JPH10112215A - Solid electrolyte and non-aqueous battery - Google Patents

Solid electrolyte and non-aqueous battery

Info

Publication number
JPH10112215A
JPH10112215A JP8267104A JP26710496A JPH10112215A JP H10112215 A JPH10112215 A JP H10112215A JP 8267104 A JP8267104 A JP 8267104A JP 26710496 A JP26710496 A JP 26710496A JP H10112215 A JPH10112215 A JP H10112215A
Authority
JP
Japan
Prior art keywords
solution
electrolyte
sheet
solid electrolyte
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8267104A
Other languages
Japanese (ja)
Other versions
JP3734896B2 (en
Inventor
Nobuhito Hoshi
星  信人
Shoichi Takamura
正一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP26710496A priority Critical patent/JP3734896B2/en
Publication of JPH10112215A publication Critical patent/JPH10112215A/en
Application granted granted Critical
Publication of JP3734896B2 publication Critical patent/JP3734896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a solid electrolyte in safety, and to provide the high ion conductivity by making a porous body composed of acrylonitrile polymer having bridge structure, impregnated with the solution obtained by dissolving an electrolyte cpd into an organic solvent. SOLUTION: A porous body is composed of acrylonitrile polymer having the bridged structure. For example, the solution composed of acrylonitrile, methyl acrylate, sodium metharyl sulfonate ternary copolymer, polyethylene glycol and butyrolactone is prepared, and a porous sheet is manufactured by performing the predermined treatment. Then an electron beam is applied to the sheet to obtain the bridged sheet, and the sheet is impregnated with the solution of ethylene carbonates propylene carbonate mixed solvent, to obtain a transparent sheet. Thereby a solid electrolyte having high conductivity, superior in the high temperature stability, and having the proper strength even in an area of high quantity of electrolyte solution, can be easily manufactured in safety.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子固体電解質及
び該固体電解質を用いた非水系電池に関する。さらに詳
しくはポリマー中に電解質溶液が共存した構造を有す
る、いわゆるハイブリッド型の固体電解質及び該固体電
解質を用いた非水系電池に関する。
The present invention relates to a solid polymer electrolyte and a nonaqueous battery using the solid electrolyte. More specifically, the present invention relates to a so-called hybrid type solid electrolyte having a structure in which an electrolyte solution coexists in a polymer, and a non-aqueous battery using the solid electrolyte.

【0002】[0002]

【従来の技術】最近、携帯電話やパソコン等の小型化、
軽量化のために高エネルギー密度の電池が要求され、こ
れに対応する電池としてリチウムイオン電池が開発さ
れ、工業化されている。この電池の正極および負極の電
極間のイオン移動媒体として、貫通孔を持つ多孔質高分
子セパレーターに非水溶媒系電解質溶液を含浸した形態
が用いられており、セパレーターに含浸させた電解質溶
液の漏出を防ぐため、電池構造体全体を重厚な金属容器
でパッケージされたものが製品化されている。
2. Description of the Related Art Recently, miniaturization of mobile phones, personal computers, and the like,
A battery having a high energy density is required for weight reduction, and a lithium ion battery has been developed and industrialized to meet the demand. As the ion transfer medium between the positive electrode and the negative electrode of this battery, a form in which a porous polymer separator having through holes is impregnated with a non-aqueous solvent-based electrolyte solution is used, and leakage of the electrolyte solution impregnated into the separator is performed. In order to prevent this, a battery structure in which the entire battery structure is packaged in a heavy metal container has been commercialized.

【0003】一方、固体電解質をイオン移動媒体として
構成した固体電池は、液漏れがないため電池の信頼性、
安全性が向上するとともに、薄膜化や積層体形成、パッ
ケージの簡略化、軽量化が期待されている。特にイオン
伝導性高分子を用いた高分子固体電解質は、加工柔軟性
を有するため電池との積層構造体形成、電極のイオン吸
蔵放出による体積変化に追随した界面保持ができるなど
好ましい性質を有すると期待されている。
On the other hand, a solid-state battery in which a solid electrolyte is used as an ion transfer medium has no liquid leakage, and thus has high reliability and reliability.
Along with improving safety, it is expected to reduce the thickness, form a laminate, and simplify and lighten the package. In particular, a solid polymer electrolyte using an ion-conductive polymer has favorable properties such as forming a laminated structure with a battery because of its processing flexibility, and being able to maintain an interface following a volume change due to ion occlusion and release of an electrode. Expected.

【0004】このような高分子固体電解質の試みとして
は、Wrightによりポリエチレンオキシドのアルカ
リ金属塩複合体が、British Polymer
Journal、7巻、p319(1975年)に報告
されて以来、ポリエチレングリコール、ポリプロピレン
オキシドなどのポリアルキレンエーテル系材料をはじめ
ポリホスファゼン、ポリシロキサンなどを骨格とした高
分子固体電解質材料が活発に研究されている。このよう
な高分子固体電解質は、通常は高分子中に電解質化合物
が均一固溶した形態をとり、ドライ系高分子固体電解質
として知られているが、そのイオン伝導度は電解質溶液
に比較して著しく低く、これを用いて構成した電池は充
放電電流密度が限定され、電池抵抗が高いなどの課題を
有していた。
[0004] As an attempt of such a solid polymer electrolyte, an alkali metal salt complex of polyethylene oxide is disclosed by Wright as British Polymer.
Journal, Vol. 7, p. 319 (1975), polymer solid electrolyte materials based on polyphosphazenes, polysiloxanes, and the like, as well as polyalkylene ether-based materials such as polyethylene glycol and polypropylene oxide, have been actively studied. ing. Such a solid polymer electrolyte usually takes a form in which an electrolyte compound is uniformly dissolved in a polymer, and is known as a dry polymer solid electrolyte, but its ionic conductivity is higher than that of an electrolyte solution. The battery was remarkably low and had problems such as limited charge / discharge current density and high battery resistance.

【0005】そのため、より電解質溶液に近い状態を形
成させることでイオン伝導度を向上させようとする試み
が種々提案されている。例えば、ポリアクリロニトリル
やポリフッ化ビニリデンをポリマーマトリックスとした
固体電解質に可塑剤を添加することで比較的高い伝導度
が得られることが知られている(渡辺ら、Macrom
ol.Chem.,Rapid Commun.,2
巻、p741(1981年))。この場合、可塑剤の量
を増やすと伝導度はさらに高くなる方向であり、このよ
うな電解質はハイブリッド電解質あるいはゲル電解質と
して知られているが、架橋ポリマーではないため可塑剤
の量が多すぎると強度が著しく低下し、さらに可塑剤が
高濃度になるともはや形状は保てなくなる。
For this reason, various attempts have been made to improve the ionic conductivity by forming a state closer to an electrolyte solution. For example, it is known that a relatively high conductivity can be obtained by adding a plasticizer to a solid electrolyte using polyacrylonitrile or polyvinylidene fluoride as a polymer matrix (Watanabe et al., Macrom)
ol. Chem. , Rapid Commun. , 2
Vol., P741 (1981)). In this case, the conductivity tends to be higher when the amount of the plasticizer is increased, and such an electrolyte is known as a hybrid electrolyte or a gel electrolyte. When the strength is remarkably reduced and the concentration of the plasticizer is increased, the shape can no longer be maintained.

【0006】特にポリフッ化ビニリデンを用いた場合は
ゲル電解質を調製するためには可燃性の低沸点溶媒を用
いたり、あるいは電解質の溶媒に120〜130℃もの
高温で溶解する必要があった。また特開平8−1952
20号公報にはポリアクリロニトリルを用いたゲル電解
質に、電解質溶液中ステンレス細針で穴をあけ、多孔質
にする方法が記載されているが、このゲル電解質は未架
橋であるために高温にさらされると溶解してしまい、穴
がつぶれたりさらには短絡のおそれがあるという欠点が
あった。
In particular, when polyvinylidene fluoride is used, in order to prepare a gel electrolyte, it is necessary to use a flammable low-boiling solvent or to dissolve the solvent at a high temperature of 120 to 130 ° C. in the solvent of the electrolyte. Also, JP-A-8-1952
No. 20 discloses a method in which a gel electrolyte using polyacrylonitrile is perforated with a stainless steel fine needle in an electrolyte solution to make the gel electrolyte porous. However, since this gel electrolyte is uncrosslinked, it is exposed to high temperatures. If melted, it would dissolve, resulting in the possibility that holes would be crushed or even short-circuited.

