0020】まず、窒素ガスの封入は、樹脂の溶融前、
すなわち射出シリンダ1内の温度上昇時に行われるが、
その手順は以下の通りである。 熱電対5より温度検知器6が受けた温度信号(窒素ガ
ス停止温度、設定温度a)R0により、窒素ガス停止信
号リレーR3が励磁される。 射出シリンダ1内の温度が上昇し、中間温度(設定温
度b)を越えると、温度信号R1が発せられ、温度変化
確認信号リレーR4が励磁される。また、R3,R4の励
磁により温度上昇が確認されると、温度上昇・下降確認
信号リレーR6が励磁され、初期状態に戻る(リセット
される)。 射出シリンダ1内の温度上昇が更に上昇し、窒素ガス
封入温度(設定温度c)を越えると、温度信号R2が発
せられ、窒素ガス封入信号リレーR5が励磁される。 その結果、電磁開閉弁13が開状態となり、窒素ガス
の封入が開始される。
First, nitrogen gas is sealed before the resin is melted.
That is, it is performed when the temperature in the injection cylinder 1 rises,
The procedure is as follows. The temperature signal (nitrogen gas stop temperature, set temperature a) R 0 received by the temperature detector 6 from the thermocouple 5 excites the nitrogen gas stop signal relay R 3 . Elevated temperature in the injection cylinder 1, exceeds the intermediate temperature (set temperature b), the temperature signal R 1 is issued, the temperature change confirmation signal relay R 4 is energized. When the temperature rise is confirmed by the excitation of R 3 and R 4 , the temperature rise / fall confirmation signal relay R 6 is excited and returns to the initial state (reset). Temperature rise in the injection cylinder 1 is increased further and exceeds the nitrogen gas enclosure temperature (set temperature c), the temperature signal R 2 is issued, the nitrogen gas enclosure signal relay R 5 is energized. As a result, the electromagnetic on-off valve 13 is opened, and the filling of the nitrogen gas is started.

【0021】一方、窒素ガスの封入停止は、樹脂の硬化
後、すなわち射出シリンダ1内の温度下降時に行われる
が、その工程は以下の通りである。 射出シリンダ1内の温度が中間温度(設定温度b)よ
り下がると、温度信号R 1が発せられ、温度変化確認信
号リレーR4が励磁される。 射出シリンダ1内の温度が更に下降し、窒素ガス停止
温度(設定温度a)より下がると、温度信号R0が発せ
られ、窒素ガス停止信号リレーR3が励磁される。 R3,R4の励磁により温度下降が確認されると、温度
上昇・下降確認信号リレーR6が励磁され、初期状態に
戻る。 その結果、電磁開閉弁13が閉状態となり、窒素ガス
の封入が停止される。
On the other hand, stopping the filling of the nitrogen gas is equivalent to the curing of the resin.
This is performed later, that is, when the temperature in the injection cylinder 1 decreases.
However, the steps are as follows. The temperature in the injection cylinder 1 is higher than the intermediate temperature (set temperature b).
The temperature signal R 1Is issued and the temperature change confirmation
No. relay RFourIs excited. The temperature inside the injection cylinder 1 drops further and the nitrogen gas stops.
When the temperature falls below the temperature (set temperature a), the temperature signal R0Emits
And the nitrogen gas stop signal relay RThreeIs excited. RThree, RFourWhen the temperature decrease is confirmed by the excitation of
Rise / fall confirmation signal relay R6Is excited to the initial state
Return. As a result, the solenoid on-off valve 13 is closed and the nitrogen gas
Is stopped.

【0022】すなわち、本発明に係る封入装置の場合、
射出シリンダ1内への窒素ガスの封入及び窒素ガスの封
入停止は、射出シリンダ1内の温度を熱電対5にて検知
し、その検知結果に基づき、温度検知器6が、上記手順
に基づき電磁開閉弁13を開閉させることにより行われ
る。また、温度検知器6における設定温度a,b,cの
設定値を変えることにより、封入開始及び停止のタイミ
ングを任意に設定可能である。
That is, in the case of the sealing device according to the present invention,
The charging of the nitrogen gas into the injection cylinder 1 and the stop of the charging of the nitrogen gas are performed by detecting the temperature in the injection cylinder 1 with the thermocouple 5, and based on the detection result, the temperature detector 6 sets the electromagnetic sensor based on the above procedure. This is performed by opening and closing the on-off valve 13. Further, by changing the set values of the set temperatures a, b, and c in the temperature detector 6, it is possible to arbitrarily set the timing of starting and stopping the enclosing.

