JPH10108202A - Method for compressing image data and print data or the like - Google Patents
Method for compressing image data and print data or the likeInfo
- Publication number
- JPH10108202A JPH10108202A JP29311496A JP29311496A JPH10108202A JP H10108202 A JPH10108202 A JP H10108202A JP 29311496 A JP29311496 A JP 29311496A JP 29311496 A JP29311496 A JP 29311496A JP H10108202 A JPH10108202 A JP H10108202A
- Authority
- JP
- Japan
- Prior art keywords
- data
- difference
- arbitrary
- scanning direction
- coding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】各種画像データ蓄積用、高分解能
画像高速圧縮。 高分解能データの低分解能表示及び印
字装置用データの作成と蓄積。画像伝送装置。コンピュ
ータ用高分解能画像高速圧縮ソフトウエア。コンピュー
タ用高分解能画像高速圧縮装置。プリンター。テレビ。
表示装置。ファクシミリ。[Industrial application] High-resolution image high-speed compression for storing various image data. Create and store low-resolution display of high-resolution data and data for printing devices. Image transmission device. High-resolution image high-speed compression software for computers. High-resolution image high-speed compression device for computers. printer. TV set.
Display device. facsimile.
【0002】[0002]
【従来の技術】JPFGやMPEGが上げられる2. Description of the Related Art JPFG and MPEG are available.
【0003】[0003]
【発明が解決しようとする課題】高分解能画像及び印字
イメージデータの高速で品質の高い安価なデータ圧縮。SUMMARY OF THE INVENTION High-speed, high-quality, inexpensive data compression of high-resolution image and print image data.
【0004】[0004]
【課題を解決するための手段】画像用及び印字用等のデ
ータの圧縮を、決められた任意の走査方向に対し、デー
タ配列の任意の決められた場所の要素点群でデータをそ
のまま取りこの要素点群間は走査方向に各隣接したデー
タ間で差を計算し、差のデータをEntropyCod
ingやHuffman Codingや算術符合法等
各種その符合化の復元時に完全に復元できる符合化法に
より符号化する。但し要素点群は走査方向に対しデータ
配列での始めの点である場合を含む。画像用及び印字用
等のデータの圧縮を、決められた任意の走査方向に対
し、データ配列の任意の場所の要素点群でデータをその
まま取りこの要素点群間は走査方向に各隣接したデータ
間で差を計算し、差のデータをEntropy Cod
ingやHuffman Codingや算術符合法等
各種その符合化の復元時に完全に復元できる符合化法に
より符号化し生データを利用したデータ点群に対しては
識別用の決められた任意の識別子を付加する。但し要素
点群は走査方向に対しデータ配列での始めの点である場
合を含む。画像用及び印字用等のデータの圧縮を、固定
された場所で決められた任意の大きさで決められた任意
の数に画面又はデータ配列を分割し、各任意の分割画面
又は分割データ配列で決められた任意の走査方向に対し
走査方向の始めのデータをそのまま取り、その後は走査
方向に各隣接したデータ間で差を計算し、差のデータを
Entropy CodingやHuffman Co
dingや算術符合法等各種その符合化の復元時に完全
に復元できる符合化法により符号化する。画像用及び印
字用等のデータの圧縮を、固定された場所で決められた
任意の大きさで決められた任意の数に画面又はデータ配
列を分割し、各任意の分割画面又は分割データ配列で決
められた任意の走査方向に対し任意の場所の要素点群で
データをそのまま取り、この要素点群間は走査方向に各
隣接したデータ間で差を計算し、差のデータをEntr
opy CodingやHuffman Coding
や算術符合法等各種その符合化の復元時に完全に復元で
きる符合化法により符号化し、必要であれば、生データ
を利用したデータ点群に対しては識別用の決められた任
意の識別子を付加する。請求項1、2、3、4におい
て、全体又は分割データ配列においてデータ間で差を計
算する前に、境界点等の差ではなく生のデータをとる点
群を除き、移動平均等を使い平滑化する。請求項1、
2、3、4、5において、全体又は分割データ配列にお
いてデータ間で差を計算する前に、境界点等の差ではな
く生のデータをとる点群を除き、移動平均等を使い平滑
化し、全体又は分割領域で量子化する。請求項6におい
て、全体又は分割領域で量子化する場合、量子化レベル
の設定を、コントラストを維持し成るべく確率的意味で
隣接データ間の差を必要の無い所はなだらかにするた
め、値の最大及び最小の近傍と値の頻度の小さい近傍と
高分可能が量子化で必要な値では量子化を細かくその他
では荒らく設定する。この方法は圧縮率を優先する場合
に利用する。又は、量子化レベルの設定を、コントラス
トを成るべく維持するため、値の最大及び最小の近傍と
値の頻度の大きい近傍と高分可能が量子化で必要な値で
は量子化を細かくその他では荒らく設定する。請求項
1、2、3、4、5、6、7、8において、コントラス
トを維持するために、隣接データ間の差が決められたし
きい値以上であればその二点の走査方向の原点に近い方
を生データを取る点群の一つとし、量子化レべルを片方
の一点の値の値で成るべく細かくし、精度を高くし、平
滑化と量子化によるコントラストの劣化を減少させる。
以上の方法と以上の方法を有する装置によって解決す
る。In order to compress data for images and printing, data is taken as it is at an element point group at an arbitrary determined place in a data array in a predetermined arbitrary scanning direction. Calculate the difference between adjacent data in the scanning direction between the element point groups, and write the difference data as EntropyCod.
Encoding is performed by an encoding method such as ing, Huffman Coding, or an arithmetic encoding method that can be completely restored when the encoding is restored. However, the element point group includes the case where it is the first point in the data array in the scanning direction. For data compression for images and printing, data is taken as it is at the element point group at an arbitrary position in the data array for any given scanning direction, and data adjacent to each other in the scanning direction Calculate the difference between the two, and use the difference code as the Entropy Code
An arbitrary predetermined identifier for identification is added to a data point group which is coded by a coding method which can be completely restored at the time of restoring the coding such as ing, Huffman Coding, arithmetic coding and the like and uses raw data. . However, the element point group includes the case where it is the first point in the data array in the scanning direction. Compression of data for images and printing is performed by dividing the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and using each arbitrary divided screen or divided data array. The data at the beginning of the scanning direction is taken as it is for a given arbitrary scanning direction, and thereafter, the difference between each adjacent data in the scanning direction is calculated, and the difference data is calculated by Entropy Coding or Huffman Co.