【0007】一方、米国特許第5240790号明細書
にはポリアクリロニトリルと、γ−プチロラクトンを含
む可塑剤と、リチウム塩からなるゲル電解質が報告され
ている。この中では架橋剤とともに光開始剤を用いるこ
とも報告されている。しかしながらこの場合には多孔質
ではないため、高い強度を保ったまま電解質溶液の含量
を高めることができず、従って充分に高い伝導度を得る
ことは困難なものであった。さらにこの場合には架橋す
るために用いられた架橋剤や光開始剤が電気化学的に悪
影響を及ぼす恐れもあった。
On the other hand, US Pat. No. 5,240,790 reports a gel electrolyte comprising a polyacrylonitrile, a plasticizer containing γ-butyrolactone, and a lithium salt. Among them, the use of a photoinitiator together with a crosslinking agent is also reported. However, in this case, since it is not porous, the content of the electrolyte solution could not be increased while maintaining high strength, and it was difficult to obtain a sufficiently high conductivity. Further, in this case, the crosslinking agent and the photoinitiator used for crosslinking may adversely affect electrochemically.

【0008】一方、架橋処理されたアクリロニトリル系
重合体フィルムをアルカリ電池用セパレーターとして
(特開昭53−830号公報)、またアクリロニトリル
系重合体からなる多孔膜を鉛蓄電池用セパレーターとし
て用い得ることは知られている(米国特許第42516
05号明細書)。これらは電池の中で電解質溶液と共存
させて用いるという点でハイブリッド型の固体電解質と
類似の構成となるが、用途はセパレーターであり、水系
の電解液が用いられることからも、ポリマーマトリック
ス中に電解液を膨潤させてゲル電解質として用いること
は全く想定されていなかった。
On the other hand, it is difficult to use a crosslinked acrylonitrile-based polymer film as a separator for an alkaline battery (JP-A-53-830) and a porous film made of an acrylonitrile-based polymer as a separator for a lead-acid battery. Known (U.S. Pat. No. 42516)
No. 05). These have a similar structure to the hybrid type solid electrolyte in that they are used together with the electrolyte solution in the battery.However, the application is a separator, and since the aqueous electrolyte is used, the polymer matrix is used in the polymer matrix. It was not at all assumed that the electrolyte solution was swollen and used as a gel electrolyte.

【0009】従って高いイオン伝導度を有するような電
解質溶液量が多い領域においても適度な強度を有し、安
全且つ容易に製造することができる、リチウムイオン電
池等の非水系電池に適した高分子固体電解質は未だ知ら
れていなかった。
Accordingly, a polymer suitable for non-aqueous batteries such as lithium ion batteries, which has appropriate strength even in a region having a large amount of electrolyte solution having high ionic conductivity and which can be manufactured safely and easily. Solid electrolytes were not yet known.

【0010】[0010]

【発明が解決しようとする課題】本発明は、可燃性の非
水系溶媒を用いても安全且つ容易に製造することができ
る、高いイオン伝導度を有する高分子固体電解質、及び
該高分子固体電解質を用いた非水系電池を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a polymer solid electrolyte having high ionic conductivity, which can be produced safely and easily even using a flammable non-aqueous solvent, and the polymer solid electrolyte. An object of the present invention is to provide a non-aqueous battery using the same.

【0011】[0011]

【課題を解決するための手段】本発明者らはアクリロニ
トリル系重合体を利用した固体電解質の研究を進め、本
発明に到達した。本発明は以下の通りである。 (1) 電解質化合物を非水溶媒に溶解した溶液が、ア
クリロニトリル系重合体が膨潤可能な溶液であり、架橋
されたアクリロニトリル系重合体からなる多孔質体に該
溶液を含ませてなる非水系電池用固体電解質。 (2) 電子線照射により架橋されたことを特徴とする
上記1の固体電解質。 (3) 上記1または2の固体電解質を介して電極が接
合したことを特徴とする非水系電池。
Means for Solving the Problems The present inventors have conducted research on a solid electrolyte using an acrylonitrile-based polymer, and have reached the present invention. The present invention is as follows. (1) A solution in which an electrolyte compound is dissolved in a non-aqueous solvent is a solution in which an acrylonitrile-based polymer can swell, and a non-aqueous battery in which a porous body made of a cross-linked acrylonitrile-based polymer contains the solution. For solid electrolyte. (2) The solid electrolyte according to the above (1), which is crosslinked by electron beam irradiation. (3) A non-aqueous battery, wherein the electrodes are joined via the solid electrolyte of (1) or (2).

【0012】本発明の固体電解質は、架橋構造を有する
アクリロニトリル系重合体からなる多孔質体に、電解質
化合物を有機溶媒に溶解した溶液を含浸させて形成され
る。該溶液としてはアクリロニトリル系重合体が膨潤可
能な溶液が用いられることが必要である。従来の技術で
説明したように、通常の未架橋のアクリロニトリル系重
合体に電解質化合物、溶媒を含有させて形成した固体電
解質においては、電池に利用する場合の加工性を考慮す
れば電解質化合物及び溶媒の含有量は70%程度が限界
である。本発明の固体電解質は、このような電解質化合
物及び溶媒の含有量に制限されることなく幅広い含有量
を選択できることが特長である。すなわち、本発明の架
橋構造を有するアクリロニトリル系重合体は、電解質化
合物及び溶媒の含有量を高めた組成において用いること
ができることから、高いイオン伝導度を有する固体電解
質を作製することができる。またこの架橋構造のため、
本発明の固体電解質は高温時においても溶解してしまう
ことがなく、短絡のおそれがない。即ち高温においても
充分に用いることのできる程度の機械的強度を有し、高
温安定性に優れている。
The solid electrolyte of the present invention is formed by impregnating a porous body made of an acrylonitrile polymer having a crosslinked structure with a solution in which an electrolyte compound is dissolved in an organic solvent. It is necessary that a solution capable of swelling the acrylonitrile-based polymer be used as the solution. As described in the prior art, an electrolyte compound and a solid electrolyte formed by adding a solvent to a normal uncrosslinked acrylonitrile-based polymer, the electrolyte compound and the solvent are considered in consideration of the processability when used in a battery. Is limited to about 70%. The solid electrolyte of the present invention is characterized in that a wide range of contents can be selected without being limited by the contents of such an electrolyte compound and a solvent. That is, since the acrylonitrile-based polymer having a crosslinked structure of the present invention can be used in a composition in which the contents of the electrolyte compound and the solvent are increased, a solid electrolyte having high ionic conductivity can be produced. Also, because of this crosslinked structure,
The solid electrolyte of the present invention does not dissolve even at a high temperature, and there is no possibility of short circuit. That is, it has sufficient mechanical strength that it can be used even at high temperatures, and has excellent high-temperature stability.

【0013】加えて本発明の固体電解質は、多孔質体に
上記電解質溶液を含浸させて形成されていることから、
伝導度の高い液相を合わせ持ち、膨潤したアクリロニト
リル系重合体のみの伝導度より、さらに高い伝導度が得
られる。溶媒含量が多い場合の機械的強度は架橋構造に
よって保たれるが、重合体が空隙を持たない場合、強度
を高めるために架橋度を上げると膨潤しにくくなるた
め、溶媒の含量が少なくなる。その点、多孔質であれば
空隙にも液量を保持できるため高強度でも高い溶媒含量
が得られ、従って高い伝導度が得られる。
In addition, the solid electrolyte of the present invention is formed by impregnating a porous body with the above-mentioned electrolyte solution.
Having a liquid phase with high conductivity, higher conductivity is obtained than the conductivity of only the swollen acrylonitrile polymer. The mechanical strength when the solvent content is high is maintained by the crosslinked structure, but when the polymer does not have voids, it is difficult to swell when the degree of crosslinking is increased to increase the strength, and the content of the solvent is reduced. On the other hand, if the material is porous, the liquid amount can be held in the voids, so that a high solvent content can be obtained even at a high strength, and thus a high conductivity can be obtained.

【0014】また本発明の固体電解質は多孔質体である
ために、本来電解質溶液が含浸しないような低い温度条
件においても容易に液を含浸させることができる。この
ような条件下では、ポリマー相は液に膨潤しないため、
空隙率に応じた量の液をコントロールして含浸させるこ
とができることになる。この場合には含浸後の多孔質体
を適当な温度に加熱することで、ほとんど寸法変化を起
こすことなく液が膨潤し、高い伝導度を発現させること
ができる。
Further, since the solid electrolyte of the present invention is a porous body, the solid electrolyte can be easily impregnated even under a low temperature condition where the electrolyte solution is not originally impregnated. Under these conditions, the polymer phase does not swell in the liquid,
The impregnation can be performed by controlling the amount of the liquid according to the porosity. In this case, by heating the impregnated porous body to an appropriate temperature, the liquid swells with almost no dimensional change, and high conductivity can be exhibited.

