JPH10109087A - Purified water sterilization device - Google Patents

Purified water sterilization device

Info

Publication number
JPH10109087A
JPH10109087A JP26336396A JP26336396A JPH10109087A JP H10109087 A JPH10109087 A JP H10109087A JP 26336396 A JP26336396 A JP 26336396A JP 26336396 A JP26336396 A JP 26336396A JP H10109087 A JPH10109087 A JP H10109087A
Authority
JP
Japan
Prior art keywords
water
raw water
voltage
electric conductivity
electroconductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26336396A
Other languages
Japanese (ja)
Inventor
Kazushige Watanabe
一重 渡辺
Motoharu Sato
元春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP26336396A priority Critical patent/JPH10109087A/en
Publication of JPH10109087A publication Critical patent/JPH10109087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely sterilize raw water even when water quality of the raw water fluctuates. SOLUTION: This purified water sterilization device is constituted to have a sterilizing mode in which an electrode is put into an electroconductive adsorption part through which raw water such as city water passes to impress voltage, and bacteria, etc., are caught with the electroconductive adsorption part and also propagation of stuck bacteria, etc., is suppressed. This device is provided with an electroconductivity meter 36 for measuring electroconductivity of the raw water and a control device 30 for setting an output of an electric power source corresponding to measured electroconductivity, and the electroconductivity meter 36 measures electroconductivity of the raw water through electrodes 22, 27. Thus, when remarkably lower electroconductivity is measured by the electroconductivity meter 36, namely an electric current value is remarkably lower, an electric current value is raised. On the contrary, when remarkably higher electroconductivity is detected, namely when voltage is remarkably lower, a voltage value is raised. Thus, with a desired voltage an electric current values, the electroconductive adsorption part can be sterilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水道水や地下水等
の原水を浄化殺菌して一般家庭用或いは業務用の飲料水
として供給する浄水殺菌装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification and sterilization apparatus for purifying and sterilizing raw water such as tap water and groundwater and supplying it as drinking water for general household use or business use.

【0002】[0002]

【従来の技術】この種の浄水殺菌装置において原水の殺
菌に関する最近の技術動向としては、中空糸膜モジュー
ル(市販製品)を用いて細菌等の微生物を除菌し繁殖を
抑制する装置、原水を電気分解して殺菌する装置、そし
て適量に発生させた塩素で殺菌を行う装置などが知られ
ている。
2. Description of the Related Art Recent technical trends regarding sterilization of raw water in this type of water purification / sterilizing apparatus include a device for removing microorganisms such as bacteria by using a hollow fiber membrane module (commercially available product) and suppressing the growth of raw water. A device for sterilizing by electrolysis and a device for sterilizing with an appropriately generated chlorine are known.

【0003】一般に、水処理装置としての浄水装置の場
合、水道水や地下水等の原水に含まれる次亜塩素酸(H
ClO)などの残留塩素成分、かび臭、トリハロメタ
ン、有機塩素系化合物或いは色素は、活性炭の吸着部に
通過させて吸着除去される。このような浄水モードにお
いて停水中に吸着部の細菌等の繁殖を抑制するため、微
弱な直流電圧を印加する制菌モードを有する一方、経時
使用によって、吸着部に付着した、かび臭、トリハロメ
タン、有機塩素系化合物等或いは細菌類を除去するた
め、浄水モードの後に、吸着部に交流電圧を印加して細
菌類等を殺菌する再生モードに移行するようにしてい
る。
Generally, in the case of a water purification device as a water treatment device, hypochlorous acid (H) contained in raw water such as tap water or groundwater is used.
A residual chlorine component such as ClO), musty odor, trihalomethane, an organic chlorine-based compound or a dye is adsorbed and removed by passing through an activated carbon adsorption section. In such a water purification mode, while having a bacteriostatic mode in which a weak DC voltage is applied in order to suppress the growth of bacteria and the like in the adsorbing section during the stoppage of water, use over time, adhered to the adsorbing section, musty odor, trihalomethane, In order to remove organochlorine compounds and the like or bacteria, after the water purification mode, an AC voltage is applied to the adsorber to shift to a regeneration mode for sterilizing bacteria and the like.

【0004】[0004]

【発明が解決しようとする課題】このように従来の浄水
殺菌装置では、制菌モードにより吸着部への細菌類等の
捕捉及びこの細菌類等の繁殖の抑制を行っているが、こ
の制菌モードで印加する電圧・電流はその原水の水質に
より大きな影響を受ける。
As described above, in the conventional water purification apparatus, the bacteria are trapped in the adsorbing section and the propagation of the bacteria is suppressed in the bacteriostatic mode. The voltage and current applied in the mode are greatly affected by the quality of the raw water.

