JPH10113339A - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device

Info

Publication number
JPH10113339A
JPH10113339A JP8287295A JP28729596A JPH10113339A JP H10113339 A JPH10113339 A JP H10113339A JP 8287295 A JP8287295 A JP 8287295A JP 28729596 A JP28729596 A JP 28729596A JP H10113339 A JPH10113339 A JP H10113339A
Authority
JP
Japan
Prior art keywords
magnetic field
signal
receiving
signals
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8287295A
Other languages
Japanese (ja)
Inventor
Masaya Yasukochi
正也 安河内
Koji Yasugi
幸治 八杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP8287295A priority Critical patent/JPH10113339A/en
Publication of JPH10113339A publication Critical patent/JPH10113339A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To separate received signals of respective receiving passages from each other by the different frequency axes, add and process the signals before input to a signal processing system, and simplify the constitution of a receiving system by providing plural receiving passages in the receiving system, and arranging signal genarators to generate different frequencies in the respective receiving passages. SOLUTION: Received signals inputted to respective coils 301 to 304 are inputted to mixers 601 to 604 after being amplified by preamplifiers 401 to 404. A difference between frequencies fs of respective signals and reference frequencies f1 to f2 from respective oscillators 501 to 504, is found by the respective mixers 601 to 604, and they are separated into a frequency component of f1 to fS-f4 , to fs . Next, separated received signals are added together by an adder 900 through LPFs 701 to 704, and are inputted to a signal processing system 6 after being digitally converted by an A/D converter 800. Here, the signals separated by the frequency component are reconstructed as an image. According to this, the A/D converter 800 can make shift with only one, and the device constitution is simplified, and cost can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核磁気共鳴(以
下、NMRと称する)現象を利用して被検体の所望個所
を画像化する磁気共鳴イメ−ジング(以下、MRIと称
する)装置に関するものである。さらに詳しくは、MR
I装置の信号検波受信系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance imaging (hereinafter, referred to as MRI) apparatus for imaging a desired portion of a subject by utilizing a nuclear magnetic resonance (hereinafter, referred to as NMR) phenomenon. It is. For more information, MR
The present invention relates to a signal detection and reception system of the I device.

【従来の技術】MRI装置は、NMR現象を利用して被
検体中の検査部位における原子核スピンの密度分布、緩
和時間分布、化学シフトなどを計測して、その計測デ−
タから被検体の断面を画像表示するものである。以下そ
の原理の概略を記す。
2. Description of the Related Art An MRI apparatus measures a nuclear spin density distribution, a relaxation time distribution, a chemical shift, and the like at an inspection site in a subject by utilizing an NMR phenomenon, and obtains the measurement data.
The image of the section of the subject is displayed from the data. The outline of the principle is described below.

【0002】均一な静磁場中に置かれた被検体の原子核
スピンは、その磁場強度に応じたラ−モア周波数で静磁
場の方向を軸として歳差運動を行う。このラ−モア周波
数に等しい周波数の電磁波を被検体に外部から照射する
と、被検体内の原子核スピンは励起され、高エネルギ−
状態に遷移する。この照射を切るとこの原子核スピンは
その結合状態に応じた緩和時定数で低エネルギ−状態に
戻る。このとき被検体から外部にNMR号が放出され
る。このNMR信号はその共鳴周波数に同調された高周
波受信コイルで検出される。またこのとき、この信号に
位置情報を付加するためにX,Y,Zの3軸の傾斜磁場
を上記静磁場空間に印加する。これにより、空間内の位
置情報を周波数情報の信号として検出し、コンピュ−タ
によるデ−タ処理を行い画像化する。
A nuclear spin of a subject placed in a uniform static magnetic field precesses around a direction of the static magnetic field at a Larmor frequency corresponding to the magnetic field strength. When an object is irradiated with an electromagnetic wave having a frequency equal to the Larmor frequency from the outside, nuclear spins in the object are excited, and high energy
Transition to the state. When this irradiation is stopped, the nuclear spin returns to a low energy state with a relaxation time constant corresponding to the bonding state. At this time, an NMR signal is emitted from the subject to the outside. This NMR signal is detected by a high frequency receiving coil tuned to its resonance frequency. At this time, a gradient magnetic field of three axes of X, Y and Z is applied to the static magnetic field space in order to add positional information to this signal. As a result, position information in the space is detected as a signal of frequency information, and data processing is performed by a computer to form an image.