【0015】以下、本発明の固体電解質材料の構成要素
について順次説明する。本発明の架橋構造を有するアク
リロニトリル系重合体について説明する。本発明に用い
るアクリロニトリル系重合体としては、アクリロニトリ
ルの単独重合体または共重合体が挙げられ、共重合し得
るモノマーの例を挙げると、メタクリロニトリル;アク
リル酸メチル、アクリル酸エチル、アクリル酸プロピ
ル、アクリル酸ブチル等のアクリル酸エステル類;メタ
クリル酸メチル、メタクリル酸エチル、メタクリル酸プ
ロピル、メタクリル酸ブチル等のメタクリル酸エステル
類;塩化ビニル、フッ化ビニル、塩化ビニリデン、フッ
化ビニリデン等のハロオレフィン類;アクリルアミド、
メタクリルアミド、N−ビニルピロリドン等のビニルア
ミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエ
ステル類;スチレン、ビニルピリジン等のビニル芳香族
化合物類;アクリル酸、メタクリル酸等のビニルカルボ
ン酸類;スチレンスルホン酸、アリルスルホン酸、メタ
リルスルホン酸及びそれらの塩等;であり、これらのモ
ノマーの2種以上がアクリロニトリルと共重合した重合
体であってもよい。
Hereinafter, constituent elements of the solid electrolyte material of the present invention will be sequentially described. The acrylonitrile polymer having a crosslinked structure of the present invention will be described. Examples of the acrylonitrile-based polymer used in the present invention include acrylonitrile homopolymers and copolymers. Examples of copolymerizable monomers include methacrylonitrile; methyl acrylate, ethyl acrylate, and propyl acrylate. And butyl acrylates; methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate; haloolefins such as vinyl chloride, vinyl fluoride, vinylidene chloride and vinylidene fluoride And acrylamide,
Vinyl amides such as methacrylamide and N-vinylpyrrolidone; vinyl esters such as vinyl acetate and vinyl propionate; vinyl aromatic compounds such as styrene and vinyl pyridine; vinyl carboxylic acids such as acrylic acid and methacrylic acid; styrene sulfonic acid , Allyl sulfonic acid, methallyl sulfonic acid and salts thereof; and a polymer in which two or more of these monomers are copolymerized with acrylonitrile may be used.

【0016】さらにこれらは単独、またはこれらの重合
体の混合物として用いることができるほか、アクリロニ
トリルを含まない重合体との混合物として用いることも
できる。ここでアクリロニトリル成分を共重合体、また
は混合物として含む場合、アクリロニトリル成分が少な
すぎるとイオン伝導性が低くなりすぎるので、該成分は
50重量%以上であることが好ましく、さらに好ましく
は75重量%以上である。
Further, these can be used alone or as a mixture of these polymers, and can also be used as a mixture with a polymer containing no acrylonitrile. Here, when the acrylonitrile component is contained as a copolymer or a mixture, if the acrylonitrile component is too small, the ion conductivity becomes too low. Therefore, the component is preferably at least 50% by weight, more preferably at least 75% by weight. It is.

【0017】このようなアクリロニトリル系重合体は、
代表的な非水系電池であるリチウムイオン電池で一般的
に用いられる電解質溶液に対して適度の溶解性を有す
る。従って、例えばポリエチレンオキサイドのように溶
解しすぎてべとついたり、強度が低くなりすぎたりする
ことがなく、一方ポリフッ化ビニリデンに比べれば、溶
解性が高いためより低い温度で調製することができ、ま
た他の良溶媒を用いる必要もない。特に、例えば(メ
タ)アクリル酸エステル等との共重合体の場合には室温
でも膨潤しやすくなる。
Such an acrylonitrile-based polymer is
It has appropriate solubility in an electrolyte solution generally used in a lithium ion battery which is a typical non-aqueous battery. Therefore, for example, it does not dissolve too much and sticky like polyethylene oxide, and the strength is not too low.On the other hand, compared to polyvinylidene fluoride, it can be prepared at a lower temperature because of its higher solubility. It is not necessary to use another good solvent. In particular, for example, in the case of a copolymer with (meth) acrylic acid ester or the like, swelling tends to occur even at room temperature.

【0018】本発明の固体電解質は上記のアクリロニト
リル系重合体からなる多孔質体からなり、このアクリロ
ニトリル系重合体が架橋された構造を持つことが特長で
ある。本発明の固体電解質を製造するにあたり、架橋構
造は重合時、多孔質構造の形成時、形成後のどの段階で
導入してもかまわないが、架橋後に多孔質構造を形成さ
せるのは困難なため、多孔質構造の形成後に架橋するの
が好ましい。この架橋の方法としては、例えばヒドラジ
ンあるいはその塩を用いる方法、ジまたはトリ(メタ)
アクリレート、ジまたはトリアリル化合物等の架橋性モ
ノマーをアクリロニトリルの重合時に共存させておく方
法、重合体中に予め導入した二重結合、反応性基等をラ
ジカル開始剤や放射線照射を用いて反応させる方法、ニ
トリル基を変換して得られた、あるいは共重合体に含ま
れるアミド基やカルボキシル基等をホルマリンあるいは
多価アルコールを用いて架橋する方法、電子線、γ線、
X線、紫外線等の輻射エネルギー照射、ラジカル開始剤
を含有させて熱や輻射エネルギー照射により反応させる
方法等を挙げることができる。これらの架橋方法の中
で、架橋性モノマーやラジカル開始剤等の添加成分があ
った場合、微量の残留物が電気化学的副反応を招く場合
があり、電池性能低下を招くことがあるので、このよう
な可能性のない電子線照射による架橋が好ましい。
The solid electrolyte of the present invention comprises a porous material comprising the above-mentioned acrylonitrile-based polymer, and is characterized by having a structure in which the acrylonitrile-based polymer is crosslinked. In producing the solid electrolyte of the present invention, the crosslinked structure may be introduced at the time of polymerization, during the formation of the porous structure, or at any stage after the formation, but it is difficult to form the porous structure after the crosslinkage. It is preferred to crosslink after forming the porous structure. Examples of the crosslinking method include a method using hydrazine or a salt thereof, di- or tri (meth)
A method in which a crosslinkable monomer such as an acrylate, di, or triallyl compound is allowed to coexist during the polymerization of acrylonitrile, a method in which a double bond, a reactive group, or the like previously introduced into a polymer is reacted using a radical initiator or radiation irradiation. A method of crosslinking an amide group or a carboxyl group obtained by converting a nitrile group or contained in a copolymer using formalin or a polyhydric alcohol, an electron beam, a γ-ray,
Examples of the method include irradiation with radiation energy such as X-rays and ultraviolet rays, and a method in which a radical initiator is contained and reacted by irradiation with heat or radiation energy. In these cross-linking methods, if there is an additional component such as a cross-linkable monomer or a radical initiator, a trace amount of a residue may cause an electrochemical side reaction, which may cause a decrease in battery performance. Crosslinking by electron beam irradiation without such possibility is preferred.

【0019】電子線照射を用いる場合の架橋条件とし
て、この照射量が少なすぎると架橋効果が充分でなく、
液量が多い場合の強度が十分でない。また照射量が多す
ぎる場合、脆くなったりポリマーマトリックス中に液が
入り込めなかったりするため好ましくない。この照射量
としては0.1Mrad以上100Mrad以下である
ことが好ましい。特に架橋剤成分を含まない場合は1M
rad以上100Mrad以下が好ましく、5Mrad
以上80Mrad以下がさらに好ましい。
Regarding the crosslinking conditions when using electron beam irradiation, if the irradiation amount is too small, the crosslinking effect is not sufficient,
Insufficient strength when liquid volume is large. On the other hand, when the irradiation amount is too large, it is not preferable because the liquid becomes brittle or the liquid cannot enter the polymer matrix. The irradiation amount is preferably 0.1 Mrad or more and 100 Mrad or less. 1M especially when no crosslinking agent component is contained
rad to 100 Mrad or less, preferably 5 Mrad
It is more preferably at least 80 Mrad.

【0020】この架橋構造形成はリニアポリマー可溶性
有機溶剤への溶解性により確認することができる。つま
り、架橋構造が形成されたアクリロニトリル系重合体は
可溶性有機溶剤に溶解しない成分を有し、均一溶解しな
いことから架橋構造形成を判別することができる。この
可溶性溶剤はポリマーの共重合組成により若干異なる
が、例えば、ジメチルホルムアミド、ジメチルアセトア
ミド、γ−ブチロラクトン、ジメチルスルホキシド、ア
セトニトリル、エチレンカーボネート/プロピレンカー
ボネート混合溶液等の溶剤で判別することができる。
The formation of the crosslinked structure can be confirmed by the solubility in the linear polymer-soluble organic solvent. That is, the acrylonitrile-based polymer having the crosslinked structure has a component that does not dissolve in the soluble organic solvent and is not uniformly dissolved, so that the formation of the crosslinked structure can be determined. The soluble solvent slightly differs depending on the copolymer composition of the polymer, but can be determined by a solvent such as dimethylformamide, dimethylacetamide, γ-butyrolactone, dimethylsulfoxide, acetonitrile, and a mixed solution of ethylene carbonate / propylene carbonate.