【0005】即ち、原水に含まれるイオン濃度が高いと
きは電流が流れやすく、これとは逆にイオン濃度が低い
ときは、電流が流れにくくなる。このため、大都市など
のように河川の表流水を水道水として用いるときは、日
によって、また、時刻によってイオン濃度が大きく変化
するし、また、この水質は地域によっても大きく異なる
ため、一つに定まっている電源出力では吸着部に印加さ
れる電圧値及び電流値が所望の値にならないという問題
点を有していた。
[0005] That is, when the concentration of ions contained in the raw water is high, the current easily flows. Conversely, when the ion concentration is low, the current hardly flows. For this reason, when surface water from rivers is used as tap water, such as in large cities, the ion concentration varies greatly depending on the day and time, and the water quality varies greatly depending on the region. However, there is a problem that the voltage value and the current value applied to the suction unit do not become the desired values with the power supply output determined as described above.

【0006】本発明の目的は前記従来の課題に鑑み、原
水の水質が変化する場合にあっても原水を確実に制菌で
きる浄水殺菌装置を提供することにある。
An object of the present invention is to provide a water purification apparatus capable of reliably controlling raw water even when the quality of the raw water changes, in view of the above-mentioned conventional problems.

【0007】[0007]

【課題を解決するための手段】本発明は前記課題を解決
するため、請求項1の発明は、水道水等の原水が通過す
る導電性吸着部に電極を通じて電圧を印加し、導電性吸
着部に細菌等を捕捉させかつ付着した細菌等の繁殖を抑
制する制菌モードを有する浄水殺菌装置において、原水
の電気伝導度を計測する電気伝導度計測手段と、計測さ
れた電気伝導度に対応する電源出力を設定する電源出力
調整手段とを備え、電気伝導度計測手段は電極を通じて
原水の電気伝導度を計測する構成となっている。
In order to solve the above-mentioned problems, the present invention is directed to a first aspect of the present invention, wherein a voltage is applied to a conductive suction portion through which raw water such as tap water passes through an electrode. In a water purification apparatus having a bacteriostatic mode that captures bacteria and the like and suppresses the growth of attached bacteria and the like, an electrical conductivity measuring unit that measures the electrical conductivity of raw water and a device that corresponds to the measured electrical conductivity And a power output adjusting means for setting a power output. The electric conductivity measuring means measures the electric conductivity of the raw water through the electrodes.

【0008】請求項1の発明によれば、電気伝導度計測
手段により著しく低い電気伝導度が計測されたとき、即
ち、電流値が著しく低いときは、電流値を上げる。これ
とは逆に、著しく高い電気伝導度が検知されたとき、即
ち電圧が著しく低くなっているときは、電圧値を上げ
る。これにより、所望の電圧・電流値で導電性吸着部を
制菌できる。また、電気伝導度計測手段の計測用電極が
制菌電圧印加用の電極と共用となっているため、計測用
電極を別個に設ける必要がない。
According to the first aspect of the present invention, when an extremely low electric conductivity is measured by the electric conductivity measuring means, that is, when the current value is extremely low, the current value is increased. Conversely, when a very high electrical conductivity is detected, ie when the voltage is significantly low, the voltage value is increased. Thereby, the conductive adsorption part can be controlled at a desired voltage / current value. Further, since the measuring electrode of the electric conductivity measuring means is shared with the electrode for applying the bacteriostatic voltage, it is not necessary to separately provide the measuring electrode.

【0009】なお、この電気伝導度を給水信号に基づい
て所定時間に亘って計測し、原水の電気伝導度を正確に
判定するようにしてもよい。
The electric conductivity may be measured for a predetermined time based on the water supply signal, and the electric conductivity of the raw water may be accurately determined.

【0010】請求項3の発明は、水道水等の原水が通過
する導電性吸着部に電極を通じて電圧を印加し、導電性
吸着部に細菌等を捕捉させかつ付着した細菌等の繁殖を
抑制する制菌モードを有する浄水殺菌装置において、原
水の電気抵抗を計測する電気抵抗計測手段と、計測され
た電気抵抗に対応する電源出力を設定する電源出力調整
手段とを備えた構造となっている。この請求項3の発明
では電気伝導度の逆数である電気抵抗で制御するように
なっている。なお、この電気抵抗を給水信号に基づいて
所定時間に亘って計測し、原水の電気抵抗を正確に判定
するようにしてもよい。
According to a third aspect of the present invention, a voltage is applied to the conductive adsorption portion through which raw water such as tap water passes through an electrode to capture bacteria and the like in the conductive adsorption portion and suppress the propagation of attached bacteria and the like. In a water purification apparatus having a bacteriostatic mode, the apparatus is provided with an electric resistance measuring means for measuring electric resistance of raw water and a power output adjusting means for setting a power output corresponding to the measured electric resistance. According to the third aspect of the present invention, the control is performed by the electric resistance which is the reciprocal of the electric conductivity. The electric resistance may be measured for a predetermined time based on the water supply signal, and the electric resistance of the raw water may be accurately determined.