【0003】また、昨今では、受信系の感度向上のた
め、複数の受信コイルを備えたマルチコイルが用いられ
ている。マルチコイルを用いた受信系は、図2に示すよ
うにNMR信号を受信する複数のコイル301〜304
と、受信信号を増幅するプリアンプ401〜404と、
参照周波数を発生する発振器500と、各コイルの信号
周波数と参照周波数を差分するミキサ601〜604
と、ミキサからの出力をフィルタ処理するLPF701
〜704と、フィルタ処理された信号をデジタル変換す
るA/Dコンバータ801〜804で構成される。各コ
イル301〜304で受信された信号は、ミキサにより
0−fcの周波数成分にされLPF701〜704を
介してA/Dコンバータ801〜804でデジタル変換
され信号処理系6へ出力する。
In recent years, a multi-coil having a plurality of receiving coils has been used to improve the sensitivity of a receiving system. A receiving system using a multi-coil includes a plurality of coils 301 to 304 for receiving NMR signals as shown in FIG.
And preamplifiers 401 to 404 for amplifying the received signal;
An oscillator 500 for generating a reference frequency, and mixers 601 to 604 for differentiating between the signal frequency of each coil and the reference frequency
And an LPF 701 for filtering the output from the mixer
To 704, and A / D converters 801 to 804 for digitally converting the filtered signal. The signals received by the coils 301 to 304 are converted into frequency components of f 0 -fc by a mixer, are digitally converted by A / D converters 801 to 804 via LPFs 701 to 704, and output to the signal processing system 6.

【発明が解決しようとする課題】従来の受信系は、参照
周波数(通常、局所発信あるいはロ−カル周波数などと
呼ばれる)を1つしか発生できないので、A/Dコンバ
−タ801〜804がコイル301〜304の数だけ必
要であった。MRI装置に用いられるA/Dコンバ−タ
は、受信信号のダイナミックレンジが大きく信号帯域が
広いため、通常は16ビット以上の高速なA/Dコンバ
ータを用いている。しかしながらこの様な高性能A/D
コンバ−タは高価であるため、コイルの数だけ搭載する
と製品のコスト高となる。
Since the conventional receiving system can generate only one reference frequency (usually called local transmission or local frequency), the A / D converters 801 to 804 have coils. 301 to 304 were required. An A / D converter used in an MRI apparatus generally uses a high-speed A / D converter of 16 bits or more because the dynamic range of a received signal is large and the signal band is wide. However, such high performance A / D
Since the converter is expensive, mounting the same number of coils increases the cost of the product.

【0004】本発明の目的は、感度低下を招くことなく
簡単な構成の受信系を備えたMRI装置を提供すること
にある。
An object of the present invention is to provide an MRI apparatus provided with a receiving system having a simple configuration without lowering the sensitivity.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、均一な磁場を形成する静磁場系と、前記磁場
中に置かれた被検体に電磁波を印加する送信系と、前記
被検体に傾斜磁場を印加する傾斜磁場系と、前記電磁波
及び傾斜磁場の印加により前記被検体より発生する核磁
気共鳴信号を検出する受信系と、受信系からの信号を画
像化する信号処理系とを有する磁気共鳴イメージング装
置において、上記受信系は複数の受信経路を持ち、各受
信経路に異なる周波数を発生する信号発生器を備えたも
のである。
To achieve the above object, the present invention provides a static magnetic field system for forming a uniform magnetic field, a transmission system for applying an electromagnetic wave to a subject placed in the magnetic field, A gradient magnetic field system for applying a gradient magnetic field to a specimen, a reception system for detecting a nuclear magnetic resonance signal generated from the subject by applying the electromagnetic wave and the gradient magnetic field, and a signal processing system for imaging a signal from the reception system , The reception system has a plurality of reception paths, and includes a signal generator for generating a different frequency in each reception path.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて説明する。図3は本発明に係るMRI装置の全体構
成を示すブロック図である。この装置は、NMR現象を
利用して被検体7の断層画像を得るもので、静磁場発生
磁石4、中央処理装置1、シ−ケンスコントロ−ラ2、
送信系3、傾斜磁場発生系21、受信系5、信号処理系
6からなる。上記静磁場発生磁石4は、被検体7の周り
に均一な静磁場を発生させるもので、永久磁石方式また
は常伝導方式あるいは超伝導方式の磁場発生手段が配置
されている。シ−ケンスコントロ−ラ2は、中央処理装
置1の制御で動作し、被検体7の断層画像のデ−タ収集
に必要な種々の命令を送信系3および傾斜磁場発生系2
1ならびに受信系5に送るものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram showing the overall configuration of the MRI apparatus according to the present invention. This apparatus obtains a tomographic image of the subject 7 using the NMR phenomenon, and includes a static magnetic field generating magnet 4, a central processing unit 1, a sequence controller 2,
It comprises a transmission system 3, a gradient magnetic field generation system 21, a reception system 5, and a signal processing system 6. The static magnetic field generating magnet 4 generates a uniform static magnetic field around the subject 7, and is provided with a permanent magnet type, a normal conduction type, or a superconducting type magnetic field generating means. The sequence controller 2 operates under the control of the central processing unit 1, and sends various commands necessary for data acquisition of tomographic images of the subject 7 to the transmission system 3 and the gradient magnetic field generation system 2.
1 and to the receiving system 5.