【0021】本発明でいう多孔質体は重合体内部に空孔
を有するものであればよく、空孔の形状には限定されな
い。また該多孔質体の空隙率は10〜95%の範囲にあ
ることが好ましく、さらに好ましくは20〜95%、さ
らに好ましくは40〜95%である。10%未満では上
記多孔質としての特性が発揮できず、また95%を越え
ると膨潤後に充分な強度が得られにくい。
The porous material referred to in the present invention is not limited as long as it has pores inside the polymer, and the shape of the pores is not limited. The porosity of the porous body is preferably in the range of 10 to 95%, more preferably 20 to 95%, and still more preferably 40 to 95%. If it is less than 10%, the above-mentioned properties as a porous material cannot be exhibited, and if it exceeds 95%, it is difficult to obtain sufficient strength after swelling.

【0022】また、本発明の固体電解質の形状としては
特に制限はないが、電池の電極間の電解質として用いる
場合はシート状であることが好ましい。この場合の膜厚
は、一般的には1〜500μm程度のものが用いられ
る。1μm未満では強度が不足し、電極間でショートし
やすくなり、500μmを越える膜厚では膜全体の実効
電気抵抗が高くなりすぎる。
The shape of the solid electrolyte of the present invention is not particularly limited. However, when used as an electrolyte between the electrodes of a battery, it is preferably in the form of a sheet. In this case, a film having a thickness of about 1 to 500 μm is generally used. If the thickness is less than 1 μm, the strength is insufficient, and short-circuit easily occurs between the electrodes. If the thickness exceeds 500 μm, the effective electric resistance of the entire film becomes too high.

【0023】本発明で用いる多孔質体の製造法は特に限
定されないが、例えば特公昭58−56378号公報や
特公昭52−3343号公報に記載の方法を利用するこ
とができる。即ち、具体的には重合体を適当な溶媒に溶
解しておき、必要により界面活性剤等の添加剤を加えて
おき、これを液膜状で非溶媒中に浸漬することで凝固さ
せ、溶媒や添加剤等は洗浄除去するものである。このと
き必要により熱水処理や湿熱処理を施す。このとき使用
する溶媒や添加剤の種類と量、温度条件、液膜に対する
基板の有無等の条件により、多孔度、孔径、孔の形状な
どの他、表面に緻密層を有するものや有しないもの、緻
密層を有する場合でもそれが片面だけのものや両面に有
するものなどを選択して製造することができる。
The method for producing the porous material used in the present invention is not particularly limited. For example, the method described in JP-B-58-56378 or JP-B-52-3343 can be used. That is, specifically, the polymer is dissolved in an appropriate solvent, an additive such as a surfactant is added if necessary, and the resultant is immersed in a non-solvent in the form of a liquid film to be coagulated to form a solvent. And additives are washed and removed. At this time, if necessary, a hot water treatment or a wet heat treatment is performed. Depending on the type and amount of the solvent and additives used at this time, the temperature condition, the presence or absence of the substrate with respect to the liquid film, the porosity, the pore diameter, the shape of the pore, etc., those having a dense layer on the surface and those without the dense layer Even in the case of having a dense layer, it can be manufactured by selecting one having only one side or having both sides.

【0024】本発明の固体電解質は上記の架橋構造を有
するアクリロニトリル系重合体からなる多孔質体に、電
解質化合物を非水溶媒に溶解した溶液を含浸させて形成
される。特に、架橋ポリマー中に該電解質溶液が含浸膨
潤することにより高いイオン伝導度がもたらされる。特
に含浸される材料がポリマー部分と空孔部から構成され
る多孔質材料であるため、空孔部に該電解質溶液が充填
されるとともにポリマー部分に電解質溶液が膨潤される
ことにより高いイオン伝導度をもたらす。通常の電池の
セパレーターに用いられる材料、例えばポリオレフィン
多孔膜は電解質溶液で膨潤させない状態で用いられ、電
池構造中においてもセパレーターは膨潤しないことを想
定して利用される。ところがこのセパレーターの骨格部
分はイオン伝導に寄与しないため全体として低いイオン
伝導度しか与えない。固体電解質においてポリマーマト
リックスに電解質溶液が含浸膨潤されればポリマーマト
リックス全体がイオン伝導に寄与でき、高いイオン伝導
度をもたらすため好ましい。
The solid electrolyte of the present invention is formed by impregnating a porous body made of an acrylonitrile polymer having the above-mentioned crosslinked structure with a solution in which an electrolyte compound is dissolved in a non-aqueous solvent. In particular, the swelling of the electrolyte solution in the crosslinked polymer results in high ionic conductivity. In particular, since the material to be impregnated is a porous material composed of a polymer portion and a pore portion, the pore portion is filled with the electrolyte solution and the polymer portion is swollen with the electrolyte solution, so that high ionic conductivity is obtained. Bring. Materials used for ordinary battery separators, for example, polyolefin porous membranes, are used without being swollen by an electrolyte solution, and are used on the assumption that the separator does not swell even in the battery structure. However, the skeletal portion of this separator does not contribute to ionic conduction, so that it gives only low ionic conductivity as a whole. It is preferable that the polymer matrix is impregnated and swelled with the electrolyte solution in the solid electrolyte because the entire polymer matrix can contribute to ionic conduction and provides high ionic conductivity.

【0025】アクリロニトリル系重合体に含浸させる、
電解質化合物を非水溶媒に溶解した溶液は、該重合体が
膨潤可能なものから選ばれる。一般にポリマーが溶媒や
溶液で膨潤した場合大幅な体積増加を伴い、サイズが変
化する。多くの場合は全ての方向に膨張するが、延伸な
どで応力がかかっていた場合には応力が緩和され、方向
によっては縮小することもあるが、いずれにしても膨潤
した場合には変形が起こる。実際上、本発明においては
変形が長さ方向で20%を越えれば実質的に電解質溶液
で膨潤したものとみなすことができる。このとき、膨潤
する温度は電解質化合物を溶解する溶媒の沸点以下であ
ることが好ましい。従って、ポリマーが電解質溶液で膨
潤していることは、外観的には所定の温度で該電解質溶
液に浸漬したときのサイズの変形から確認することがで
きる。
Impregnating the acrylonitrile polymer,
The solution in which the electrolyte compound is dissolved in the non-aqueous solvent is selected from those in which the polymer can swell. Generally, when a polymer is swollen with a solvent or a solution, the size changes with a large increase in volume. In many cases, it expands in all directions, but when stress is applied by stretching etc., the stress is relieved, and depending on the direction, it may shrink, but in any case, when it swells, deformation occurs . In fact, in the present invention, if the deformation exceeds 20% in the length direction, it can be considered that the electrolyte is substantially swollen by the electrolyte solution. At this time, the swelling temperature is preferably equal to or lower than the boiling point of the solvent in which the electrolyte compound is dissolved. Therefore, the fact that the polymer is swollen with the electrolyte solution can be visually confirmed from the deformation of the size when the polymer is immersed in the electrolyte solution at a predetermined temperature.

【0026】実際、該溶液が膨潤可能かどうかは、電解
質化合物の種類と濃度に依存する場合もあるが、主に用
いる溶媒の種類によって支配される。本発明の場合のア
クリロニトリル系重合体に対しては、このような非水溶
媒の例としてはエチレンカーボネート、プロピレンカー
ボネート、ブチレンカーボネート等の環状カーボネー
ト;ジメチルカーボネート、メチルエチルカーボネー
ト、メチルエチルカーボネート等の鎖状カーボネート;
γ−ブチルラクトン、プロピオラクトン等の環状エステ
ル;アセトニトリル、プロピオニトリル等のニトリル化
合物;これらの溶媒の混合物;これらの溶媒を含む混合
物;を挙げることができる。
In fact, whether or not the solution can swell depends on the type and concentration of the electrolyte compound, but is mainly governed by the type of solvent used. For the acrylonitrile polymer in the case of the present invention, examples of such a non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; chains such as dimethyl carbonate, methyl ethyl carbonate and methyl ethyl carbonate. Carbonate;
cyclic esters such as γ-butyl lactone and propiolactone; nitrile compounds such as acetonitrile and propionitrile; mixtures of these solvents; and mixtures containing these solvents;

【0027】これらの非水溶媒に溶解して用いられる電
解質化合物としては、有機酸、有機塩、無機酸、無機塩
のいずれも使用可能である。この例としてテトラフルオ
ロホウ酸、過塩素酸、硫酸、リン酸、フッ化水素酸、塩
酸等の無機酸、トリフルオロメタンスルホン酸、パーフ
ルオロブタンスルホン酸、ビス(トリフルオロメタンス
ルホニル)イミド酸、酢酸、トリフルオロ酢酸、プロピ
オン酸等の有機酸、およびこれら無機酸、有機酸の金属
塩が挙げられる。これらは単独で用いることもできる
し、複数の電解質化合物を混合して用いることもでき
る。さらにパーフルオロスルホン酸系ポリマーやパーフ
ルオロカルボン酸系ポリマーあるいはこれらの金属塩も
本発明の電解質化合物として使用できる。これら電解質
のカチオンとしてプロトン、アルカリ金属カチオン、ア
ルカリ土類金属カチオン、遷移金属カチオン、希土類金
属カチオン等から選ばれるカチオンを一種類で、また複
数混合して使用することができる。
As the electrolyte compound used by dissolving in these non-aqueous solvents, any of organic acids, organic salts, inorganic acids and inorganic salts can be used. Examples of this include inorganic acids such as tetrafluoroboric acid, perchloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, trifluoromethanesulfonic acid, perfluorobutanesulfonic acid, bis (trifluoromethanesulfonyl) imidic acid, acetic acid, Examples thereof include organic acids such as trifluoroacetic acid and propionic acid, and inorganic acids and metal salts of these organic acids. These can be used singly or as a mixture of a plurality of electrolyte compounds. Further, a perfluorosulfonic acid-based polymer or perfluorocarboxylic acid-based polymer or a metal salt thereof can also be used as the electrolyte compound of the present invention. One type of cation selected from protons, alkali metal cations, alkaline earth metal cations, transition metal cations, rare earth metal cations, and the like can be used as these electrolyte cations, or a mixture of a plurality of cations can be used.