【0011】[0011]

【発明の実施の形態】図1乃至図5は本発明に係る浄水
殺菌装置の第1実施形態を示すもので、図1は浄水殺菌
装置の断面図、図2は浄水殺菌装置の制御回路を示すブ
ロック図、図3は浄水殺菌装置の制御フローチャート、
図4は電気伝導度に基づく電圧変化を示すグラフ、図5
は電気伝導度に基づく電流変化を示すグラフである。
1 to 5 show a first embodiment of a water purification apparatus according to the present invention. FIG. 1 is a sectional view of the water purification apparatus, and FIG. 2 is a control circuit of the water purification apparatus. Block diagram, FIG. 3 is a control flowchart of the water purification device,
FIG. 4 is a graph showing a voltage change based on electric conductivity, and FIG.
Is a graph showing a current change based on electric conductivity.

【0012】この浄水殺菌装置は原水を貯留する筒状の
水槽10を有している。この水槽10はその上下をキャ
ップ11,12で閉塞する一方、この上キャップ11に
は図示しない蛇口等に連通する導出口11aを設け、下
キャップ12には原水を水槽10内に導く導入口12a
を設けている。この導入口12aには給水弁13a、プ
レフィルタ13b及び逆止弁13cを設置した給水管1
3が連結しており、この給水弁13aにより原水の通水
及び非通水を行い、また、逆止弁13cにより水槽10
からの逆流を規制している。また、この導入口12aに
は排水弁14aを有する排水管14が連結しており、こ
の排水弁14aを開動作させるとき、この水槽10内の
水が排出される。
This water purification apparatus has a cylindrical water tank 10 for storing raw water. The upper and lower caps 11 and 12 have outlets 11a communicating with faucets and the like (not shown), and the lower cap 12 has an inlet 12a for introducing raw water into the water tank 10.
Is provided. A water supply pipe 1 having a water supply valve 13a, a pre-filter 13b, and a check valve 13c installed in the inlet 12a.
3 are connected to each other, and the raw water supply valve 13a allows the raw water to flow and non-flows, and the check valve 13c allows the water tank 10 to flow.
Regulates backflow from A drain pipe 14 having a drain valve 14a is connected to the inlet 12a. When the drain valve 14a is opened, water in the water tank 10 is discharged.

【0013】また、この水槽10内には、円筒状の吸着
部20が配置されている。この吸着部20は導電性を有
する繊維状の活性炭を用いて形成され、その上端は板状
の第1電極21を介して上キャップ11に保持され、下
端は板状の第2電極22を介してホルダー23により保
持されている。また、この吸着部20の外面と水槽10
の内面との間には導入口12aと連通する環状の通路2
4が形成され、導入口12aから流入した原水をこの通
路24を介して吸着部20内に流入するようにしてい
る。更に、この吸着部20はその下端と下キャップ12
との間に導電性のコイルバネ25を介在し、このコイル
バネ25により上キャップ11に向かって吸着部20を
付勢し、この吸着部20を水槽10内に固定している。
更にまた、この吸着部20には温度センサ26が装着さ
れ、この温度センサ26により吸着部20の温度を検知
するようになっている。
A cylindrical adsorbing section 20 is disposed in the water tank 10. The adsorbing portion 20 is formed by using fibrous activated carbon having conductivity, the upper end of which is held by the upper cap 11 via a plate-like first electrode 21, and the lower end thereof via a plate-like second electrode 22. And is held by a holder 23. In addition, the outer surface of the adsorption unit 20 and the water tank 10
Annular passage 2 communicating with the inlet 12a
4 is formed so that the raw water flowing from the inlet 12 a flows into the adsorbing section 20 through the passage 24. Further, the suction portion 20 is provided between the lower end thereof and the lower cap 12.
A conductive coil spring 25 is interposed between the two and biases the suction unit 20 toward the upper cap 11 by the coil spring 25, and the suction unit 20 is fixed in the water tank 10.
Furthermore, a temperature sensor 26 is attached to the suction unit 20, and the temperature of the suction unit 20 is detected by the temperature sensor 26.