Encoding is performed by an encoding method that can be completely restored when the encoding is restored, such as ding and arithmetic encoding. Compression of data for images and printing is performed by dividing the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and using each arbitrary divided screen or divided data array. The data is taken as it is at the element point group at an arbitrary position in the determined arbitrary scanning direction, the difference between the adjacent data in the scanning direction is calculated between the element point groups, and the difference data is calculated as Entr.
opy Coding and Huffman Coding
Encoding using a coding method that can be completely restored when restoring the encoding, such as arithmetic coding and arithmetic coding, and if necessary, for a data point group using raw data, an arbitrary identifier for identification is used. Add. 4. The method according to claim 1, 2, 3, or 4, wherein before calculating a difference between data in the whole or divided data array, a moving average or the like is used except for a point group that takes raw data instead of a difference between boundary points. Become Claim 1,
Before calculating the difference between the data in the whole or divided data array in 2, 3, 4, and 5, smoothing using a moving average or the like, except for a point group that takes raw data instead of a difference between boundary points and the like, Quantization is performed on the whole or divided regions. According to the sixth aspect, when quantizing the entire or divided region, the quantization level is set so that the difference between adjacent data is not required in the stochastic sense as much as possible while maintaining the contrast. The quantization is finely set for the values necessary for the quantization, where the maximum and minimum neighbors, the neighborhood with a small frequency of the values, and the high possibility are set, and the others are set roughly. This method is used when giving priority to the compression ratio. Alternatively, in order to maintain the contrast of the quantization level as much as possible, the neighborhood of the maximum and the minimum of the value and the neighborhood of the high frequency of the value can be distinguished from each other. Set up easily. 9. The scanning method according to claim 1, 2, 3, 4, 5, 6, 7, or 8, wherein a difference between adjacent data is equal to or greater than a predetermined threshold value in order to maintain contrast. The point closer to is one of the points that take raw data, the quantization level is made as fine as possible with one point value, the accuracy is increased, and the deterioration of contrast due to smoothing and quantization is reduced. Let it.
The problem is solved by the above method and an apparatus having the above method.
【0005】[0005]
【発明の実施の形態】画像用及び印字用等のデータの圧
縮を、決められた任意の走査方向に対し、データ配列の
任意の決められた場所の要素点群でデータをそのまま取
りこの要素点群間は走査方向に各隣接したデータ間で差
を計算し、差のデータをEntropyCodingや
Huffman Codingや算術符合法等各種その
符合化の復元時に完全に復元できる符合化法により符号
化する。但し要素点群は走査方向に対しデータ配列での
始めの点である場合を含む。画像用及び印字用等のデー
タの圧縮を、決められた任意の走査方向に対し、データ
配列の任意の場所の要素点群でデータをそのまま取りこ
の要素点群間は走査方向に各隣接したデータ間で差を計
算し、差のデータをEntropy CodingやH
uffman Codingや算術符合法等各種その符
合化の復元時に完全に復元できる符合化法により符号化
し生データを利用したデータ点群に対しては識別用の決
められた任意の識別子を付加する。但し要素点群は走査
方向に対しデータ配列での始めの点である場合を含む。
画像用及び印字用等のデータの圧縮を、固定された場所
で決められた任意の大きさで決められた任意の数に画面
又はデータ配列を分割し、各任意の分割画面又は分割デ
ータ配列で決められた任意の走査方向に対し走査方向の
始めのデータをそのまま取り、その後は走査方向に各隣
接したデータ間で差を計算し、差のデータをEntro
py CodingやHuffman Codingや
算術符合法等各種その符合化の復元時に完全に復元でき
る符合化法により符号化する。画像用及び印字用等のデ
ータの圧縮を、固定された場所で決められた任意の大き
さで決められた任意の数に画面又はデータ配列を分割
し、各任意の分割画面又は分割データ配列で決められた
任意の走査方向に対し任意の場所の要素点群でデータを
そのまま取り、この要素点群間は走査方向に各隣接した
データ間で差を計算し、差のデータをEntropy
CodingやHuffman Codingや算術符
合法等各種その符合化の復元時に完全に復元できる符合
北法により符号化し、必要であれば、生データを利用し
たデータ点群に対しては識別用の決められた任意の識別
子を付加する。請求項1、2、3、4において、全体又
は分割データ配列においてデータ間で差を計算する前
に、境界点等の差ではなく生のデータをとる点群を除
き、移動平均等を使い平滑化する。請求項1、2、3、
4、5において、全体又は分割データ配列においてデー
タ間で差を計算する前に、境界点等の差ではなく生のデ
ータをとる点群を除き、移動平均等を使い平滑化し、全
体又は分割領域で量子化する。請求項6において、全体
又は分割領域で量子化する場合、量子化レベルの設定
を、コントラストを維持し成るべく確率的意味で隣接デ
ータ間の差を必要の無い所はなだらかにするため、値の
最大及び最小の近傍と値の頻度の小さい近傍と高分可能
が量子化で必要な値では量子化を細かくその他では荒ら
く設定する。この方法は圧縮率を優先する場合に利用す
る。又は、量子化レベルの設定を、コントラストを成る
べく維持するため、値の最大及び最小の近傍と値の頻度
の大きい近傍と高分可能が量子化で必要な値では量子化
を細かくその他では荒らく設定する。請求項1、2、
3、4、5、6、7、8において、コントラストを維持
するために、隣接データ間の差が決められたしきい値以
上であればその二点の走査方向の原点に近い方を生デー
タを取る点群の一つとし、量子化レベルを片方の一点の
値の値で成るべく細かくし、精度を高くし、平滑化と量
子化によるコントラストの劣化を減少させる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The compression of data for images and prints is performed by taking data as it is at an element point group at an arbitrary predetermined place in a data array in a predetermined arbitrary scanning direction. The difference between groups is calculated between adjacent data in the scanning direction, and the difference data is encoded by an encoding method that can be completely restored at the time of restoring the encoding, such as EntropyCoding, Huffman Coding, and arithmetic encoding. However, the element point group includes the case where it is the first point in the data array in the scanning direction. For data compression for images and printing, data is taken as it is at the element point group at an arbitrary position in the data array for any given scanning direction, and data adjacent to each other in the scanning direction Calculate the difference between them, and use the difference data as Entropy Coding or H
An arbitrary identifier determined for identification is added to a data point group which is coded by a coding method which can be completely restored at the time of restoring such encoding, such as uffman coding and arithmetic coding, and which uses raw data. However, the element point group includes the case where it is the first point in the data array in the scanning direction.