【0028】このカチオン種は使用する用途によって異
なる。例えば、本発明の固体電解質をリチウム電池に使
用する場合は、添加する電解質化合物としてリチウム塩
を使用することが好ましい。特にリチウム二次電池に利
用する場合、充放電を繰り返し行う必要から、電解質化
合物に電気化学的安定性に富むリチウム塩を選ぶことが
好ましく、この例として、CF3 SO3 Li、C4 9
SO3 Li、(CF3SO2 2 NLi、LiBF4
LiPF6 、LiClO4 、LiAsF6 等を挙げるこ
とができる。
The type of the cation differs depending on the use. For example, when the solid electrolyte of the present invention is used for a lithium battery, it is preferable to use a lithium salt as an electrolyte compound to be added. In particular, when used in a lithium secondary battery, it is preferable to select a lithium salt having high electrochemical stability as an electrolyte compound because charge and discharge need to be repeated. For example, CF 3 SO 3 Li, C 4 F 9
SO 3 Li, (CF 3 SO 2 ) 2 NLi, LiBF 4 ,
LiPF 6 , LiClO 4 , LiAsF 6 and the like can be mentioned.

【0029】溶液中に含まれる電解質化合物の濃度とし
ては、一般には電解質化合物の濃度が高いほどイオン移
動できるキャリアーイオン濃度が高められ、イオン伝導
度が高い材料となり好ましいが、高すぎるとイオン解離
が抑制されイオン伝導度がむしろ低下してしまう。従っ
て、概ね0.1〜5mol/リットルの範囲が好まし
く、0.5〜3mol/リットルの範囲がさらに好まし
い。
As for the concentration of the electrolyte compound contained in the solution, in general, the higher the concentration of the electrolyte compound, the higher the carrier ion concentration capable of ion transfer and the higher the ion conductivity, which is preferable. It is suppressed and the ionic conductivity is rather lowered. Therefore, the range is preferably about 0.1 to 5 mol / liter, more preferably 0.5 to 3 mol / liter.

【0030】固体電解質中に含まれる溶液の量は、固体
電解質の機械的強度、イオン伝導度などを勘案して決め
られるが、本発明の固体電解質では、従来知られたポリ
アクリロニトリル系固体電解質に比較して、高い溶液含
量においても機械的強度を損なわない特長を有する。こ
の溶液の量は、溶液の種類、アクリロニトリル系重合体
の組成、多孔質体の構造によって異なるが、一般には固
体電解質重量に対して10〜98%、好ましくは20〜
97%、さらに好ましくは40〜95%である。
The amount of the solution contained in the solid electrolyte is determined in consideration of the mechanical strength, ionic conductivity, etc. of the solid electrolyte. However, in the solid electrolyte of the present invention, the amount of the solution is smaller than that of the conventionally known polyacrylonitrile-based solid electrolyte. In comparison, it has the advantage of not impairing the mechanical strength even at high solution contents. The amount of the solution varies depending on the type of the solution, the composition of the acrylonitrile-based polymer, and the structure of the porous body, but is generally from 10 to 98%, preferably from 20 to 98% by weight of the solid electrolyte.
97%, more preferably 40-95%.

【0031】以上説明した、電解質化合物を非水溶媒に
溶解した溶液を、架橋されたアクリロニトリル系重合体
からなる多孔質体に含ませることによって本発明の固体
電解質が得られる。含ませる方法としては、特に限定さ
れないが、例えば以下のような方法が挙げられる。 1)膨潤させるため必要により加熱された電解質化合物
の溶液に浸漬する。 2)室温で膨潤しない場合には、室温で含浸させた後必
要な温度に加熱する。 特に後者の場合には膨潤時の寸法変化が小さいという特
長を有する。また本発明で用いられるアクリロニトリル
系重合体は多孔質体であるため、該多孔質体を電極で挟
んでから液を含浸させることも容易である。この場合、
2)の方法と併用することにより膨潤時でもほとんど寸
法変化を起こすことなく電池を製造することができる。
The solid electrolyte of the present invention can be obtained by incorporating the above-described solution in which the electrolyte compound is dissolved in a non-aqueous solvent into a porous body made of a crosslinked acrylonitrile polymer. Although the method for including is not particularly limited, for example, the following method may be mentioned. 1) It is immersed in a heated solution of the electrolyte compound as required for swelling. 2) If it does not swell at room temperature, it is impregnated at room temperature and then heated to the required temperature. In particular, the latter case has a feature that the dimensional change upon swelling is small. Further, since the acrylonitrile-based polymer used in the present invention is a porous body, it is easy to impregnate the liquid after sandwiching the porous body with an electrode. in this case,
By using the method 2) in combination, a battery can be manufactured with almost no dimensional change even during swelling.

【0032】次に本発明の固体電解質を介して電極が接
合した電池について説明する。本発明の電池は、前記の
固体電解質を介して、正極および負極が接合した構造を
有するものである。たとえば電池がリチウム電池の場
合、電極の正極および負極にリチウムイオン吸蔵放出可
能な物質を用いる。この正極物質として、負極に対して
高い電位を有する材料、この例としては、Li1-x Co
2 、Ln1-x NiO2 、Li1-x Mn2 4 、Li
1-x MO2 (0<x<1)(MはCo、Ni、Mn、F
eの混合体を表す。)、Li2-y Mn2 4 (0<y<
2)、結晶性Li1-x 2 5 、アモルファス状Li
2-y 2 5 (0<y<2)、Li1.2-x'Nb2
5 (0<x’<1.2)等の酸化物、Li1-x Ti
2 、Li1-x MoS2 、Li3-z NbSe3 (0<z
<3)等の金属カルコゲナイド、ポリピロール、ポリチ
オフェン、ポリアニリン、ポリアセン誘導体、ポリアセ
チレン、ポリチエニレンビニレン、ポリアリレンビニレ
ン、ジチオール誘導体、ジスルフィド誘導体等の有機化
合物を挙げることができる。
Next, a battery in which electrodes are joined via the solid electrolyte of the present invention will be described. The battery of the present invention has a structure in which a positive electrode and a negative electrode are joined via the above-mentioned solid electrolyte. For example, when the battery is a lithium battery, a substance capable of inserting and extracting lithium ions is used for the positive electrode and the negative electrode of the electrode. As the positive electrode material, a material having a higher potential than the negative electrode, for example, Li 1-x Co
O 2 , Ln 1-x NiO 2 , Li 1-x Mn 2 O 4 , Li
1-x MO 2 (0 <x <1) (M is Co, Ni, Mn, F
e represents a mixture. ), Li 2-y Mn 2 O 4 (0 <y <
2), crystalline Li 1-x V 2 O 5 , amorphous Li
2-y V 2 O 5 (0 <y <2), Li 1.2-x ′ Nb 2 O
5 Oxides such as (0 <x ′ <1.2), Li 1-x Ti
S 2 , Li 1-x MoS 2 , Li 3-z NbSe 3 (0 <z
Organic compounds such as metal chalcogenides such as <3), polypyrrole, polythiophene, polyaniline, polyacene derivatives, polyacetylene, polythienylenevinylene, polyarylenevinylene, dithiol derivatives, and disulfide derivatives can be mentioned.