【0014】このように構成された吸着部20の内側に
は上下に延在された注出管27が配置され、この注出管
27の多数の通水孔27aを通じて、吸着部20を通過
した水を導出口11aに導くようになっている。ここ
で、この注出管27は導電性材料で形成され、第3電極
を構成している。
A vertically extending pouring pipe 27 is disposed inside the adsorbing section 20 having the above-described structure. The pouring pipe 27 passes through the adsorbing section 20 through a large number of water holes 27a of the pouring pipe 27. The water is led to the outlet 11a. Here, the pouring tube 27 is formed of a conductive material, and forms a third electrode.

【0015】以上のように本実施形態に係る浄水殺菌装
置は第1電極21、第2電極22及び第3電極27を有
しており、後述する浄水モード時の制菌モードでは吸着
部(原水が含浸された状態の吸着部)20に第2電極2
2と第3電極27を通じて直流電圧を印加して細菌等の
繁殖を抑制し、他方、再生モード時は、第1電極21及
び第2電極22を通じて吸着部20に交流電圧を印加し
てトリハロメタンや有機物の脱離、細菌類の殺菌等を行
うようになっている。
As described above, the water purification apparatus according to the present embodiment has the first electrode 21, the second electrode 22, and the third electrode 27. In the sterilization mode in the water purification mode described later, the adsorption unit (raw water) is used. The second electrode 2 is attached to the suction portion 20 impregnated with
A DC voltage is applied through the second and third electrodes 27 to suppress the growth of bacteria and the like. On the other hand, in the regeneration mode, an AC voltage is applied to the adsorption section 20 through the first electrode 21 and the second electrode 22 to apply trihalomethane or the like. It removes organic matter, sterilizes bacteria, and the like.

【0016】次に、本実施形態に係る浄水殺菌装置の駆
動制御回路を図2のブロック図を参照して説明する。
Next, a drive control circuit of the water purification apparatus according to this embodiment will be described with reference to the block diagram of FIG.

【0017】本実施形態に係る浄水殺菌装置はマイクロ
コンピュータ等による制御装置30にて自動化されてい
る。この制御装置30は中央演算装置(CPU)31、
制御プログラムを記憶しているメモリ32、信号の入出
力を行うI/Oポート33,34を有し、このI/Oポ
ート33を通じてタイマ35及び電気伝導度計36の信
号をCPU31に入力し、I/Oポート34を通じて給
水弁13a、排水弁14a及び電源37に制御信号を出
力するようになっている。
The water purification apparatus according to the present embodiment is automated by a control device 30 such as a microcomputer. The control device 30 includes a central processing unit (CPU) 31,
It has a memory 32 storing a control program, I / O ports 33 and 34 for inputting and outputting signals, and inputs signals of a timer 35 and an electric conductivity meter 36 to the CPU 31 through the I / O port 33. A control signal is output to the water supply valve 13a, the drain valve 14a, and the power supply 37 through the I / O port 34.

【0018】ここで、電気伝導度計36は水槽10に設
置された第2電極22と第3電極27を計測用電極とし
て用いており、この各電極22,27を通じて水槽10
内の水の電気伝導度を計測するようになっている。ま
た、この電源37は直流電源、即ち第2電極22と第3
電極27用のもので、電気伝導度計36で計測された電
気伝導度に基づき、各電極22,27への通電電流或い
は印加電圧を制御するようになっている。この電流・電
圧制御は図4及び図5のグラフに示すようになってい
る。
Here, the electric conductivity meter 36 uses the second electrode 22 and the third electrode 27 provided in the water tank 10 as measuring electrodes.
It measures the electrical conductivity of the water inside. The power supply 37 is a DC power supply, that is, the second electrode 22 and the third power supply.
For the electrode 27, the current or voltage applied to each of the electrodes 22 and 27 is controlled based on the electric conductivity measured by the electric conductivity meter 36. This current / voltage control is as shown in the graphs of FIGS.

【0019】即ち、図4の実線で示すように原水の電気
伝導度が高くなるに従って電圧値が低くなり、一方、図
5の実線で示すように原水の電気伝導度が低くなるに従
って電流値が低くなる。ここで、細菌類等を吸着部20
に捕捉する機能(制菌効果)を発揮するためは、Aμs
/cm時の電圧値以上が必要となる。一方、電流値が所
定値以下のときは、制菌効果を安定的に維持できない。
このため、安定した制菌効果を発揮させるためには、B
μs/cm時の電流値以上が必要となる。
That is, as shown by the solid line in FIG. 4, the voltage value decreases as the electric conductivity of the raw water increases, and as shown by the solid line in FIG. 5, the current value decreases as the electric conductivity of the raw water decreases. Lower. Here, bacteria and the like are adsorbed by the adsorption section 20.
In order to exhibit the function of capturing bacteria (bacteriostatic effect), Aμs
/ Cmh or more is required. On the other hand, when the current value is equal to or less than the predetermined value, the bacteriostatic effect cannot be stably maintained.
Therefore, in order to exhibit a stable bacteriostatic effect, B
A current value of at least μs / cm is required.