Compression of data for images and printing is performed by dividing the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and using each arbitrary divided screen or divided data array. The first data in the scanning direction is taken as it is with respect to the determined arbitrary scanning direction, and thereafter, the difference between each adjacent data in the scanning direction is calculated, and the difference data is obtained by Entro.
Encoding is performed by an encoding method that can be completely restored when the encoding is restored, such as py coding, Huffman coding, and arithmetic coding. Compression of data for images and printing is performed by dividing the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and using each arbitrary divided screen or divided data array. The data is taken as it is at the element point group at an arbitrary position in the determined arbitrary scanning direction, the difference between the adjacent data in the scanning direction is calculated between the element point groups, and the difference data is entropy.
Coding, Huffman coding, arithmetic coding, and various other codings, such as coding, can be completely restored at the time of restoration of the coding. If necessary, the data point group using raw data is determined for identification. Add an arbitrary identifier. 4. The method according to claim 1, 2, 3, or 4, wherein before calculating a difference between data in the whole or divided data array, a moving average or the like is used except for a point group that takes raw data instead of a difference between boundary points. Become Claims 1, 2, 3,
In steps 4 and 5, before calculating a difference between data in the whole or divided data array, smoothing is performed using a moving average or the like except for a point group that takes raw data instead of a difference between boundary points or the like, and the whole or divided area is calculated. Quantize with According to the sixth aspect, when quantizing the entire or divided region, the quantization level is set so that the difference between adjacent data is not required in the stochastic sense as much as possible while maintaining the contrast. The quantization is finely set for the values necessary for the quantization, where the maximum and minimum neighbors, the neighborhood with a small frequency of the values, and the high possibility are set, and the others are set roughly. This method is used when giving priority to the compression ratio. Alternatively, in order to maintain the contrast of the quantization level as much as possible, the neighborhood of the maximum and the minimum of the value and the neighborhood of the high frequency of the value can be distinguished from each other. Set up easily. Claims 1, 2,
In 3, 4, 5, 6, 7, and 8, in order to maintain the contrast, if the difference between adjacent data is equal to or more than a predetermined threshold value, the raw data closer to the origin in the scanning direction of the two points is used as the raw data. And the quantization level is made as fine as possible with the value of one of the points, the accuracy is increased, and the deterioration of contrast due to smoothing and quantization is reduced.
【0006】[0006]
【発明の効果】高分解能画像データ等は隣接画素間の差
が確率的意味で高い確率で小さいため、本発明を用い、
適度な用途にあった、必要があれば平滑化と、量子化の
後に走査方向に差分をとり、之を完全復元可能な圧縮率
の高い符号化により行えば、元画像の平滑化と量子化誤
差の範囲の画像が高効率で圧縮出来さらに復元できる。According to the present invention, since the difference between adjacent pixels is small with a high probability in a stochastic sense, the present invention uses
Smooth the original image and quantize it if necessary by taking the difference in the scanning direction after smoothing and quantizing, which is appropriate for the application, and performing the encoding with high compression ratio that can completely restore. An image in the range of the error can be compressed with high efficiency and further restored.
【図1】量子化方法FIG. 1 Quantization method
【図2】隣接データ間の差分FIG. 2 Difference between adjacent data
1 細かい量子化。 2 あらい量子化。 3 走査方向。 4 点1。 5 点2。 1 Fine quantization. 2 New quantization. 3 Scan direction. 4 points. 5 points 2.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成8年10月1日[Submission date] October 1, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】 画像用及び印字用等のデータの圧
縮方法Patent application title: Method for compressing data for images and printing
【特許請求の範囲】[Claims]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】各種画像データ蓄積用、高分解能
画像高速圧縮。高分解能データの低分解能表示及び印字
装置用データの作成と蓄積。画像伝送装置。コンピュー
タ用高分解能画像高速圧縮ソフトウエア。コンピュータ
用高分解能画像高速圧縮装置。プリンター。テレビ。表
示装置。ファクシミリ。画像抽象化、輪郭抽出、特長抽
出。[Industrial application] High-resolution image high-speed compression for storing various image data. Create and store low-resolution display of high-resolution data and data for printing devices. Image transmission device. High-resolution image high-speed compression software for computers. High-resolution image high-speed compression device for computers. printer. TV set. Display device. facsimile. Image abstraction, contour extraction, feature extraction.
【0002】[0002]
【従来の技術】JPEGやMPEGが上げられる。2. Description of the Related Art JPEG and MPEG are known.
【0003】[0003]
【発明が解決しようとする課題】高分解能画像及び印字
イメージデータの高速で品質の高い安価なデータ圧縮。SUMMARY OF THE INVENTION High-speed, high-quality, inexpensive data compression of high-resolution image and print image data.