【0007】送信系3は、高周波発振器8と変調器9と
高周波増幅器10と送信側の高周波コイル11とからな
り、上記高周波発振器8から出力された高周波信号をシ
−ケンスコントロ−ラ2の命令で出力された振幅の値で
変調器9により振幅変調し、この振幅変調された高周波
パルスを高周波増幅器10で増幅した後に被検体7に近
接して配置された高周波送信コイル11に供給すること
により、電磁波が被検体7に照射されるようになってい
る。
The transmitting system 3 comprises a high-frequency oscillator 8, a modulator 9, a high-frequency amplifier 10, and a high-frequency coil 11 on the transmitting side. The high-frequency signal output from the high-frequency oscillator 8 is transmitted to the sequence controller 2 by a command. The amplitude is modulated by the modulator 9 with the value of the amplitude output by the above, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 10 and then supplied to the high-frequency transmission coil 11 arranged close to the subject 7. The electromagnetic wave is applied to the subject 7.

【0008】傾斜磁場発生系21は、X,Y,Zの3軸
方向に巻かれた傾斜磁場コイル13とそれぞれのコイル
を駆動する傾斜磁場電源12とからなり、上記シ−ケン
スコントロ−ラ2からの命令に従ってそれぞれのコイル
の傾斜磁場電源12を駆動することにより、X,Y,Z
の3軸方向の傾斜磁場Gx,Gy,Gzを被検体7に印
加するようになっている。この傾斜磁場の印加方法によ
り、被検体7に対するスライス面を設定することができ
る。
The gradient magnetic field generating system 21 comprises a gradient magnetic field coil 13 wound in three directions of X, Y and Z and a gradient magnetic field power supply 12 for driving each coil. X, Y, Z by driving the gradient magnetic field power supply 12 of each coil in accordance with the command from
The gradient magnetic fields Gx, Gy, Gz in the three axial directions are applied to the subject 7. With this method of applying a gradient magnetic field, a slice plane for the subject 7 can be set.

【0009】受信系5は、受信側の高周波コイル14と
増幅器15とA/D変換および検波器を含む受信器16
とからなり、上記送信系の高周波コイル11から照射さ
れた電磁波による被検体7のNMR信号は、高周波受信
コイル14で検出され、増幅器15とA/D変換および
検波器を含む受信器16を介しデジタル量に変換され、
その信号が信号処理系6に送られるようになっている。
The receiving system 5 includes a high-frequency coil 14 on the receiving side, an amplifier 15, a receiver 16 including an A / D converter and a detector.
The NMR signal of the subject 7 due to the electromagnetic wave radiated from the high-frequency coil 11 of the transmission system is detected by the high-frequency receiving coil 14 and passed through the amplifier 15 and the receiver 16 including the A / D converter and the detector. Converted to digital quantities,
The signal is sent to the signal processing system 6.

【0010】信号処理系6は、中央処理装置1と、磁気
ディスク20および光ディスク19などの記録装置と、
CRTなどのディスプレイ18とからなり中央処理装置
1でフ−リエ変換、補正係数計算、画像再構成などの処
理を行ない、任意断面の信号強度分布あるいは複数の信
号に適当な演算を行なって得られた分布を画像化してデ
ィスプレイ18に表示するようになっている。
The signal processing system 6 includes a central processing unit 1, a recording device such as a magnetic disk 20 and an optical disk 19,
A central processing unit 1 comprising a display 18 such as a CRT performs processing such as Fourier transformation, correction coefficient calculation and image reconstruction, and obtains a signal intensity distribution of an arbitrary cross section or an appropriate operation on a plurality of signals. The distribution is imaged and displayed on the display 18.

【0011】なお、本実施例では、送信側および受信側
の高周波コイル11,14と傾斜磁場コイル13は、被
検体7の周りの空間に配置された静磁場発生磁石4の磁
場空間内に配置されている。
In this embodiment, the high-frequency coils 11 and 14 and the gradient coil 13 on the transmitting and receiving sides are arranged in the magnetic field space of the static magnetic field generating magnet 4 arranged in the space around the subject 7. Have been.