【0023】このように、本発明に係る封入装置によれ
ば、射出シリンダ1内に窒素ガス等を封入し、射出シリ
ンダ1内の気体を窒素ガスに置換することにより、成形
品の「焼け」の原因となる炭化樹脂の発生を防止するこ
とができる。また、本発明に係る封入装置によれば、空
気から直接かつ容易に窒素ガスを得ることが可能である
ため、窒素ガスの獲得に要するコストが軽減される。更
に、窒素ガス分離器15に圧縮空気を通過させるだけで
窒素ガスが分離されるため、窒素ガス分離用に新たな電
源等を設ける必要もなく、電力消費が少なくて済む。
As described above, according to the sealing device of the present invention, nitrogen gas or the like is sealed in the injection cylinder 1 and the gas in the injection cylinder 1 is replaced with nitrogen gas, thereby "burning" the molded product. Can be prevented from being generated. Further, according to the sealing device of the present invention, it is possible to directly and easily obtain nitrogen gas from air, so that the cost required for obtaining nitrogen gas is reduced. Furthermore, since nitrogen gas is separated only by passing compressed air through the nitrogen gas separator 15, there is no need to provide a new power supply or the like for nitrogen gas separation, and power consumption can be reduced.

【0024】また、成形品の大きさ、種類等、成形条
件、更には成型時におけるガスの発生状況によっては、
封入される窒素ガスの濃度及び封入量を変化させる必要
があるが、本発明に係る封入装置の場合、封入装置本体
23内に複数の窒素ガス分離器15を備え、かつ窒素ガ
スの分離に使用される窒素ガス分離器15の数を電磁切
換弁20にて切り換えることにより、排出される窒素ガ
スの濃度や流量が調節可能となっている。すなわち、本
発明に係る封入装置によれば、同一の封入装置で、封入
される窒素ガスの濃度及び封入量の変化に対応すること
が可能となり、使用上の自由度が増す。
In addition, depending on the molding conditions such as the size and type of the molded product, and also on the state of gas generation during molding,
It is necessary to change the concentration and amount of nitrogen gas to be sealed. In the case of the sealing device according to the present invention, a plurality of nitrogen gas separators 15 are provided in the sealing device main body 23 and used for separating nitrogen gas. By switching the number of nitrogen gas separators 15 to be operated by the electromagnetic switching valve 20, the concentration and flow rate of the discharged nitrogen gas can be adjusted. That is, according to the enclosing device according to the present invention, it is possible to cope with changes in the concentration of the nitrogen gas to be enclosed and the amount of the enclosed gas with the same enclosing device, and the degree of freedom in use increases.

【0025】一方、図3に示すように、複数(図では2
個)の窒素ガス分離器15を流路16内に並列に配設
し、これら窒素ガス分離器15に向かう流路16の分岐
点に電磁切換弁20を配設してもよい。この場合、磁切
換弁20を切換え、これら窒素ガス分離器15の双方に
圧縮空気を並行して通過させるか、図中右側の窒素ガス
分離器15への流路を遮断し、図中左側の窒素ガス分離
器15にのみ圧縮空気を通過させるか選択することによ
り、排出される窒素ガスの濃度や流量の変更が可能とな
る。
On the other hand, as shown in FIG.
The nitrogen gas separators 15 may be disposed in parallel in the flow path 16, and the electromagnetic switching valve 20 may be disposed at a branch point of the flow path 16 toward the nitrogen gas separator 15. In this case, the magnetic switching valve 20 is switched to allow the compressed air to pass through both of the nitrogen gas separators 15 in parallel, or the flow path to the nitrogen gas separator 15 on the right side in the figure is shut off, and By selecting whether to allow compressed air to pass through only the nitrogen gas separator 15, it is possible to change the concentration and flow rate of the discharged nitrogen gas.

【0026】[0026]

【発明の効果】以上説明した通り、本発明に係る封入装
置によれば、射出シリンダ内に窒素ガス等を封入し、射
出シリンダ内の気体を窒素ガスに置換することにより、
成形品の「焼け」の原因となる炭化樹脂の発生を防止す
ることができる。また、空気から直接かつ容易に窒素ガ
スを得ることが可能であるため、窒素ガスの獲得に要す
るコストが軽減される。更に、分離手段に圧縮空気を通
過させるだけで窒素ガスが分離されるため、窒素ガス分
離用に新たな電源等を設ける必要もなく、電力消費が少
なくて済む。
As described above, according to the sealing apparatus of the present invention, nitrogen gas or the like is sealed in the injection cylinder, and the gas in the injection cylinder is replaced with nitrogen gas.
It is possible to prevent the generation of carbonized resin which causes "burn" of the molded article. Further, since the nitrogen gas can be obtained directly and easily from the air, the cost required for obtaining the nitrogen gas is reduced. Furthermore, since nitrogen gas is separated only by passing compressed air through the separation means, there is no need to provide a new power supply or the like for nitrogen gas separation, and power consumption can be reduced.