【0004】[0004]
【課題を解決するための手段】画像用及び印字用等のデ
ータの圧縮を以下の方法で行う。第一の方法は、決めら
れた任意の走査方向3に対し、データ配列の任意の決め
られた場所のデータの値そのものを使用しこれらのデー
タ点群を生データ要素点群とし、この生データ要素点群
間は走査方向3にそって例えは図2の点4と5での様に
各隣接したデータ間で差を計算し、差のデータをEnt
ropy CodingやHuffman Codin
gやRun Length Codingや算術符合法
等、その符合化の復元時に完全に復元できる各種符合化
法により符号化する方法。但し生データ要素点群は走査
方向3に対しデータ配列の始めの点である場合を含む。
第二の方法は、決められた任意の走査方向3に対し、デ
ータ配列の任意の場所のデータの値そのものを使用しこ
れらのデータ点群を生データ要素点群とし、この生デー
タ要素点群間は走査方向3にそって例えば図2の点4と
5での様に各隣接したデータ間で差を計算し、差のデー
タをEntropy CodingやHuffman
CodingやRun Length Codingや
算術符合法等、その符合化の復元時に完全に復元できる
各種符合化法により符号化し生データを利用した生デー
タ要素点群に対しては識別用の決められた任意の識別子
を付加する方法。但し生データ要素点群は走査方向3に
対しデータ配列の始めの点である場合を含む。第三の方
法は、固定された場所で決められた任意の大きさで決め
られた任意の数に画面又はデータ配列を分割し、各任意
の分割画面又は分割データ配列で決められた任意の走査
方向3に対し各分割データ配列中の始めのデータの値そ
のものを使用し、その後は走査方向3にそって例えば図
2の点4と5での様に各隣接したデータ間で差を計算
し、差のデータをEntropy CodingやHu
ffman CodingやRun Length C
odingや算術符合法等、その符合化の復元時に完全
に復元できる各種符合化法により符号化する方法。第四
の方法は、固定された場所で決められた任意の大きさで
決められた任意の数に画面又はデータ配列を分割し、各
任意の分割画面又は分割データ配列で決められた任意の
走査方向3に対し各分割データ配列中の任意の場所のデ
ータの値そのものを使用しこれらのデータ点群を生デー
タ要素点群とし、この生データ要素点群間は走査方向3
にそって例えば図2の点4と5での様に各隣接したデー
タ間で差を計算し、差のデータをEntropy Co
dingやHuffmanCodingやRun Le
ngth Codingや算術符合法等、その符合化の
復元時に完全に復元できる各種符合化法により符号化
し、必要であれば、生データを利用した生データ要素点
群に対しては識別用の決められた任意の識別子を付加す
る方法。第五の方法は、前記の各方法に、全体又は分割
データ配列においてデータ間で差を計算する前に、分割
データ配列の境界点等の差ではなくデータの値そのもの
を使用する生データ要素点群を除き、移動平均等を使い
平滑化する処理を組み込む方法。第六の方法は、前記の
各方法に、全体又は分割データ配列においてデータ間で
差を計算する前に、分割データ配列の境界点等の差では
なくデータの値そのものを使用する生データ要素点群を
除き、移動平均等を使い平滑化し、全体又は分割領域で
量子化する処理を組み込む方法。更に、ここで前記の各
方法での量子化において以下の方法をとる方法を含む。
第七の方法は、前記の各方法での量子化において全体又
は分割領域で量子化する場合、量子化レベルの設定を、
コントラストを維持し成るべく確率的意味で隣接データ
間の差を必要の無い部分はなだらがに小さくするため、
値の最大及び最小の近傍と値の頻度の小さい近傍と高分
可能が量子化で必要な値領域では量子化を細かくその他
の領域では荒らく設定する方法。 必要であれば、この
方法は圧縮率を優先する場合に利用する。第八の方法
は、前記の各方法での量子化において全体又は分割領域
で量子化する場合、量子化レベルの設定を、コントラス
トを維持し成るべく確率的意味で隣接データ間の差を、
細かい精度の高い変化が必要なデータ領域で、なだらか
にするため、値の最大及び最小の近傍と値の頻度の大き
い近傍と高分可能が量子化で必要な値領域では量子化を
細かくその他の領域では荒らく設定する方法。必要であ
れば、この方法は全体及び分割領域内で大局的(Glo
balに)な精度向上を優先する場合に利用する。これ
ら前記の各方法に対しコントラストの劣化を減少させる
方法として、前記の第一から第八の各方法に対し以下の
方法を組み込む方法をとる。第九の方法とし、隣接デー
タ間の差が決められたしきい値以上であればその二点の
走査方向の原点に近い方をデータの値そのものを使用す
る生データ要素点群の要素とし、必要であれば平滑化処
理から除外し、量子化レベルを片方の一点の値の値近傍
で成るべく細かくし、又は、その値を一つの量子化レベ
ルとし、精度高く量子化する、又は、生データ要素点群
の要素としデータ値そのものを使用し量子化処理から除
外する方法を組みこむ方法。これら前記の方法の組み合
わせにより、データの袖象化、輪郭抽出、特長抽出を行
う。以上の方法と以上の方法を有する装置によって解決
する。SUMMARY OF THE INVENTION Data compression for images and printing is performed by the following method. A first method is to use these data points as raw data element points for the determined arbitrary scanning direction 3 and use the data values themselves at arbitrary determined locations in the data array. Between the element point groups, the difference between each adjacent data is calculated along the scanning direction 3, for example, as at points 4 and 5 in FIG.
ropy Coding and Huffman Codin
g, Run Length Coding, arithmetic coding, and other coding methods that can be completely restored when the coding is restored. However, the raw data element point group includes the case where the raw data element point group is the first point of the data array in the scanning direction 3.
The second method is to use these data points themselves as raw data element points for the determined arbitrary scanning direction 3, and use these data points themselves as raw data element points. The interval between the adjacent data is calculated along the scanning direction 3, for example, at points 4 and 5 in FIG. 2, and the difference data is calculated by Entropy Coding or Huffman.
For the raw data element point group using raw data, which is coded by various coding methods which can be completely restored at the time of decoding the coding, such as coding, run length coding, arithmetic coding, etc., an arbitrary predetermined identification is used. How to add an identifier. However, the raw data element point group includes the case where the raw data element point group is the first point of the data array in the scanning direction 3. The third method is to divide the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and to perform any scanning determined by each arbitrary divided screen or divided data array The first data value itself in each split data array is used for direction 3 and then the difference between each adjacent data is calculated along scan direction 3 as at points 4 and 5 in FIG. , Difference data by Entropy Coding or Hu
ffman Coding and Run Length C
A coding method using various coding methods, such as coding and arithmetic coding, which can be completely restored when the coding is restored. The fourth method is to divide the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and to perform an arbitrary scan determined by each arbitrary divided screen or divided data array. In the direction 3, the data value itself at an arbitrary position in each divided data array is used, and these data points are regarded as raw data element points.