【0012】図1は、本発明による受信系のブロック図
である。本実施例はコイル4個としているが、特に4個
に限るものではない。本実施例の受信系の構成は、NM
R信号を受信するコイル301〜304と、受信信号を
増幅するプリアンプ401〜404と、各コイル301
〜304に対応した参照周波数を発生する発振器501
〜504と、各コイル301〜304からの信号周波数
と参照周波数を差分するミキサ601〜604と、ミキ
サ601〜604からの信号をフィルタ処理するLPF
701〜704と、フィルタ処理された信号を加算する
加算器900と、加算器900からの信号をデジタル変
換するA/Dコンバータ800を備える。各コイル30
1〜304に受信信号が入力されるとプリアンプ401
〜404にて増幅され、ミキサ601〜604に入力す
る。ミキサ601〜604では各信号の周波数fcと各
発振器501〜504からの参照周波数f1〜f4を差分
し、f1−fc〜f4−fcの周波数成分に分離させる。
このように分離された受信信号はLPF701〜704
を介し、加算器900で加算、A/Dコンバータ800
でデジタル変換され、信号処理系6へ入力される。そし
て信号処理系6は、周波数成分で分離された信号を画像
再構成する。
FIG. 1 is a block diagram of a receiving system according to the present invention. In this embodiment, four coils are used. However, the number of coils is not particularly limited to four. The configuration of the receiving system of this embodiment is NM
Coils 301 to 304 for receiving the R signal; preamplifiers 401 to 404 for amplifying the received signal;
501 for generating reference frequencies corresponding to.
To 504, mixers 601 to 604 for differentiating the signal frequency from each coil 301 to 304 and the reference frequency, and LPF for filtering the signals from mixers 601 to 604
701 to 704, an adder 900 for adding the filtered signals, and an A / D converter 800 for digitally converting the signal from the adder 900. Each coil 30
When a reception signal is input to each of the preamplifiers 401 to 304,
The signals are amplified at 404404 and input to mixers 6011〜604. In the mixer 601-604 by subtracting the reference frequency f 1 ~f 4 from the frequency fc and each oscillator 501-504 of each signal, it is separated into frequency components of f 1 -fc~f 4 -fc.
The received signals thus separated are LPFs 701 to 704
Via an adder 900, an A / D converter 800
Are converted into digital signals and input to the signal processing system 6. Then, the signal processing system 6 reconstructs an image of the signal separated by the frequency component.

【0013】このように本実施例では、各コイル301
〜304に対しミキサ601〜604への参照周波数が
異なるため、LPF701〜704を通過後の信号周波
数は各コイル301〜304でそれぞれ、f1−fs,
2−fs,f3−fs,f4−fsとなり、この様に周
波数成分で分離された信号は、加算器900を通し信号
処理系6の演算により画像再構成が行えるため、A/D
コンバ−タ800は1つ備えるだけでよい。このため、
A/Dコンバータの使用を少なくできるためコストを抑
えることができ、また受信感度の低下を招くことなく構
成を簡略化できる。
As described above, in this embodiment, each coil 301
Since the reference frequencies to the mixers 601 to 604 are different from those of the coils 301 to 304, the signal frequencies after passing through the LPFs 701 to 704 are f 1 −fs,
f 2 −fs, f 3 −fs, and f 4 −fs. The signals separated by the frequency components as described above are passed through the adder 900 and can be reconstructed by the operation of the signal processing system 6 to perform A / D conversion.
Only one converter 800 need be provided. For this reason,
Since the use of the A / D converter can be reduced, the cost can be reduced, and the configuration can be simplified without lowering the receiving sensitivity.

【0014】[0014]

【発明の効果】各受信経路の受信信号を異なる周波数軸
で分離させることができるため、信号処理系への入力前
に信号を加算及び処理できる。そのため、受信系の構成
を簡単にでき、感度特性を損うことがない。
According to the present invention, the received signals on the respective receiving paths can be separated on different frequency axes, so that the signals can be added and processed before input to the signal processing system. Therefore, the configuration of the receiving system can be simplified, and the sensitivity characteristics are not deteriorated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の受信系の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of a receiving system according to the present invention.

【図2】従来の受信系の構成を示すブロック図。FIG. 2 is a block diagram showing a configuration of a conventional receiving system.

【図3】本発明のMRI装置の全体構成を示すブロック
図。
FIG. 3 is a block diagram showing the overall configuration of the MRI apparatus of the present invention.