【0033】また負極として、上記正極に対して低い電
位を有する材料を用いる。この例として、金属リチウ
ム、アルミ・リチウム合金、マグネシウム・アルミ・リ
チウム合金等の金属リチウム、AlSb、Mg2 Ge、
NiSi2 等の金属間化合物、グラファイト、コーク
ス、低温焼成高分子等の炭素系材料、SnM系酸化物
(MはSi,Ge,Pbを表す。)、Si1-y M′y
z (M′はW,Sn,Pb,B等を表す。)の複合酸化
物、酸化チタン、酸化鉄等の金属酸化物のリチウム固溶
体、Li7 MnN4 、Li3 FeN2 、Li3-x Cox
N、Li3-x NiN、Li3-x Cux N、Li3
2 、Li3 AlN2 、Li3 SiN3 の窒化物等のセ
ラミックス等が挙げられる。ただし、リチウムイオンを
負極で還元して金属リチウムとして利用する場合は、導
電性を有する材料であればよいので、上記に限定されな
い。
As the negative electrode, a material having a lower potential than the positive electrode is used. Examples of this include metal lithium such as metal lithium, aluminum / lithium alloy, magnesium / aluminum / lithium alloy, AlSb, Mg 2 Ge,
Intermetallic compounds such as NiSi 2 , graphite, coke, carbon-based materials such as low-temperature fired polymers, SnM-based oxides (M represents Si, Ge, Pb), Si 1-y M ′ y O
z (M 'represents W, Sn, Pb, B, etc.), a lithium solid solution of a metal oxide such as titanium oxide and iron oxide, Li 7 MnN 4 , Li 3 FeN 2 , and Li 3-x Co x
N, Li 3-x NiN, Li 3-x Cu x N, Li 3 B
Ceramics such as nitrides of N 2 , Li 3 AlN 2 , and Li 3 SiN 3 are exemplified. However, when lithium ions are reduced at the negative electrode and used as metallic lithium, the material is not limited to the above, as long as the material has conductivity.

【0034】本発明の電池に用いる正極および負極は上
記の材料を所定の形状に成形加工して用いられる。この
形態として連続体または粉末材料のバインダー分散体の
いずれも使用可能である。前者の連続体の成形方法とし
て、電解析出、電解溶解、蒸着、スパッタリング、CV
D、溶融加工、焼結、圧縮等が用いられる。また、後者
の場合は粉末状の電極物質をバインダーとともに混合し
て成形する。このバインダー材料として、ポリフッ化ビ
ニリデン、ポリ(ヘキサフルオロプロピレン−フッ化ビ
ニリデン)共重合体等のフッ素系ポリマー、スチレン−
ブタジエン共重合体、スチレン−アクリロニトリル共重
合体、スチレン−アクリロニトリル−ブタジエン共重合
体等の炭化水素系ポリマー、ポリマー前駆体等が用いら
れ、本発明の架橋構造を有するアクリロニトリル系重合
体をバインダーに用いることもできる。正極および負極
から構成される電極に電気抵抗の低い材料でそれぞれ集
電体を設けることもできる。また、正極/固体電解質/
負極の構造で構成した電池に、本発明の構成要素である
電解質および/または非水溶媒を含浸や拡散等の方法で
導入することができる。
The positive electrode and the negative electrode used in the battery of the present invention are obtained by molding the above-mentioned materials into a predetermined shape. As this form, either a continuous body or a binder dispersion of a powder material can be used. As the former method of forming a continuous body, electrolytic deposition, electrolytic dissolution, vapor deposition, sputtering, CV
D, melt processing, sintering, compression and the like are used. In the latter case, the powdered electrode material is mixed with a binder and molded. As the binder material, fluorine-based polymers such as polyvinylidene fluoride, poly (hexafluoropropylene-vinylidene fluoride) copolymer, and styrene-
A hydrocarbon polymer such as butadiene copolymer, styrene-acrylonitrile copolymer, styrene-acrylonitrile-butadiene copolymer, or a polymer precursor is used, and an acrylonitrile-based polymer having a crosslinked structure of the present invention is used as a binder. You can also. A current collector may be provided on each of the electrodes composed of the positive electrode and the negative electrode with a material having low electric resistance. The positive electrode / solid electrolyte /
An electrolyte and / or a non-aqueous solvent, which is a component of the present invention, can be introduced into a battery having a negative electrode structure by impregnation, diffusion, or the like.

【0035】電池の形態は、リチウム電池の場合、正極
と負極が固体電解質を介して接合した構造を有する。例
えば、シート状の正極、負極および固体電解質を順次積
層した正極/固体電解質/負極を単位としてシート状や
ロール状、折り畳み状構造とすることができる。また、
電池単位の電極同士を並列または/および直列に接続し
た組電池とすることも可能である。特に、ポリマー電池
の場合直列接続構造が簡便であるので直列接続積層数に
より電圧を増加させることもできる。また、必要があれ
ば電池電極に電流取り出し、注入のための外部端子接続
部分、電流電圧制御素子、発熱時に電極接続を阻止する
機能素子、電極単位・積層体の透湿防止、構造保護など
の保護層を設けたりパッケージ化することもできる。
In the case of a lithium battery, the battery has a structure in which a positive electrode and a negative electrode are joined via a solid electrolyte. For example, a sheet-shaped, roll-shaped, or folded structure can be formed in units of a positive electrode / solid electrolyte / negative electrode in which a sheet-shaped positive electrode, a negative electrode, and a solid electrolyte are sequentially laminated. Also,
It is also possible to form an assembled battery in which electrodes of a battery unit are connected in parallel or / and in series. In particular, in the case of a polymer battery, the series connection structure is simple, so that the voltage can be increased by the number of stacked layers in series connection. In addition, if necessary, take out current to the battery electrode, connect external terminals for injection, current-voltage control element, functional element that prevents electrode connection when heat is generated, prevent moisture permeation of electrode units and laminates, protect structure, etc. A protective layer can be provided or packaged.

【0036】本発明の固体電解質は、リチウムイオン電
池等の有機溶媒を用いる非水系電池に用いた場合に好適
に用いることができ好ましい。また、キャパシター、電
気化学センサー、エレクトロクロミックデイスプレー素
子などのイオン移動媒体として応用することも可能であ
り、工業的価値が高い製品を提供できるため好ましいも
のとなる。
The solid electrolyte of the present invention can be suitably used when used in a non-aqueous battery using an organic solvent such as a lithium ion battery, and is preferable. In addition, it can be applied as an ion transfer medium such as a capacitor, an electrochemical sensor, and an electrochromic display element, which is preferable because a product having high industrial value can be provided.

【0037】[0037]

【発明の実施の形態】以下実施例によって本発明をさら
に詳細に説明する。なお、イオン伝導度の測定は、電解
質薄膜を金属電極で挟み込むことで電気化学セルを構成
し、電極間に交流を印加して抵抗成分を測定する交流イ
ンピーダンス法を用いて行い、コールコールプロットの
実数インピーダンス切片から計算した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the following examples. In addition, the measurement of ionic conductivity is performed by using an AC impedance method in which an electrochemical cell is formed by sandwiching an electrolyte thin film between metal electrodes, and an AC is applied between the electrodes to measure a resistance component. Calculated from real impedance intercept.

【0038】[0038]

【実施例1〜2】アクリロニトリル/メチルアクリレー
ト/メタリルスルホン酸ナトリウム3元共重合体(それ
ぞれ95/4.5/0.5重量%)15重量部、平均分
子量600のポリエチレングリコール10重量部、γ−
ブチロラクトン75重量部からなる溶液を作成し、該溶
液を室温でガラス板上に液膜が100μmとなるように
キャストした後、直ちに室温(実施例1)または70℃
(実施例2)の水中に浸漬し、水、アルコールで洗浄
後、乾燥して膜厚がそれぞれ91μm、151μm、空
隙率がそれぞれ75%、84%の多孔質シートを作成し
た。次いでこのシートに電子線を60Mrad照射し、
架橋したシートを作成した。該シートが架橋しているこ
とはエチレンカーボネート/プロピレンカーボネート
1:1混合溶液に室温で不溶であったことから確認し
た。次にそれぞれのシートを、LiBF4 のエチレンカ
ーボネート/プロピレンカーボネート1:1混合溶媒の
1mol/リットル溶液に室温で30分間浸漬し、該溶
液に膨潤した透明シートを得た。このとき膨潤後の面積
はそれぞれ膨潤前の240%、200%、膜厚はそれぞ
れ130μm、148μmであった。シート表面の過剰
の溶液は拭き取って除去した。該シートをステンレスシ
ートで挟み込み、インピーダンス測定(EG&G社製3
89型インピーダンスメーター)を行ったところ、室温
におけるイオン伝導度はそれぞれ1.4mS/cm(実
施例1)、1.6mS/cm(実施例2)であった。
Examples 1 and 2 15 parts by weight of an acrylonitrile / methyl acrylate / sodium methallylsulfonate copolymer (95 / 4.5 / 0.5% by weight, respectively), 10 parts by weight of polyethylene glycol having an average molecular weight of 600, γ-
A solution consisting of 75 parts by weight of butyrolactone was prepared, and the solution was cast on a glass plate at room temperature such that the liquid film became 100 μm, and then immediately at room temperature (Example 1) or 70 ° C.
(Example 2) The porous sheet was immersed in water, washed with water and alcohol, and dried to prepare a porous sheet having a film thickness of 91 μm and 151 μm, respectively, and a porosity of 75% and 84%, respectively. Next, the sheet is irradiated with an electron beam at 60 Mrad,
A crosslinked sheet was made. Crosslinking of the sheet was confirmed by insolubility at room temperature in a 1: 1 mixed solution of ethylene carbonate and propylene carbonate. Next, each sheet was immersed in a 1 mol / L solution of a 1: 1 mixed solvent of LiBF 4 in ethylene carbonate / propylene carbonate at room temperature for 30 minutes to obtain a transparent sheet swollen in the solution. At this time, the area after swelling was 240% and 200%, respectively, before swelling, and the film thickness was 130 μm and 148 μm, respectively. Excess solution on the sheet surface was wiped off. The sheet is sandwiched between stainless steel sheets, and impedance measurement (EG & G 3
As a result, the ionic conductivity at room temperature was 1.4 mS / cm (Example 1) and 1.6 mS / cm (Example 2).