Then, the difference between each adjacent data is calculated, for example, as shown at points 4 and 5 in FIG.
Ding, Huffman Coding, Run Le
Encoding is performed by various encoding methods that can be completely restored when the encoding is restored, such as ngth coding or arithmetic encoding method. If necessary, a raw data element point group using raw data is determined for identification. How to add arbitrary identifiers. A fifth method is that, in each of the above methods, before calculating a difference between data in the whole or divided data array, raw data element points using data values themselves instead of differences such as boundary points of the divided data array. A method that incorporates smoothing processing using a moving average or the like, excluding groups. A sixth method is that, in each of the above methods, before calculating a difference between data in the whole or divided data array, raw data element points using data values themselves instead of differences such as boundary points of the divided data array. A method that incorporates processing for smoothing using a moving average or the like, excluding groups, and quantizing the whole or divided regions. Further, here, the quantization in each of the above-mentioned methods includes the following method.
The seventh method is that, when performing quantization in the whole or divided region in the quantization in each of the above methods, the setting of the quantization level is
In order to maintain the contrast and minimize the difference between adjacent data in the stochastic sense as much as possible,
A method in which the quantization is finely set in a value region where quantization is necessary for the vicinity where the value is the maximum and minimum, the value where the value is infrequent, and the value is small, and the other regions are roughly set. If necessary, use this method when priority is given to the compression ratio. In the eighth method, when performing quantization in the whole or divided regions in the quantization in each of the above-described methods, the setting of the quantization level is performed.
In the data area where fine and high-precision changes are required, in order to make the data smooth, the neighborhood of the maximum and minimum of the value and the neighborhood of the high frequency of the value and the high frequency can be divided. How to set roughly in the area. If necessary, this method can be used globally (Glo
This is used when priority is given to improving accuracy (for bal). As a method of reducing the deterioration of the contrast in each of the above methods, a method of incorporating the following method in each of the first to eighth methods is adopted. As the ninth method, if the difference between adjacent data is equal to or greater than the determined threshold, the element closer to the origin in the scanning direction of the two points is used as the element of the raw data element point group using the data value itself, If necessary, it is excluded from the smoothing processing, and the quantization level is reduced as much as possible near the value of one point, or the value is set to one quantization level, and quantization is performed with high accuracy, or A method that incorporates a method of excluding from quantization processing using the data value itself as an element of the data element point group. By combining these methods, data sledding, contour extraction, and feature extraction are performed. The problem is solved by the above method and an apparatus having the above method.
【0005】[0005]
【発明の実施の形態】画像用及び印字用等のデータの圧
縮を以下の方法で行う。第一の方法は、決められた任意
の走査方向3に対し、データ配列の任意の決められた場
所のデータの値そのものを使用しこれらのデータ点群を
生データ要素点群とし、この生データ要素点群間は走査
方向3にそって例えば図2の点4と5での様に各隣接し
たデータ間で差を計算し、差のデータをEntropy
CodingやHuffman CodingやRu
n Length Codingや算術符合法等、その
符合化の復元時に完全に復元できる各種符合化法により
符号化する方法。但し生データ要素点群は走査方向3に
対しデータ配列の始めの点である場合を含む。第二の方
法は、決められた任意の走査方向3に対し、データ配列
の任意の場所のデータの値そのものを使用しこれらのデ
ータ点群を生データ要素点群とし、この生データ要素点
群間は走査方向3にそって例えば図2の点4と5での様
に各隣接したデータ間で差を計算し、差のデータをEn
tropy CodingやHuffman Codi
ngやRun Length Codingや算術符合
法等、その符合化の復元時に完全に復元できる各種符合
化法により符号化し生データを利用した生データ要素点
群に対しては識別用の決められた任意の識別子を付加す
る方法。但し生データ要素点群は走査方向3に対しデー
タ配列の始めの点である場合を含む。第三の方法は、固
定された場所で決められた任意の大きさで決められた任
意の数に画面又はデータ配列を分割し、各任意の分割画
面又は分割データ配列で決められた任意の走査方向3に
対し各分割データ配列中の始めのデータの値そのものを
使用し、その後は走査方向3にそって例えば図2の点4
と5での様に各隣接したデータ間で差を計算し、差のデ
ータをEntropy CodingやHuffman
CodingやRun Length Coding
や算術符合法等、その符合化の復元時に完全に復元でき
る各種符合化法により符号化する方法。第四の方法は、
固定された場所で決められた任意の大きさで決められた
任意の数に画面又はデータ配列を分割し、各任意の分割
画面又は分割データ配列で決められた任意の走査方向3
に対し各分割データ配列中の任意の場所のデータの値そ
のものを使用しこれらのデータ点群を生データ要素点群
とし、この生データ要素点群間は走査方向3にそって例
えば図2の点4と5での様に各隣接したデータ間で差を
計算し、差のデータをEntropy Codingや
HuffmanCodingやRun Length
Codingや算術符合法等、その符合化の復元時に完
全に復元できる各種符合化法により符号化し、必要であ
れば、生データを利用した生データ要素点群に対しては
識別用の決められた任意の識別子を付加する方法。第五
の方法は、前記の各方法に、全体又は分割データ配列に
おいてデータ間で差を計算する前に、分割データ配列の
境界点等の差ではなくデータの値そのものを使用する生
データ要素点群を除き、移動平均等を使い平滑化する処
理を組み込む方法。第六の方法は、前記の各方法に、全
体又は分割データ配列においてデータ間で差を計算する
前に、分割データ配列の境界点等の差ではなくデータの
値そのものを使用する生データ要素点群を除き、移動平
均等を使い平滑化し、全体又は分割領域で量子化する処
理を組み込む方法。更に、ここで前記の各方法での量子
化において以下の方法をとる方法を含む。第七の方法
は、前記の各方法での量子化において全体又は分割領域
で量子化する場合、量子化レベルの設定を、コントラス
トを維持し成るべく確率的意味で隣接データ間の差を必
要の無い部分はなだらかに小さくするため、値の最大及
び最小の近傍と値の頻度の小さい近傍と高分可能が量子
化で必要な値領域では量子化を細かくその他の領域では
荒らく設定する方法。必要であれば、この方法は圧縮率
を優先する場合に利用する。第八の方法は、前記の各方
法での量子化において全体又は分割領域で量子化する場
合、量子化レベルの設定を、コントラストを維持し成る
べく確率的意味で隣接データ間の差を、細かい精度の高
い変化が必要なデータ領域で、なだらかにするため、値
の最大及び最小の近傍と値の頻度の大きい近傍と高分可
能が量子化で必要な値領域では量子化を細かくその他の
領域では荒らく設定する方法。必要であれば、この方法
は全体及び分割領域内で大局的(Globalに)な精
度向上を優先する場合に利用する。これら前記の各方法
に対しコントラストの劣化を減少させる方法として、前
記の第一から第八の各方法に対し以下の方法を組み込む
方法をとる。第九の方法とし、隣接データ間の差が決め
られたしきい値以上であればその二点の走査方向の原点
に近い方をデータの値そのものを使用する生データ要素
点群の要素とし、必要であれば平滑化処理から除外し、
量子化レベルを片方の一点の値の値近傍で成るべく細か
くし、又は、その値を一つの量子化レベルとし、精度高
く量子化する、又は、生データ要素点群の要素としデー
タ値そのものを使用し量子化処理から除外する方法を組
みこむ方法。これら前記の方法の組み合わせにより、デ
ータの抽象化、輪郭抽出、特長抽出を行う。DESCRIPTION OF THE PREFERRED EMBODIMENTS Data compression for images and prints is performed by the following method. A first method is to use these data points as raw data element points for the determined arbitrary scanning direction 3 and use the data values themselves at arbitrary determined locations in the data array. Between the element point groups, the difference between each adjacent data is calculated along the scanning direction 3, for example, at points 4 and 5 in FIG.