【0020】従って、制御装置30は原水の電気伝導度
がAμs/cm以上となっているときは、図4の1点鎖
線で示すように、電圧値を高く設定し、一方、Bμs/
cm以下のときは、図5の1点鎖線に示すように、電流
値を高く設定するようにしている。
Therefore, when the electric conductivity of the raw water is higher than A μs / cm, the controller 30 sets the voltage value higher as shown by the dashed line in FIG.
cm or less, the current value is set high as indicated by the dashed line in FIG.

【0021】これらの駆動制御回路に基づき浄水モード
(制菌モードを含む)と再生モードを所定のインターバ
ルで行うが、この実施形態では直流電源34の電源出力
を調整する制菌モードを図3のフローチャート並びに図
4及び図5のグラフを参照して詳述する。
The water purification mode (including the sterilization mode) and the regeneration mode are performed at predetermined intervals based on these drive control circuits. In this embodiment, the sterilization mode for adjusting the power output of the DC power supply 34 is shown in FIG. This will be described in detail with reference to flowcharts and graphs in FIGS.

【0022】即ち、蛇口を開くときは給水弁13aが開
き、原水(例えば水道水)が導入口12aを通じて水槽
10内に流入し、通路24を通じて吸着部20内に流入
する。この吸着部20に流入した水道水は、この吸着部
20で除菌等され、浄水となって注出管27内に流入
し、これが導出口11aを通じて蛇口に給送される(浄
水モード)(S1)。この給水の後、蛇口を閉めるとき
は、給水弁13aが閉じられる。
That is, when the faucet is opened, the water supply valve 13a is opened, and raw water (for example, tap water) flows into the water tank 10 through the inlet 12a, and flows into the adsorbing section 20 through the passage 24. The tap water that has flowed into the adsorption unit 20 is sterilized by the adsorption unit 20, becomes purified water, flows into the discharge pipe 27, and is fed to the faucet through the outlet 11a (water purification mode) ( S1). After this water supply, when closing the faucet, the water supply valve 13a is closed.

【0023】このように給水弁13aが閉じられ、水槽
10は満水状態のとき、この給水弁13aの閉状態が、
初めて(第1回目)か否かを判定し、第1回目のとき
は、電気伝導度計36で検知された水道水の電気伝導度
を計測する(S2〜S4)。この計測された電気伝導度
Cμs/cmが、Bμs/cm以下か、Bμs/cmと
Aμs/cmとの間か、Aμs/cm以上かを判定し、
Bμs/cm以下のときは電流値を高く(図5の1点鎖
線)、Bμs/cmとAμs/cmとの間のときは変更
せず、Aμs/cm以上のときは電圧値を高くする(図
4の1点鎖線)。即ち、電気伝導度に対応する電源出力
を設定する(S5)。
When the water supply valve 13a is closed and the water tank 10 is full, the closed state of the water supply valve 13a is as follows.
It is determined whether it is the first time (first time) or not, and at the first time, the electric conductivity of tap water detected by the electric conductivity meter 36 is measured (S2 to S4). It is determined whether the measured electric conductivity Cμs / cm is Bμs / cm or less, between Bμs / cm and Aμs / cm, or Aμs / cm,
When B μs / cm or less, the current value is high (the dashed line in FIG. 5), when B μs / cm and A μs / cm are unchanged, the voltage value is high when A μs / cm or more ( 4 (dashed line in FIG. 4). That is, the power supply output corresponding to the electric conductivity is set (S5).

【0024】この設定の後、制菌モードに移行し、第2
電極22と第3電極27を通じて吸着部20に設定され
た直流電圧を印加して細菌等を吸着部20に捕捉する一
方、この細菌等の繁殖を抑制する(S6)。この制菌モ
ードは給水弁13aが再度開くとき(蛇口から水道水を
出すとき)まで行われるとともに、再生モードへの移行
時間tsまでこの浄水モードが継続される(S7〜S
9)。ここで、再生モードへの移行時間tsとなったと
きは、再生モードに移行する(S10)。
After this setting, the mode shifts to the bacteriostatic mode and the second
A DC voltage set to the adsorption section 20 is applied through the electrode 22 and the third electrode 27 to capture bacteria and the like in the adsorption section 20, while suppressing the growth of the bacteria and the like (S6). This sterilization mode is performed until the water supply valve 13a opens again (when tap water is discharged from the faucet), and the water purification mode is continued until the transition time ts to the regeneration mode (S7 to S).
9). Here, when the transition time ts to the reproduction mode is reached, the operation shifts to the reproduction mode (S10).