【0039】[0039]

【実施例3】実施例1〜2記載のアクリロニトリル系3
元共重合体15重量%を、−3℃の70重量%硝酸に溶
解し脱泡原液とした。この原液をフラットスリットダイ
より室温の水中に押し出し、湿式凝固膜シートを得た。
十分に水洗した後、木枠に固定した緊張状態で85℃の
熱水中で3分間熱処理し、次いで乾燥し、膜厚105μ
m、空隙率79%の乾燥多孔質シートを得た。このシー
トに60Mradの電子線照射をし、架橋した多孔質シ
ートを得た。次にこのシートを、LiBF4 のエチレン
カーボネート/プロピレンカーボネート1:1混合溶媒
の1mol/リットル溶液に室温で30分間浸漬し、該
溶液に膨潤した透明シートを得た。このとき膨潤後の面
積は膨潤前の180%、膜厚は123μmであった。シ
ート表面の過剰の溶液は拭き取って除去した。該シート
をステンレスシートで挟み込み、インピーダンス測定を
行ったところ、室温におけるイオン伝導度は1.5mS
/cmであった。
Example 3 Acrylonitrile 3 described in Examples 1 and 2
15% by weight of the original copolymer was dissolved in 70% by weight nitric acid at -3 ° C to prepare a defoaming stock solution. This stock solution was extruded from a flat slit die into water at room temperature to obtain a wet coagulated membrane sheet.
After washing thoroughly with water, heat-treat it in hot water of 85 ° C. for 3 minutes in a tensioned state fixed to a wooden frame, and then dry to a film thickness of 105 μm.
m, a dried porous sheet having a porosity of 79% was obtained. This sheet was irradiated with an electron beam of 60 Mrad to obtain a crosslinked porous sheet. Next, this sheet was immersed in a 1 mol / L solution of a 1: 1 mixed solvent of LiBF 4 in ethylene carbonate / propylene carbonate at room temperature for 30 minutes to obtain a transparent sheet swollen in the solution. At this time, the area after swelling was 180% of that before swelling, and the film thickness was 123 μm. Excess solution on the sheet surface was wiped off. When the sheet was sandwiched between stainless steel sheets and impedance measurement was performed, the ionic conductivity at room temperature was 1.5 mS.
/ Cm.

【0040】[0040]

【実施例4〜5】ポリアクリロニトリル17重量部、ジ
メチルスルホキシド83重量部からなる溶液を作成し、
該溶液を室温(実施例4)または60℃(実施例5)で
ガラス板上に液膜が100μmとなるようにキャストし
た後、直ちに室温(実施例4)または70℃(実施例
5)の水中に浸漬し、水、アルコールで洗浄後、乾燥し
て膜厚がそれぞれ95μm、76μm、空隙率がそれぞ
れ78%、81%の多孔質シートを作成した。次いでこ
のシートに電子線を30Mrad照射し、架橋したシー
トを作成した。該シートが架橋していることはエチレン
カーボネート/プロピレンカーボネート1:1混合溶液
に室温で不溶であったことから確認した。次に、それぞ
れのシートを、LiBF4 のエチレンカーボネート/プ
ロピレンカーボネート1:1混合溶媒の1mol/リッ
トル溶液に100℃で1時間浸漬し、該溶液に膨潤した
透明シートを得た。このとき膨潤後の面積はそれぞれ膨
潤前の350%、290%、膜厚はそれぞれ89μm、
82μmであった。シート表面の過剰の溶液は拭き取っ
て除去した。該シートをステンレスシートで挟み込み、
インピーダンス測定を行ったところ、室温におけるイオ
ン伝導度はそれぞれ2.0mS/cm(実施例4)、
1.8mS/cm(実施例5)であった。
Examples 4 and 5 A solution comprising 17 parts by weight of polyacrylonitrile and 83 parts by weight of dimethyl sulfoxide was prepared.
The solution was cast on a glass plate at room temperature (Example 4) or 60 ° C. (Example 5) so that the liquid film became 100 μm, and immediately at room temperature (Example 4) or 70 ° C. (Example 5). It was immersed in water, washed with water and alcohol, and dried to prepare a porous sheet having a thickness of 95 μm and 76 μm, respectively, and a porosity of 78% and 81%, respectively. Next, the sheet was irradiated with an electron beam at 30 Mrad to produce a crosslinked sheet. Crosslinking of the sheet was confirmed by insolubility at room temperature in a 1: 1 mixed solution of ethylene carbonate and propylene carbonate. Next, each sheet was immersed in a 1 mol / liter solution of a 1: 1 mixed solvent of LiBF 4 in ethylene carbonate / propylene carbonate at 100 ° C. for 1 hour to obtain a transparent sheet swollen in the solution. At this time, the area after swelling was 350% and 290% before swelling, the film thickness was 89 μm, respectively.
It was 82 μm. Excess solution on the sheet surface was wiped off. The sheet is sandwiched between stainless steel sheets,
When the impedance was measured, the ionic conductivity at room temperature was 2.0 mS / cm (Example 4).
It was 1.8 mS / cm (Example 5).

【0041】[0041]

【実施例6〜7】実施例4〜5で作成したシートを、L
iBF4 のエチレンカーボネート/プロピレンカーボネ
ート1:1混合溶媒の1mol/リットル溶液に室温で
30分間浸漬し、溶液が含浸した透明シートを得た。膜
厚はそれぞれ103μm、85μmであり、また含浸前
後で面積は変化しなかった。シート表面の過剰の溶液は
拭き取って除去した。該シートをステンレスシートで挟
み込み、インピーダンス測定を行なったところ、室温に
おけるイオン伝導度はそれぞれ0.3mS/cm、0.
4mS/cmであった。次に該電気化学セルを100℃
で1時間保持した後、室温まで放冷し、再度インピーダ
ンス測定を行ったところ室温におけるイオン伝導度はそ
れぞれ1.2mS/cm(実施例6)、1.4mS/c
m(実施例7)であった。
Examples 6 and 7 The sheets prepared in Examples 4 and 5 were
It was immersed in a 1 mol / liter solution of iBF 4 in a 1: 1 mixed solvent of ethylene carbonate / propylene carbonate at room temperature for 30 minutes to obtain a transparent sheet impregnated with the solution. The film thickness was 103 μm and 85 μm, respectively, and the area did not change before and after impregnation. Excess solution on the sheet surface was wiped off. The sheet was sandwiched between stainless steel sheets, and the impedance was measured. As a result, the ionic conductivity at room temperature was 0.3 mS / cm, and the ionic conductivity was 0.3 mS / cm.
It was 4 mS / cm. Next, the electrochemical cell was heated to 100 ° C.
After holding for 1 hour at room temperature, the mixture was allowed to cool to room temperature, and the impedance was measured again. As a result, the ion conductivity at room temperature was 1.2 mS / cm (Example 6) and 1.4 mS / c, respectively.
m (Example 7).

【0042】[0042]

【実施例8】水酸化リチウム、酸化コバルトを所定量混
合した後、750℃で5時間加熱して平均粒径10μm
のLiCoO2 粉末を合成した。該粉末とカーボンブラ
ックを、ポリフッ化ビニリデン(呉羽化学工業、KF1
100)のN−メチルピロリドン溶液(5重量%)に混
合分散してスラリーを作製した。なお、スラリー中の固
形分重量組成は、LiCoO2 (85%)、カーボンブ
ラック(8%)、ポリマー(7%)とした。このスラリ
ーをアルミ箔上にドクターブレード法で塗布乾燥して膜
厚110μmのシートを作製した。
Example 8 After mixing predetermined amounts of lithium hydroxide and cobalt oxide, the mixture was heated at 750 ° C. for 5 hours, and the average particle size was 10 μm.
The LiCoO 2 powder was synthesized. The powder and carbon black were converted to polyvinylidene fluoride (Kureha Chemical Industry, KF1
100) was mixed and dispersed in an N-methylpyrrolidone solution (5% by weight) to prepare a slurry. The composition of the solid content in the slurry was LiCoO 2 (85%), carbon black (8%), and polymer (7%). The slurry was applied on an aluminum foil by a doctor blade method and dried to prepare a sheet having a thickness of 110 μm.