Coding and Huffman Coding and Ru
A coding method using various coding methods such as n Length Coding and arithmetic coding, which can be completely restored when the coding is restored. However, the raw data element point group includes the case where the raw data element point group is the first point of the data array in the scanning direction 3. The second method is to use these data points themselves as raw data element points for the determined arbitrary scanning direction 3, and use these data points themselves as raw data element points. In the interval, the difference between each adjacent data is calculated along the scanning direction 3, for example, as shown by points 4 and 5 in FIG.
Tropy Coding and Huffman Codi
ng, Run Length Coding, arithmetic coding, etc., for the raw data element point group using raw data, which is coded by various coding methods that can be completely restored at the time of decoding of the coding, an arbitrary predetermined identification is used. How to add an identifier. However, the raw data element point group includes the case where the raw data element point group is the first point of the data array in the scanning direction 3. The third method is to divide the screen or data array into an arbitrary number determined by an arbitrary size determined in a fixed place, and to perform any scanning determined by each arbitrary divided screen or divided data array For the direction 3, the value of the first data in each divided data array itself is used, and thereafter, for example, the point 4 in FIG.
The difference between each adjacent data is calculated as in steps 5 and 5, and the difference data is calculated by Entropy Coding or Huffman.
Coding and Run Length Coding
A method of encoding using various encoding methods that can be completely restored when the encoding is restored, such as the arithmetic encoding method and the arithmetic encoding method. The fourth method is
The screen or data array is divided into an arbitrary number determined by an arbitrary size determined in a fixed place, and an arbitrary scanning direction 3 determined by each arbitrary divided screen or the divided data array
On the other hand, these data points are used as raw data element points by using the data values themselves at arbitrary positions in each divided data array. Calculate the difference between each adjacent data, as at points 4 and 5, and use the difference data as Entropy Coding, Huffman Coding, or Run Length.
Encoding is performed using various encoding methods that can be completely restored when the encoding is restored, such as coding or arithmetic encoding, and if necessary, a raw data element point group using raw data is determined for identification. How to add an arbitrary identifier. A fifth method is that, in each of the above methods, before calculating a difference between data in the whole or divided data array, raw data element points using data values themselves instead of differences such as boundary points of the divided data array. A method that incorporates smoothing processing using a moving average or the like, excluding groups. A sixth method is that, in each of the above methods, before calculating a difference between data in the whole or divided data array, raw data element points using data values themselves instead of differences such as boundary points of the divided data array. A method that incorporates processing for smoothing using a moving average or the like, excluding groups, and quantizing the whole or divided regions. Further, here, the quantization in each of the above-mentioned methods includes the following method. In the seventh method, when performing quantization in the whole or divided region in the quantization in each of the above methods, it is necessary to set a quantization level by maintaining a contrast and, as much as possible, by using a difference between adjacent data in a probabilistic sense. In order to make the nonexistent portion smaller smoothly, a method is used in which the quantization is finely set in a value area where quantization is necessary for the neighborhood of the maximum and minimum values and the neighborhood of a small value frequency and which can be highly divided. If necessary, use this method when priority is given to the compression ratio. In the eighth method, when performing quantization in the whole or divided regions in the quantization in each of the above methods, the quantization level is set, the contrast is maintained, and the difference between adjacent data in a probabilistic sense is reduced. In the data area where high-precision change is required, in order to make the data smooth, the neighborhood of the maximum and minimum of the value, the neighborhood of the high frequency of the value, and the value that can be highly divided can be finely quantized in the value area where quantization is required. Then how to set roughly. If necessary, this method is used when priority is given to global (global) accuracy improvement in the whole and divided regions. As a method of reducing the deterioration of the contrast in each of the above methods, a method of incorporating the following method in each of the first to eighth methods is adopted. As a ninth method, if the difference between adjacent data is equal to or greater than the determined threshold, the element closer to the origin in the scanning direction of the two points is used as the element of the raw data element point group using the data value itself, Exclude from the smoothing process if necessary,
The quantization level is made as small as possible in the vicinity of the value of one point, or the value is made one quantization level and quantized with high precision, or the data value itself is made an element of the raw data element point group. A method that incorporates a method that is used and excluded from quantization processing. By combining these methods, data abstraction, contour extraction, and feature extraction are performed.