【0025】本実施形態によれば、前述しように、水道
水の電気伝導度に対応する電流・電圧を設定し、この設
定された電流・電圧を吸着部20に印加するため、水道
水のイオン濃度が高低何れであっても、安定的で且つ確
実に制菌効果を得ることができる。
According to the present embodiment, as described above, the current / voltage corresponding to the electric conductivity of tap water is set, and the set current / voltage is applied to the adsorbing section 20. Regardless of whether the concentration is high or low, a bacteriostatic effect can be stably and reliably obtained.

【0026】また、電気伝導度計36の計測用電極とし
て第2電極22及び第3電極27を用い、吸着部20に
電圧を印加する電極と共用となっているため、電気伝導
度計用の電極を別個に設置する必要がない。
Further, since the second electrode 22 and the third electrode 27 are used as measurement electrodes of the electric conductivity meter 36 and are used in common with the electrodes for applying a voltage to the adsorption section 20, the electric conductivity meter is used. There is no need to separately install electrodes.

【0027】図6は本発明に係る浄水殺菌装置の第2実
施形態を示すものである。前記第1実施形態では、給水
弁13aが閉となったとき、水槽10内の電気伝導度を
計測するようになっているが、この実施形態では、給水
弁13aが開となったとき、即ち、水道水が水槽10内
に給水されたときに水道水の電気伝導度の計測を開始す
る。この計測は給水弁13aが閉となるまで所定時間間
隔をおいて複数回に亘って行われる(S1〜S5)。そ
の後、計測された各電気伝導度の平均値を演算し、この
平均値に対応する電源出力を設定するようになってい
る。
FIG. 6 shows a second embodiment of the water purification apparatus according to the present invention. In the first embodiment, when the water supply valve 13a is closed, the electric conductivity in the water tank 10 is measured. In this embodiment, when the water supply valve 13a is opened, When the tap water is supplied into the water tank 10, the measurement of the electric conductivity of the tap water is started. This measurement is performed a plurality of times at predetermined time intervals until the water supply valve 13a is closed (S1 to S5). Thereafter, an average value of the measured electric conductivities is calculated, and a power output corresponding to the average value is set.

【0028】本実施形態によれば、電気伝導度を複数回
に亘って計測し、この平均値で電源出力を設定するた
め、正確な電気伝導度に基づく電源出力制御が行われ
る。その他の作用は前記第1実施形態と同様である。
According to the present embodiment, since the electric conductivity is measured a plurality of times and the average value is used to set the power output, the power output control based on the accurate electric conductivity is performed. Other operations are the same as those of the first embodiment.

【0029】なお、この第2実施形態では、給水状態を
給水弁13aの開状態で判断しているが、例えば、給水
管13に圧力センサを設置するときは通水圧力に基づく
通水信号により、また、給水管13に流量センサを設け
るときはその通水信号により給水状態を検知し、電気伝
導度を計測するようにしてもよい。更に、カップ式飲料
自動販売機或いは飲料ディスペンサの如く、飲料販売ス
イッチにより飲料用の水を給水するときは、この飲料販
売スイッチの飲料販売信号により給水状態を検知し、電
気伝導度を計測するようにしてもよい。
In the second embodiment, the water supply state is determined by the open state of the water supply valve 13a. For example, when a pressure sensor is installed in the water supply pipe 13, a water supply signal based on the water supply pressure is used. Further, when a flow rate sensor is provided in the water supply pipe 13, the water supply signal may be used to detect the water supply state and measure the electric conductivity. Further, when water for drinking is supplied by a beverage selling switch, such as a cup-type beverage vending machine or a beverage dispenser, the beverage selling signal of the beverage selling switch detects the water supply state and measures the electric conductivity. It may be.

【0030】図7及び図8は本発明に係る浄水殺菌装置
の第3実施形態を示すものである。この実施形態は、図
7に示すように、第2電極22及び第3電極27を通じ
て水槽10内に通電し、その電流を電流計38で計測
し、また、その電圧を電圧計39で計測するもので、こ
の計測された電流及び電圧に基づき抵抗値が演算される
構成となっている。
FIGS. 7 and 8 show a third embodiment of the water purification / sterilization apparatus according to the present invention. In this embodiment, as shown in FIG. 7, electricity is supplied to the water tank 10 through the second electrode 22 and the third electrode 27, the current is measured by an ammeter 38, and the voltage is measured by a voltmeter 39. The resistance value is calculated based on the measured current and voltage.