【0027】また、成形品の大きさ、種類等、成形条
件、更には成型時におけるガスの発生状況によっては、
封入される窒素ガスの濃度及び封入量を変化させる必要
があるが、本発明に係る封入装置の場合、複数の分離手
段を備え、かつ窒素ガスの分離に使用される分離手段の
数を切換弁にて切り換えることにより、排出される窒素
ガスの濃度や流量が調節可能となっている。すなわち、
本発明に係る封入装置によれば、同一の封入装置で、封
入される窒素ガスの濃度及び封入量の変化に対応するこ
とが可能となり、使用上の自由度が増す。
Also, depending on the molding conditions such as the size and type of the molded product, and also on the state of gas generation during molding,
It is necessary to change the concentration and the amount of nitrogen gas to be sealed. , The concentration and flow rate of the discharged nitrogen gas can be adjusted. That is,
ADVANTAGE OF THE INVENTION According to the encapsulation apparatus which concerns on this invention, it becomes possible to respond | correspond to the change of the density | concentration of nitrogen gas and the amount of encapsulation with the same encapsulation apparatus, and the flexibility in use increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る窒素ガス封入装置の構造の例を
示す図である。
FIG. 1 is a diagram showing an example of the structure of a nitrogen gas filling apparatus according to the present invention.

【図2】 本発明に係る窒素ガス封入装置による射出シ
リンダ内への窒素ガスの封入及び窒素ガスの封入停止の
手順を示すシーケンスチャートである。
FIG. 2 is a sequence chart showing a procedure of charging nitrogen gas into an injection cylinder and stopping charging of the nitrogen gas by the nitrogen gas charging device according to the present invention.

【図3】 本発明に係る封入装置本体の構造の例を示す
図である。
FIG. 3 is a diagram showing an example of the structure of a sealing device main body according to the present invention.

【符号の説明】[Explanation of symbols]

1 射出シリンダ 15 窒素ガス分離器(分離手段) 16 流路 20 電磁切換弁(切換弁) DESCRIPTION OF SYMBOLS 1 Injection cylinder 15 Nitrogen gas separator (separation means) 16 Flow path 20 Electromagnetic switching valve (switching valve)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スクリュー式射出成形機の射出シリンダ
内に窒素ガスを封入して前記射出シリンダ内の気体を窒
素ガスに置換する、射出成形機用窒素ガス封入装置であ
って、 圧縮空気を、酸素が透過可能な膜体を介して窒素と酸素
とに分離する分離手段を設け、この分離手段にて得た窒
素ガスを、前記射出シリンダ内に封入することを特徴と
する射出成形機用窒素ガス封入装置。
1. A nitrogen gas filling device for an injection molding machine, wherein a nitrogen gas is filled in an injection cylinder of a screw type injection molding machine and the gas in the injection cylinder is replaced with nitrogen gas. A separator for separating nitrogen and oxygen through a membrane through which oxygen can pass; and nitrogen gas obtained by the separator is sealed in the injection cylinder. Gas filling device.
【請求項2】 前記分離手段を複数用意し、かつこれら
分離手段に圧縮空気を供給する流路に、窒素ガスの分離
に使用される前記分離手段の数を切り換える切換弁を設
けたことを特徴とする請求項1記載の射出成形機用窒素
ガス封入装置。
2. A method according to claim 1, wherein a plurality of said separating means are prepared, and a switching valve for switching the number of said separating means used for separating nitrogen gas is provided in a flow path for supplying compressed air to said separating means. The nitrogen gas filling apparatus for an injection molding machine according to claim 1, wherein
【請求項3】 前記分離手段が前記流路内に直列に配設
され、かつ特定の前記分離手段への気体の供給が、前記
切換弁により阻止可能とされていることを特徴とする請
求項2記載の射出成形機用窒素ガス封入装置。
3. The apparatus according to claim 2, wherein said separation means is arranged in series in said flow path, and supply of gas to said specific separation means can be prevented by said switching valve. 3. The nitrogen gas filling device for an injection molding machine according to 2.
【請求項4】 前記分離手段が前記流路内に並列に配設
され、かつ特定の前記分離手段への気体の供給が、前記
切換弁により阻止可能とされていることを特徴とする請
求項2記載の射出成形機用窒素ガス封入装置。
4. The apparatus according to claim 1, wherein said separation means is disposed in parallel in said flow path, and supply of gas to said specific separation means can be prevented by said switching valve. 3. The nitrogen gas filling device for an injection molding machine according to 2.
【請求項5】 前記膜体が管状をなすポリイミド製の中
空糸膜とされ、この中空糸膜内に圧縮空気を通過させて
酸素や水蒸気等を膜体外に透過させ、膜体内に残留した
窒素ガスを、封入用窒素ガスとして回収することを特徴
とする請求項1ないし4のいずれか1項記載の射出成形
機用窒素ガス封入装置。
5. The membrane body is a hollow fiber membrane made of polyimide having a tubular shape. Compressed air is passed through the hollow fiber membrane to allow oxygen and water vapor to permeate out of the membrane body, and nitrogen remaining in the membrane body. 5. The nitrogen gas filling apparatus for an injection molding machine according to claim 1, wherein the gas is recovered as a filling nitrogen gas.
JP26883396A 1996-10-09 1996-10-09 Nitrogen gas filling equipment for injection molding machines Expired - Fee Related JP3216548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26883396A JP3216548B2 (en) 1996-10-09 1996-10-09 Nitrogen gas filling equipment for injection molding machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26883396A JP3216548B2 (en) 1996-10-09 1996-10-09 Nitrogen gas filling equipment for injection molding machines