【0006】[0006]
【発明の効果】高分解能画像データ等は隣接画素間の差
が確率的意味で高い確率で小さいため、本発明を用い、
適度な用途にあった、必要があれば平滑化と、量子化の
後に走査方向に差分をとり、之を完全復元可能な圧縮率
の高い符号化により行えば、元画像の平滑化と量子化誤
差の範囲の画像が高効率で圧縮出来さらに復元できる。According to the present invention, since the difference between adjacent pixels is small with a high probability in a stochastic sense, high-resolution image data and the like are used according to the present invention.
Smooth the original image and quantize it if necessary by taking the difference in the scanning direction after smoothing and quantizing, which is appropriate for the application, and performing the encoding with high compression ratio that can completely restore. An image in the range of the error can be compressed with high efficiency and further restored.
【図面の簡単な説明】[Brief description of the drawings]
【図1】量子化方法の概略。FIG. 1 is an outline of a quantization method.
【図2】隣接データ間の差分の概略。FIG. 2 is an outline of a difference between adjacent data.
【符合の説明】 1 細かい量子化領域。 2 あらい量子化領域。 3 走査方向。 4 点1。 5 点2。[Description of Signs] 1 Fine quantization area. 2 A rough quantization area. 3 Scan direction. 4 points. 5 points 2.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】全図[Correction target item name] All figures
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
【図2】 FIG. 2
Claims (9)
められた任意の走査方向に対し、データ配列の任意の決
められた場所の要素点群でデータをそのまま取りこの要
素点群間は走査方向に各隣接したデータ間で差を計算
し、差のデータをEntropyCodingやHuf
fman Codingや算術符合法等各種その符合化
の復元時に完全に復元できる符合化法により符号化する
方法とそれを用いる装置。但し要素点群は走査方向に対
しデータ配列での始めの点である場合を含む。1. A method for compressing data for an image, printing, and the like, by taking data as it is at an element point group at an arbitrary predetermined position in a data array in a predetermined arbitrary scanning direction, Calculates the difference between each adjacent data in the scanning direction, and calculates the difference data by EntropyCoding or Huf.
A method of encoding using various encoding methods such as fman coding and arithmetic encoding, which can be completely restored when the encoding is restored, and an apparatus using the same. However, the element point group includes the case where it is the first point in the data array in the scanning direction.
められた任意の走査方向に対し、データ配列の任意の場
所の要素点群でデータをそのまま取りこの要素点群間は
走査方向に各隣接したデータ間で差を計算し、差のデー
タをEntropy CodingやHuffman
Codingや算術符合法等各種その符合化の復元時に
完全に復元できる符合化法により符号化し生データを利
用したデータ点群に対しては識別用の決められた任意の
識別子を付加する方法とそれを用いる装置。但し要素点
群は走査方向に対しデータ配列での始めの点である場合
を含む。2. Compression of data for images and printing is performed by taking data as it is in an element point group at an arbitrary position in a data array with respect to a predetermined arbitrary scanning direction, and interpolating the scanning direction between the element point groups. The difference between each adjacent data is calculated, and the difference data is calculated by Entropy Coding or Huffman.
A method of adding an arbitrary predetermined identifier for identification to a data point group encoded using a coding method that can be completely restored at the time of restoring the encoding such as coding and arithmetic encoding method and using raw data, and the like. Equipment using. However, the element point group includes the case where it is the first point in the data array in the scanning direction.
定された場所で決められた任意の大きさで決められた任
意の数に画面又はデータ配列を分割し、各任意の分割画
面又は分割データ配列で決められた任意の走査方向に対
し走査方向の始めのデータをそのまま取り、その後は走
査方向に各隣接したデータ間で差を計算し、差のデータ
をEntropy CodingやHuffman C
odingや算術符合法等各種その符合化の復元時に完
全に復元できる符合化法により符号化する方法とそれを
用いる装置。3. Compression of data for images and printing is performed by dividing a screen or data array into an arbitrary number determined by an arbitrary size determined at a fixed place, and each arbitrary divided screen. Alternatively, the first data in the scanning direction is taken as it is for an arbitrary scanning direction determined by the divided data array, and thereafter, the difference between each adjacent data in the scanning direction is calculated, and the difference data is calculated by Entropy Coding or Huffman C.
An encoding method using an encoding method that can be completely restored at the time of restoring the encoding, such as coding and arithmetic encoding, and an apparatus using the encoding method.
定された場所で決められた任意の大きさで決められた任
意の数に画面又はデータ配列を分割し、各任意の分割画
面又は分割データ配列で決められた任意の走査方向に対
し任意の場所の要素点群でデータをそのまま取り、この
要素点群間は走査方向に各隣接したデータ間で差を計算
し、差のデータをEntropy CodingやHu
ffman Codingや算術符合法等各種その符合
化の復元時に完全に復元できる符合化法により符号化
し、必要であれば、生データを利用したデータ点群に対
しては識別用の決められた任意の識別子を付加する方法
とそれを用いる装置。4. Compression of data for images and printing is performed by dividing a screen or a data array into an arbitrary number determined by an arbitrary size determined at a fixed place, and each arbitrary divided screen. Alternatively, the data is taken as it is at an element point group at an arbitrary position in an arbitrary scanning direction determined by a divided data array, and a difference between each adjacent data in the scanning direction is calculated between the element point groups, and the difference data is calculated. Entropy Coding and Hu
ffman Coding, arithmetic coding, etc., are encoded by a coding method that can be completely restored at the time of decoding the coding, and if necessary, a data point group using raw data can be arbitrarily determined for identification. A method of adding an identifier and an apparatus using the method.
分割データ配列においてデータ間で差を計算する前に、
境界点等の差ではなく生のデータをとる点群を除き、移
動平均等を使い平滑化する方法とそれを用いる装置。5. The method according to claim 1, wherein before calculating a difference between data in the whole or divided data array,
A method for smoothing using a moving average and the like, except for a point group that takes raw data instead of a difference between boundary points and the like, and an apparatus using the method.