【0031】この実施形態によれば、前記第1実施形態
と同様に給水弁13aが閉となったときは、図8に示す
ように、電流計38及び電圧計39で計測された電流及
び電圧に基づき抵抗値を演算し、この抵抗値に対応する
電源出力を設定する(S1〜S7)。ここで、電気抵抗
は電気伝導度の逆数であり、この演算された電気抵抗が
著しく大きいときは、電流値を上げ、また、電気抵抗が
著しく小さいときは電圧値を上げるよう設定する。これ
により、安定的で且つ確実に制菌効果を得ることができ
る。また、この第3実施形態で前記第2実施形態と同様
に複数回に亘って電流・電圧を計測して抵抗値を演算
し、この各抵抗値の平均値を求め、この平均値に基づき
電源出力を設定するようにしてもよい。なお、その他の
構成、作用は前記第1実施形態及び前記第2実施形態と
同様である。
According to this embodiment, when the water supply valve 13a is closed as in the first embodiment, the current and the voltage measured by the ammeter 38 and the voltmeter 39 as shown in FIG. , And sets a power output corresponding to the resistance value (S1 to S7). Here, the electric resistance is the reciprocal of the electric conductivity. When the calculated electric resistance is extremely large, the current value is increased, and when the calculated electric resistance is extremely small, the voltage value is increased. Thereby, a bacteriostatic effect can be stably and reliably obtained. In the third embodiment, similarly to the second embodiment, the current and voltage are measured a plurality of times to calculate the resistance value, the average value of the resistance values is determined, and the power supply is determined based on the average value. The output may be set. Other configurations and operations are the same as those of the first embodiment and the second embodiment.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
電気伝導度計測手段或いは電気抵抗計測手段により原水
の水質が検出され、この水質に対応するよう電源出力が
調整されるため、水質が変化するときでも、所望の電圧
・電流値で制菌モードを実行でき、制菌効果を確実に発
揮させることができる。また、この各計測手段の計測用
電極として制菌用の電極が用いられるため、計測用電極
を別個に設ける必要がない。
As described above, according to the present invention,
The water quality of the raw water is detected by the electric conductivity measuring means or the electric resistance measuring means, and the power output is adjusted so as to correspond to the water quality. Therefore, even when the water quality changes, the bacteriostatic mode can be set at a desired voltage / current value. It can be carried out, and the bacteriostatic effect can be reliably exhibited. In addition, since a bacteriostatic electrode is used as a measuring electrode of each measuring means, there is no need to separately provide a measuring electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係る浄水殺菌装置の断面図FIG. 1 is a sectional view of a water purification device according to a first embodiment.

【図2】第1実施形態に係る浄水殺菌装置の制御回路を
示すブロック図
FIG. 2 is a block diagram showing a control circuit of the water purification apparatus according to the first embodiment.

【図3】第1実施形態に係る浄水殺菌装置の制御フロー
チャート
FIG. 3 is a control flowchart of the water purification apparatus according to the first embodiment.

【図4】電気伝導度に基づく電圧変化を示すグラフFIG. 4 is a graph showing a voltage change based on electric conductivity.

【図5】電気伝導度に基づく電流変化を示すグラフFIG. 5 is a graph showing a current change based on electric conductivity.

【図6】第2実施形態に係る浄水殺菌装置の要部フロー
チャート
FIG. 6 is a flowchart of a main part of the water purification apparatus according to the second embodiment.

【図7】第3実施形態に係る浄水殺菌装置の制御回路を
示すブロック図
FIG. 7 is a block diagram showing a control circuit of the water purification apparatus according to the third embodiment.

【図8】第3実施形態に係る浄水殺菌装置の制御フロー
チャート
FIG. 8 is a control flowchart of the water purification apparatus according to the third embodiment.

【符号の説明】[Explanation of symbols]