【0043】次に平均粒径10μmのニードルコークス
粉末に、上記と同じポリフッ化ビニリデンのN−メチル
ピロリドン溶液(5重量%)を混合してスラリーを作製
した(乾燥重量混合比:ニードルコークス(92%)、
ポリマー(8%))。該スラリーを金属銅シートにドク
ターブレード法で塗布して乾燥膜厚120μmでフィル
ム(電極層)を形成した。
Next, a slurry was prepared by mixing the above-mentioned N-methylpyrrolidone solution of polyvinylidene fluoride (5% by weight) with needle coke powder having an average particle diameter of 10 μm (dry weight mixing ratio: needle coke (92%)). %),
Polymer (8%)). The slurry was applied to a metal copper sheet by a doctor blade method to form a film (electrode layer) with a dry film thickness of 120 μm.

【0044】LiCoO2 電極シート、ニードルコーク
ス電極シートをそれぞれ2cm角に切断し、実施例5で
作成したLiBF4 溶液膨潤シート(電解質シート)を
2.3cm角に切断して、2枚の電極シートが電解質シ
ートを挟むように積層してニードルコークス(負極)/
電解質シート/LiCoO2 (正極)で接合した電池を
形成した。ついで該電池の正極、負極にステンレス端子
を取り付け、ガラスセルの端子にそれぞれ接続してアル
ゴン雰囲気中で封入した。
The LiCoO 2 electrode sheet and the needle coke electrode sheet were each cut into 2 cm squares, and the LiBF 4 solution swelling sheet (electrolyte sheet) prepared in Example 5 was cut into 2.3 cm squares to obtain two electrode sheets. Is laminated so that the electrolyte sheet is sandwiched between the needle coke (negative electrode) /
A battery joined with the electrolyte sheet / LiCoO 2 (positive electrode) was formed. Then, a stainless steel terminal was attached to the positive electrode and the negative electrode of the battery, connected to the terminals of the glass cell, respectively, and sealed in an argon atmosphere.

【0045】該電池を充放電機(北斗電工101SM
6)を用い電流密度3mA/cm2 の電流密度で充放電
を行った。充電後の電極間電位は4.2V(定電流後
4.2V定電位充電)であり充電が確認できた。また放
電はカットオフ電圧2.7V定電流放電で行った結果、
初回充放電効率80%、2回目以降の充放電効率は99
%以上で、繰り返し充放電が可能であり、二次電池とし
て作動することがわかった。
The battery was charged to a charge / discharge machine (Hokuto Denko 101SM).
Charge / discharge was performed at a current density of 3 mA / cm 2 using 6). The potential between the electrodes after charging was 4.2 V (4.2 V constant potential charging after constant current), and charging was confirmed. The discharge was performed at a constant current of 2.7 V with a cutoff voltage of 2.7 V.
The initial charge / discharge efficiency is 80%, and the charge / discharge efficiency after the second time is 99%.
%, Repeated charging and discharging were possible, and it was found that the battery operated as a secondary battery.

【0046】[0046]

【実施例9】室温でLiBF4 溶液を含浸したシートを
用いた以外実施例8と同様に電池を作成した。該電池を
100℃で2時間保持した後、室温まで放冷してから実
施例8と同様に充放電を行ったところ、充電後の電極間
電位は4.2V(定電流後4.2V定電位充電)であり
充電が確認できた。また放電はカットオフ電圧2.7V
定電流放電で行った結果、初回充放電効率80%以上、
2回目以降の充放電効率は99%以上で繰り返し充放電
が可能であり、二次電池として作動することが確認でき
た。
Example 9 A battery was prepared in the same manner as in Example 8, except that a sheet impregnated with a LiBF 4 solution at room temperature was used. After the battery was held at 100 ° C. for 2 hours, it was allowed to cool to room temperature, and then charged and discharged in the same manner as in Example 8. After charging, the potential between the electrodes was 4.2 V (4.2 V after constant current). (Potential charging), and charging was confirmed. Discharge is 2.7V cut-off voltage.
As a result of constant current discharge, the initial charge and discharge efficiency is 80% or more,
The charge / discharge efficiency after the second time was 99% or more, and charge / discharge was possible repeatedly, confirming that the battery operated as a secondary battery.

【0047】[0047]

【発明の効果】本発明の固体電解質は高い伝導度を有
し、高温安定性に優れ、電解質溶液量が多い領域におい
ても適度な強度を有し、安全且つ容易に製造することが
できることから、これをイオン移動媒体に用いた優れた
固体電池を提供するものである。
The solid electrolyte of the present invention has high conductivity, excellent high-temperature stability, has appropriate strength even in a region where the amount of electrolyte solution is large, and can be manufactured safely and easily. An object of the present invention is to provide an excellent solid-state battery using this as an ion transfer medium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質化合物を非水溶媒に溶解した溶液
が、アクリロニトリル系重合体が膨潤可能な溶液であ
り、架橋されたアクリロニトリル系重合体からなる多孔
質体に該溶液を含ませてなる非水系電池用固体電解質。
1. A solution in which an electrolyte compound is dissolved in a non-aqueous solvent is a solution in which an acrylonitrile-based polymer is swellable, and a non-aqueous solution in which a porous body made of a cross-linked acrylonitrile-based polymer contains the solution. Solid electrolyte for water-based batteries.
【請求項2】 電子線照射により架橋されたことを特徴
とする請求項1記載の固体電解質。
2. The solid electrolyte according to claim 1, wherein the solid electrolyte is crosslinked by electron beam irradiation.
【請求項3】 請求項1または2記載の固体電解質を介
して電極が接合したことを特徴とする非水系電池。
3. A non-aqueous battery, wherein electrodes are joined via the solid electrolyte according to claim 1.
JP26710496A 1996-10-08 1996-10-08 Solid electrolyte and non-aqueous battery Expired - Lifetime JP3734896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26710496A JP3734896B2 (en) 1996-10-08 1996-10-08 Solid electrolyte and non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26710496A JP3734896B2 (en) 1996-10-08 1996-10-08 Solid electrolyte and non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH10112215A true JPH10112215A (en) 1998-04-28
JP3734896B2 JP3734896B2 (en) 2006-01-11

Family

ID=17440126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26710496A Expired - Lifetime JP3734896B2 (en) 1996-10-08 1996-10-08 Solid electrolyte and non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3734896B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082496A (en) * 1998-09-08 2000-03-21 Mitsubishi Chemicals Corp Lithium secondary battery and its manufacture
JP2002190320A (en) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The Solid state electrolyte and battery using the electrolyte
KR100669314B1 (en) * 2001-04-09 2007-01-15 삼성에스디아이 주식회사 Lithium secondary battery and method of preparing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082496A (en) * 1998-09-08 2000-03-21 Mitsubishi Chemicals Corp Lithium secondary battery and its manufacture
JP2002190320A (en) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The Solid state electrolyte and battery using the electrolyte
KR100669314B1 (en) * 2001-04-09 2007-01-15 삼성에스디아이 주식회사 Lithium secondary battery and method of preparing same

Also Published As

Publication number Publication date
JP3734896B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP5694162B2 (en) Method for producing gel polymer electrolyte secondary battery
JP4902884B2 (en) POLYMER ELECTROLYTE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE
JP4109522B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
RU2388088C1 (en) New polymer electrolyte and electrochemical device
KR100847232B1 (en) Gel electrolyte and nonaqueous electrolyte battery
US11764358B2 (en) Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby
WO1997018596A1 (en) Composite polymer solid electrolyte and nonaqueous electrochemical device
JP2007510267A (en) Electrode coated with polymer in independent phase and electrochemical device including the same
KR20210104739A (en) Polymer Electrolyte for Lithium Metal Polymer Battery with Improved Performance
KR20170050278A (en) Polymer Electrolyte comprising Lithium Nitrate and All-Solid-State Battery comprising The Same
US20210043916A1 (en) Method for Manufacturing Electrode Comprising Polymeric Solid Electrolyte and Electrode Obtained Thereby
US20020028387A1 (en) Polymer gel electrolyte
JP3422627B2 (en) Crosslinked polymer solid electrolyte and battery
JP3734896B2 (en) Solid electrolyte and non-aqueous battery
JPH1021963A (en) Battery and manufacture thereof
JP3667005B2 (en) Gel-based electrolyte and method for producing electrochemical element
JPH113717A (en) Hybrid electrolyte and battery
JP2001319690A (en) Polymer-electrolyte battery and its manufacturing method
JP2009087795A (en) Separator for battery, and nonaqueous lithium-ion secondary battery comprising to use this
JP2002158037A5 (en)
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
KR101812577B1 (en) A separator and an electrochemical battery comprising the separator
JPH09306462A (en) Battery separator
JPH10294130A (en) Hybrid electrolyte for non-aqueous battery and non-aqueous battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term