又は分割データ配列においてデータ間で差を計算する前
に、境界点等の差ではなく生のデータをとる点群を除
き、移動平均等を使い平滑化し、全体又は分割領域で量
子化する方法とそれを用いる装置。6. A method according to claim 1, wherein, before calculating a difference between data in the whole or divided data array, a point group which takes raw data instead of a difference at a boundary point or the like is used. , A method of smoothing using a moving average or the like, and quantizing the whole or divided area, and an apparatus using the method.
子化する場合、量子化レベルの設定を、コントラストを
維持し成るべく確率的意味で隣接データ間の差を必要の
無い所はなだらかにするため、値の最大及び最小の近傍
と値の頻度の小さい近傍と高分可能が量子化で必要な値
では量子化を細かくその他では荒らく設定する方法とそ
れを用いる装置。この方法は圧縮率を優先する場合に利
用する。7. In the sixth aspect, when quantizing the entire or divided area, the quantization level is set so that the difference between adjacent data is not required in a stochastic sense while maintaining contrast. For this reason, a method of setting the quantization finely for values necessary for quantization that can be distinguished from the maximum and minimum values of the values and the values with low frequency of values, and roughly setting the other values roughly, and an apparatus using the method. This method is used when giving priority to the compression ratio.
子化する場合、量子化レベルの設定を、コントラストを
維持し成るべく確率的意味で隣接データ間の差を必要の
無い所はなだらかにするため、値の最大及び最小の近傍
と値の頻度の大きい近傍と高分可能が量子化で必要な値
では量子化を細かくその他では荒らく設定する方法とそ
れを用いる装置。8. In the method according to claim 6, when quantizing the whole or divided areas, the setting of the quantization level is made such that the difference between adjacent data is not required in a stochastic sense as much as possible while maintaining the contrast. Therefore, a method for setting the quantization to be fine for the values required for quantization, where the maximum and minimum values of the value and the frequency of the value are high and for which the value can be distinguished, and an apparatus using the method.
おいて、コントラストを維持するために、隣接データ間
の差が決められたしきい値以上であればその二点の走査
方向の原点に近い方を生データを取る点群の一つとし、
量子化レベルを片方の一点の値の値で成るべく細かく
し、精度を高くし、平滑化と量子化によるコントラスト
の劣化を減少させる方法とこの方法を用いる装置。9. The method according to claim 1, wherein the difference between adjacent data is equal to or greater than a predetermined threshold value in order to maintain the contrast. The one closer to the origin in the scanning direction of is taken as one of the point cloud that takes raw data,
A method of making the quantization level as fine as possible by using the value of one of the points, increasing the accuracy, and reducing the deterioration of contrast due to smoothing and quantization, and a device using this method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29311496A JPH10108202A (en) | 1996-09-30 | 1996-09-30 | Method for compressing image data and print data or the like |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29311496A JPH10108202A (en) | 1996-09-30 | 1996-09-30 | Method for compressing image data and print data or the like |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10108202A true JPH10108202A (en) | 1998-04-24 |
Family
ID=17790616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29311496A Pending JPH10108202A (en) | 1996-09-30 | 1996-09-30 | Method for compressing image data and print data or the like |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10108202A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202209A (en) * | 2005-01-24 | 2006-08-03 | Toshiba Corp | Image compression method and image compression device |
JP2011103696A (en) * | 2011-02-14 | 2011-05-26 | Toshiba Corp | Image compressing method and image compressing apparatus |
US9396557B2 (en) | 2013-10-30 | 2016-07-19 | Samsung Display Co., Ltd. | Apparatus and method for encoding image data |
US9654780B2 (en) | 2013-11-04 | 2017-05-16 | Samsung Display Co., Ltd. | Apparatus and method for encoding image data |
-
1996
- 1996-09-30 JP JP29311496A patent/JPH10108202A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202209A (en) * | 2005-01-24 | 2006-08-03 | Toshiba Corp | Image compression method and image compression device |
JP2011103696A (en) * | 2011-02-14 | 2011-05-26 | Toshiba Corp | Image compressing method and image compressing apparatus |
US9396557B2 (en) | 2013-10-30 | 2016-07-19 | Samsung Display Co., Ltd. | Apparatus and method for encoding image data |
US9654780B2 (en) | 2013-11-04 | 2017-05-16 | Samsung Display Co., Ltd. | Apparatus and method for encoding image data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7076104B1 (en) | Compression and decompression with wavelet style and binary style including quantization by device-dependent parser | |
US6334001B2 (en) | Iterative smoothing technique for pre-processing mixed raster content planes to improve the quality of a decompressed image and increase document compression ratios | |
US5966465A (en) | Compression/decompression using reversible embedded wavelets | |
US6757437B1 (en) | Compression/decompression using reversible embedded wavelets | |
US6275620B2 (en) | Method and apparatus for pre-processing mixed raster content planes to improve the quality of a decompressed image and increase document compression ratios | |
JP3973104B2 (en) | Reconfiguration method and apparatus | |
US6847735B2 (en) | Image processing system, image processing apparatus, image input apparatus, image output apparatus and method, and storage medium | |
JP4831547B2 (en) | Method for image compression and decompression acceleration | |
JP2005218124A (en) | Data compression system | |
CN112672164B (en) | Video compression system and method, and video decompression system and method | |
JP2511158B2 (en) | Image compression device | |
JPH10108202A (en) | Method for compressing image data and print data or the like | |
EP1006714A2 (en) | Method of processing mixed raster content planes | |
US6879725B2 (en) | Method, system, and program for decoding a section from compressed data | |
JP3952116B2 (en) | Image compression apparatus and method | |
JPH0487460A (en) | Picture processor | |
KR100405819B1 (en) | The image compression and restoring method for binary images | |
Khan et al. | A hybrid image compression technique using quadtree decomposition and parametric line fitting for synthetic images | |
Pancholi et al. | Tutorial review on existing image compression techniques | |
JPH10108203A (en) | Method for compressing image data and print data or the like | |
JPH1098620A (en) | Picture processor | |
JPH0690358A (en) | Method for compression of data-field image | |
EP1006711A2 (en) | Method and apparatus for processing a pixel map | |
JPH11136519A (en) | Picture processor | |
Ageenko et al. | Storage system for document imaging applications |