20…吸着部、21,22,27…電極、30…制御装
置、31…CPU、36…電気伝導度計、37…電源、
38…電流計、39…電圧計。
Reference numeral 20: adsorption unit, 21, 22, 27: electrode, 30: control device, 31: CPU, 36: electric conductivity meter, 37: power supply,
38: ammeter, 39: voltmeter.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水道水等の原水が通過する導電性吸着部
に電極を通じて電圧を印加し、該導電性吸着部に細菌等
を捕捉させかつ付着した細菌等の繁殖を抑制する制菌モ
ードを有する浄水殺菌装置において、 前記原水の電気伝導度を計測する電気伝導度計測手段
と、計測された該電気伝導度に対応する電源出力を設定
する電源出力調整手段とを備え、該電気伝導度計測手段
は前記電極を通じて該原水の電気伝導度を計測すること
を特徴とする浄水殺菌装置。
1. A bacteriostatic mode in which a voltage is applied to a conductive adsorbing portion through which raw water such as tap water passes through an electrode so that bacteria and the like are trapped in the conductive adsorbing portion and propagation of attached bacteria and the like is suppressed. A water purification device comprising: an electric conductivity measuring unit for measuring electric conductivity of the raw water; and a power output adjusting unit for setting a power output corresponding to the measured electric conductivity. Means for measuring the electric conductivity of the raw water through the electrode.
【請求項2】 前記電気伝導度計測手段は、導電性吸着
部への給水信号に基づき所定時間に亘って電気伝導度を
計測することを特徴とする請求項1記載の浄水殺菌装
置。
2. The water purification sterilizer according to claim 1, wherein said electric conductivity measuring means measures the electric conductivity for a predetermined time based on a water supply signal to the conductive adsorption section.
【請求項3】 水道水等の原水が通過する導電性吸着部
に電極を通じて電圧を印加し、該導電性吸着部に細菌等
を捕捉させかつ付着した細菌等の繁殖を抑制する制菌モ
ードを有する浄水殺菌装置において、 前記原水の電気抵抗を計測する電気抵抗計測手段と、計
測された該電気抵抗に対応する電源出力を設定する電源
出力調整手段とを備え、該電気抵抗計測手段は前記電極
を通じて該原水の電気抵抗を計測することを特徴とする
浄水殺菌装置。
3. A bacteriostatic mode in which a voltage is applied to a conductive adsorbing portion through which raw water such as tap water passes through an electrode to capture bacteria and the like in the conductive adsorbing portion and suppress the propagation of attached bacteria and the like. A water purification device having: an electric resistance measuring means for measuring an electric resistance of the raw water; and a power output adjusting means for setting a power output corresponding to the measured electric resistance, wherein the electric resistance measuring means comprises the electrode And measuring the electric resistance of the raw water through the apparatus.
【請求項4】 前記電気抵抗計測手段は、導電性吸着部
への給水信号に基づき所定時間に亘って電気抵抗を計測
することを特徴とする請求項3記載の浄水殺菌装置。
4. The water purification sterilizer according to claim 3, wherein said electric resistance measuring means measures electric resistance over a predetermined time based on a water supply signal to the conductive adsorption section.
JP26336396A 1996-10-03 1996-10-03 Purified water sterilization device Pending JPH10109087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26336396A JPH10109087A (en) 1996-10-03 1996-10-03 Purified water sterilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26336396A JPH10109087A (en) 1996-10-03 1996-10-03 Purified water sterilization device

Publications (1)

Publication Number Publication Date
JPH10109087A true JPH10109087A (en) 1998-04-28

Family

ID=17388454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26336396A Pending JPH10109087A (en) 1996-10-03 1996-10-03 Purified water sterilization device

Country Status (1)

Country Link
JP (1) JPH10109087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071255A (en) * 2001-03-05 2002-09-12 주식회사 버룽 Control apparatus for sterilization and disinfection system by metal ion under water diffusion by electric method
US6860990B2 (en) * 2000-01-24 2005-03-01 Ludwig Bartl Device for treating water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6860990B2 (en) * 2000-01-24 2005-03-01 Ludwig Bartl Device for treating water
KR20020071255A (en) * 2001-03-05 2002-09-12 주식회사 버룽 Control apparatus for sterilization and disinfection system by metal ion under water diffusion by electric method

Similar Documents

Publication Publication Date Title
JP2004505770A (en) Water treatment system under the sink
KR101439948B1 (en) Water treatment apparatus and water treatment method
JPH10180259A (en) Water purifying and sterilizing device
KR101444786B1 (en) Water treatment apparatus and water treatment method
KR101446127B1 (en) Water treatment apparatus
JPH10109087A (en) Purified water sterilization device
KR101459001B1 (en) Water treatment apparatus and water treatment method
JPH1066964A (en) Water purification/sterilization device
KR101447963B1 (en) Water treatment method
KR200283129Y1 (en) Sterilization device using Ag+ ion
KR101476323B1 (en) Water treatment apparatus and water treatment method
JPH10180249A (en) Water purification and sterilization device
JPH1190446A (en) Sterilization apparatus
JPH10128310A (en) Water purifying and sterilizing apparatus
JP3080808B2 (en) Water purification device and method of using the same
JP2010032453A (en) Concentration measuring device of electrolyte solution and water softening system
KR101773389B1 (en) Water treatment apparatus
JP3919936B2 (en) Beverage supply equipment
KR101447519B1 (en) Water treatment method
JPH11342386A (en) Water purifying and sterilizing device
KR101496307B1 (en) Water treatment apparatus and sterilizing method
KR101446128B1 (en) Water treatment method
JPH09234459A (en) Water purifying and sterilizing device
JPH10109086A (en) Purified water sterilization device
KR20180091334A (en) Water treatment apparatus and sterilizing method thereof