【符号の説明】[Explanation of symbols]

301〜304 コイル 401〜404 プリアンプ 500 発振器 601〜604 ミキサ 701〜704 LPF 800 A/Dコンバータ 900 加算器 301-304 Coil 401-404 Preamplifier 500 Oscillator 601-604 Mixer 701-704 LPF 800 A / D converter 900 Adder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 均一な磁場を形成する静磁場系と、前記
磁場中に置かれた被検体に電磁波を印加する送信系と、
前記被検体に傾斜磁場を印加する傾斜磁場系と、前記電
磁波及び傾斜磁場の印加により前記被検体より発生する
核磁気共鳴信号を検出する受信系と、受信系からの信号
を画像化する信号処理系とを有する磁気共鳴イメージン
グ装置において、上記受信系は複数の受信経路を持ち、
各受信経路に異なる周波数を発生する信号発生器を備え
たことを特徴とする磁気共鳴イメージング装置。
1. A static magnetic field system for forming a uniform magnetic field, a transmission system for applying an electromagnetic wave to a subject placed in the magnetic field,
A gradient magnetic field system for applying a gradient magnetic field to the subject, a receiving system for detecting a nuclear magnetic resonance signal generated from the subject by applying the electromagnetic wave and the gradient magnetic field, and a signal processing for imaging a signal from the receiving system System, the receiving system has a plurality of receiving paths,
A magnetic resonance imaging apparatus comprising: a signal generator that generates a different frequency in each reception path.
【請求項2】 上記受信系は複数の受信経路を持ち、各
受信経路に少なくとも2つ以上の参照周波数を発生する
信号発生器を備えると共に、上記各受信経路の信号を加
算及びデジタル処理して信号処理系へ出力する請求項1
記載の核磁気共鳴イメージング装置。
2. The reception system has a plurality of reception paths, includes a signal generator that generates at least two or more reference frequencies in each reception path, and performs addition and digital processing on the signals of each reception path. 2. An output to a signal processing system.
A nuclear magnetic resonance imaging apparatus as described in the above.
JP8287295A 1996-10-11 1996-10-11 Magnetic resonance imaging device Pending JPH10113339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8287295A JPH10113339A (en) 1996-10-11 1996-10-11 Magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8287295A JPH10113339A (en) 1996-10-11 1996-10-11 Magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
JPH10113339A true JPH10113339A (en) 1998-05-06

Family

ID=17715536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8287295A Pending JPH10113339A (en) 1996-10-11 1996-10-11 Magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPH10113339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323810A (en) * 2004-05-14 2005-11-24 Toshiba Corp Magnetic resonance imaging device
JP2006187405A (en) * 2005-01-05 2006-07-20 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging device and magnetic resonance imaging method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323810A (en) * 2004-05-14 2005-11-24 Toshiba Corp Magnetic resonance imaging device
JP4612339B2 (en) * 2004-05-14 2011-01-12 株式会社東芝 Magnetic resonance imaging system
JP2006187405A (en) * 2005-01-05 2006-07-20 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging device and magnetic resonance imaging method

Similar Documents

Publication Publication Date Title
US4739266A (en) MR tomography method and apparatus for performing the method
JPH0353936B2 (en)
JP3276669B2 (en) Magnetic resonance imaging equipment
WO1987005201A1 (en) Method of selective excitation in nmr imaging
JPH0581137B2 (en)
JPH0365971B2 (en)
US4786871A (en) NMR imaging method and apparatus
JPH10113339A (en) Magnetic resonance imaging device
JP3137366B2 (en) Magnetic resonance imaging equipment
JPH0316552A (en) Method and apparatus for local nuclear resonance spectoscopy
EP0265955B1 (en) Nuclear magnetic resonance imaging method
WO1987002569A1 (en) Method and apparatus for nmr imaging
US4814710A (en) Method of determining the spectral distribution of the nuclear magnetization in a limited volume range
JP3111419B2 (en) Nuclear magnetic resonance inspection system
JP3341914B2 (en) MR apparatus and method of applying preparation pulse
JP3091203B2 (en) Magnetic resonance imaging equipment
JP3526347B2 (en) Magnetic resonance imaging system
JPS6267433A (en) Nmr imaging apparatus
JP3353799B2 (en) MR device
JPH0670903A (en) Mri device
JPH0472585A (en) Mr device
JPH07227387A (en) Method for magnetic resonance imaging
JP3478867B2 (en) Magnetic resonance imaging equipment
JPH0549617A (en) Reception circuit for mri device
JP3454865B2 (en) Magnetic resonance imaging equipment