Publications (2)

Publication Number Publication Date
JPH10113945A true JPH10113945A (en) 1998-05-06
JP3216548B2 JP3216548B2 (en) 2001-10-09

Family

ID=17463905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26883396A Expired - Fee Related JP3216548B2 (en) 1996-10-09 1996-10-09 Nitrogen gas filling equipment for injection molding machines

Country Status (1)

Country Link
JP (1) JP3216548B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508970A (en) * 2000-09-13 2004-03-25 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Molding equipment for plastic products under inert atmosphere
JP2008087449A (en) * 2006-10-02 2008-04-17 Fukuhara Co Ltd Method and device for supplying nitrogen gas in resin molding machine
WO2009037859A1 (en) * 2007-09-21 2009-03-26 Mitsui Chemicals, Inc. Flame-retardant polyamide composition
WO2009037858A1 (en) * 2007-09-21 2009-03-26 Mitsui Chemicals, Inc. Flame-retardant polyamide composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508970A (en) * 2000-09-13 2004-03-25 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Molding equipment for plastic products under inert atmosphere
JP4786861B2 (en) * 2000-09-13 2011-10-05 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Molding equipment for plastic products under inert atmosphere
JP2008087449A (en) * 2006-10-02 2008-04-17 Fukuhara Co Ltd Method and device for supplying nitrogen gas in resin molding machine
WO2009037859A1 (en) * 2007-09-21 2009-03-26 Mitsui Chemicals, Inc. Flame-retardant polyamide composition
WO2009037858A1 (en) * 2007-09-21 2009-03-26 Mitsui Chemicals, Inc. Flame-retardant polyamide composition
JP5276000B2 (en) * 2007-09-21 2013-08-28 三井化学株式会社 Flame retardant polyamide composition
JP5275999B2 (en) * 2007-09-21 2013-08-28 三井化学株式会社 Flame retardant polyamide composition

Also Published As

Publication number Publication date
JP3216548B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
SE509424C2 (en) Gases elimination system from a container containing bicarbonate powder and water
CN1063107C (en) Method and equipment for monitoring a centrifugal separator
JP3216548B2 (en) Nitrogen gas filling equipment for injection molding machines
CN109807328B (en) Selective laser melting system, gas circulation device and printing method
CN101646481B (en) Integral sweep controller for gas membrane separation device
WO1999033630A1 (en) Injection molding machine, injection molding system, pellet supply unit, injection molding method and injection molded product
JP4155524B2 (en) Resin raw material supply equipment for synthetic resin molding machines
EP1644102A2 (en) Device for the separation of at least one constituent of a gaseous mixture by means pressure-varied adsorption
SE500303C2 (en) Device for making hollow plastic articles by injection molding
US20060219295A1 (en) Method for filling water and device for filling water
CN114229479B (en) Lithium battery lithium salt full-automatic pneumatic conveying system
JP2646455B2 (en) Nitrogen gas separation method
KR100517806B1 (en) Apparatus for automatic supply chemical of semiconductor equipment
KR20110010545A (en) Device that supply resin of type that inject high temperature gas
JP4142995B2 (en) Resin raw material supply device for synthetic resin molding machine and gas suction method of synthetic resin molding machine
JP4548908B2 (en) Heating device
JP2000209812A (en) Hydrogen gas substitution apparatus for cooling rotary electric machine
JP2003112018A (en) Method of detecting membrane breakage of membrane separator and membrane separating system
JP4056907B2 (en) Apparatus and method for supplying resin raw material for synthetic resin molding machine
JP2010064471A (en) Method and apparatus for feeding nitrogen gas into mold of resin molding machine
EP1207380B1 (en) Method and device for controlling leak tightness of fuel elements
JPH03216321A (en) Injection molding machine
CN215966310U (en) Atmosphere protection system of metal additive manufacturing equipment
JP2005047050A (en) Resin raw material supply device for synthetic resin molding machine and its operating method
JP2001269932A (en) Apparatus to feed resin material into molding machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010703

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees