JPH10107717A - Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit - Google Patents

Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit

Info

Publication number
JPH10107717A
JPH10107717A JP8253510A JP25351096A JPH10107717A JP H10107717 A JPH10107717 A JP H10107717A JP 8253510 A JP8253510 A JP 8253510A JP 25351096 A JP25351096 A JP 25351096A JP H10107717 A JPH10107717 A JP H10107717A
Authority
JP
Japan
Prior art keywords
orbit
geostationary
satellite
communication satellite
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8253510A
Other languages
Japanese (ja)
Inventor
Toru Otsu
徹 大津
Hiroshi Kazama
宏志 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8253510A priority Critical patent/JPH10107717A/en
Publication of JPH10107717A publication Critical patent/JPH10107717A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations

Abstract

PROBLEM TO BE SOLVED: To effectively utilize frequencies by providing a means by which a geosynchronous orbit satellite communication system and a non- geosynchronous orbit satellite communication system use the same frequency band in common. SOLUTION: A directivity of a radiation beam is set to a direction shifted from a point beneath a non-geosynchronous orbit satellite Li by a shift angle Δso as to part the radiation beam from a line segment tying the non- geosynchronous orbit satellite Li and a geosynchronous orbit satellite G by a prescribed angle or over. Thus, the directivity of the beam from the non- geosynchronous orbit satellite Lo is selected so that not a non-geosynchronous orbit satellite Li+1 but the non-geosynchronous orbit satellite Li covers a radiation area AtI+1, Thus, the interference between the radiation beam by the geosynchronous orbit satellite G and that of the non-geosynchronous orbit satellite Li is reduced and the geosynchronous orbit satellite communication system and the non-geosynchronous orbit satellite communication system can use a same frequency band in common.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非静止軌道通信衛星
による衛星通信システムに利用する非静止軌道通信衛星
のビーム配置方法および非静止軌道通信衛星に係り、特
に、通信衛星の指向ビームの方向設定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-geostationary-orbit communication satellite beam arrangement method and a non-geostationary-orbit communication satellite used in a satellite communication system using a non-geostationary-orbit communication satellite. About.

【0002】[0002]

【従来の技術】図8に静止軌道通信衛星による衛星通信
システムと、非静止軌道通信衛星による衛星通信システ
ムの例を示す。この図において、静止軌道衛星通信シス
テムは、静止軌道通信衛星Gと、その指向性ビームBG
により照射される領域AG内にある衛星通信地球局との
間で電波の送受信を行うことにより通信を行うシステム
である。
2. Description of the Related Art FIG. 8 shows an example of a satellite communication system using a geosynchronous orbit communication satellite and a satellite communication system using a non-geostationary orbit communication satellite. In this figure, the geosynchronous orbit satellite communication system includes a geosynchronous orbit communication satellite G and its directional beam B G
This is a system for performing communication by transmitting and receiving radio waves to and from a satellite communication earth station located in an area AG irradiated by the radio wave.

【0003】一方、非静止軌道衛星通信システムは、複
数の非静止軌道通信衛星L1、…、Li、Li+1、…(i
≧1)により構成され、各々の衛星の指向ビームB1
…、Bi、Bi+1、…により照射されるエリアA1、…、
i、Ai+1、…内にある非静止軌道衛星通信システムの
衛星通信地球局との間で電波の送受信を行うことにより
通信を行う。このような非静止軌道衛星通信システムで
は、衛星通信地球局から見た通信衛星の仰角を大きくす
るため、アンテナ作製の容易化のため等の理由により、
図9に示すように、非静止軌道通信衛星の照射エリアは
一般に各衛星の真下を中心とした領域に設定される。
尚、図9は、ITU-R Document ;'Report ofthe Meeting
of Working Party 4A of Radio Communication Study G
roup 4 (GENEVA,20-29 March 1996)',Document 4A/65(1
996,April)にて紹介された従来における非静止軌道通信
衛星システムの照射ビーム配置例であり、それぞれの非
静止軌道衛星の軌道面(図中の直線)において、ビーム
照射領域が非静止軌道通信衛星(図中の黒丸)の真下を
中心とした領域(図中の円)に設定されている様子を示
している。
On the other hand, the non-geostationary-orbit satellite communication system includes a plurality of non-geostationary-orbit communication satellites L 1 ,..., L i , L i + 1 ,.
≧ 1), the directional beam B 1 of each satellite,
Areas A 1 ,... Illuminated by..., B i , B i + 1 ,.
Communication is performed by transmitting and receiving radio waves to and from a satellite communication earth station of a non-geostationary orbit satellite communication system within A i , A i + 1 ,. In such a non-geostationary orbit satellite communication system, in order to increase the elevation angle of the communication satellite viewed from the satellite communication earth station, for the purpose of facilitating antenna fabrication, etc.,
As shown in FIG. 9, the irradiation area of a non-geostationary-orbit communication satellite is generally set to an area centered directly below each satellite.
FIG. 9 shows the ITU-R Document; 'Report of the Meeting
of Working Party 4A of Radio Communication Study G
roup 4 (GENEVA, 20-29 March 1996) ', Document 4A / 65 (1
996, April) is an example of the irradiation beam arrangement of the conventional non-geostationary orbit communication satellite system, in which the beam irradiation area is the non-geostationary orbit communication on the orbit plane (straight line in the figure) of each non-geostationary orbit satellite. The figure shows a state set in an area (circle in the figure) centered directly below the satellite (black circle in the figure).

【0004】[0004]

【発明が解決しようとする課題】ところで、図8に示し
たように静止軌道衛星通信システムと非静止軌道衛星通
信システムとが混在し、両システムが同一の周波数帯を
利用した場合、周波数の混信が生じる可能性がある。特
に、図10に示したような静止軌道衛星通信システムの
地球局Gi+1、Gi+2では、静止軌道通信衛星Gと地球局
i+1、Gi+2を結ぶ直線上を非静止軌道通信衛星
i+1、Li+2が通過し、かつ非静止軌道通信衛星
i+1、Li+2の照射領域Ai+1、Ai+2内に地球局
i+1、Gi+2がある場合に最も大きな相互干渉が発生す
る。このようなことから、両システム間で同一の周波数
帯を使用するのが困難であった。
As shown in FIG. 8, when a geosynchronous orbit satellite communication system and a non-geostationary orbit satellite communication system coexist and both systems use the same frequency band, frequency interference occurs. May occur. In particular, in the earth stations G i + 1 and G i + 2 of the geosynchronous orbit satellite communication system as shown in FIG. 10, a line connecting the geosynchronous orbit communication satellite G and the earth stations G i + 1 and G i + 2 is drawn. non-geostationary orbit communications satellites L i + 1, L i + 2 passes, and a non-geosynchronous orbit communication satellites L i + 1, L i + 2 of the irradiated area a i + 1, a i + 2 earth station in the G The largest mutual interference occurs when i + 1 and Gi + 2 are present. For this reason, it has been difficult to use the same frequency band between both systems.

【0005】本発明は、この課題を解決し、静止軌道衛
星通信システムと非静止軌道衛星通信システムとで同一
の周波数帯を共用可能とする手段を提供し、周波数の有
効利用を図ることを目的とする。
An object of the present invention is to solve this problem, to provide means for enabling the same frequency band to be shared between a geosynchronous orbit satellite communication system and a non-geostationary orbit satellite communication system, and to achieve effective use of frequencies. And

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、地球の非静止軌道上を周回する非静止軌道通信衛星
と該非静止軌道通信衛星と同一経度の静止衛星軌道上の
位置と地球の中心とで決定される面内で、前記非静止軌
道通信衛星の指向ビームを前記非静止軌道通信衛星と前
記静止衛星軌道上の位置とを結ぶ直線上から南北に一定
角度以上離すようビームの指向方向を制御することを特
徴としている。
According to a first aspect of the present invention, there is provided a non-geostationary-orbit communication satellite orbiting a non-geostationary-orbit of the earth, a position in a geostationary-satellite orbit having the same longitude as the non-geostationary-orbital communication satellite, and the earth. In the plane determined by the center of the non-geostationary orbit communication satellite, the beam of the directional beam is separated from the straight line connecting the non-geostationary orbit communication satellite and the position in the geostationary satellite orbit by a certain angle to the north and south from the straight line. It is characterized by controlling the directivity direction.

【0007】請求項2に記載の発明は、請求項1に記載
の非静止軌道通信衛星のビーム配置方法において、地球
の非静止軌道上を周回する非静止軌道通信衛星を用いた
衛星通信システムと静止軌道通信衛星を用いた衛星通信
システムの両システムが同一の周波数帯を利用して各々
通信を行う場合、前記非静止軌道通信衛星が前記静止軌
道通信衛星との間で通信を行う地球局に対して、あるい
は、前記地球局が前記非静止軌道通信衛星に対して共に
大きな干渉源とならないように、前記非静止軌道通信衛
星のビームの指向方向を制御することを特徴としてい
る。
According to a second aspect of the present invention, there is provided the beam positioning method for a non-geostationary-orbit communication satellite according to the first aspect, wherein the satellite communication system uses a non-geostationary-orbit communication satellite orbiting the earth in a non-geostationary orbit. When both systems of the satellite communication system using the geosynchronous orbit communication satellite communicate with each other using the same frequency band, the non-geostationary orbit communication satellite communicates with the geostationary orbit communication satellite to the earth station. On the other hand, the pointing direction of the beam of the non-geostationary-orbit communication satellite is controlled so that the earth station does not become a large interference source with respect to the non-geostationary-orbit communication satellite.

【0008】請求項3記載の発明は、地球の非静止軌道
上を周回する非静止軌道通信衛星が、該非静止軌道通信
衛星と該非静止軌道通信衛星と同一経度の静止衛星軌道
上の位置と地球の中心とで決定される面内で、前記非静
止軌道通信衛星の指向ビームを前記非静止軌道通信衛星
と前記静止衛星軌道上の位置とを結ぶ直線上から南北に
一定角度以上離すようビームの指向方向を制御する手段
を備えたことを特徴としている。
According to a third aspect of the present invention, there is provided a non-geostationary-orbit communication satellite orbiting the earth in a non-geostationary-orbit communication space between the non-geostationary-orbit communication satellite and a geostationary-satellite orbit at the same longitude as the non-geostationary-orbit communication satellite. In the plane determined by the center of the non-geostationary orbit communication satellite, the beam of the directional beam is separated from the straight line connecting the non-geostationary orbit communication satellite and the position in the geostationary satellite orbit by a certain angle to the north and south from the straight line. It is characterized by comprising means for controlling the directivity direction.

【0009】[0009]

【発明の実施の形態】本発明によるビーム配置方法は、
図1に示すように、非静止軌道通信衛星Liと該非静止
軌道通信衛星Liと同一経度面内の静止軌道通信衛星G
とを結ぶ直線から、当該非静止軌道衛星通信システムの
非静止軌道通信衛星Liの指向ビームを一定角度以上離
すようビームの指向方向を制御することを特徴とする。
尚、ここでは、非静止軌道通信衛星Liと同一経度面内
の静止軌道位置に静止軌道通信衛星Gがある場合につい
て述べることとするが、静止軌道位置に静止軌道通信衛
星がない場合についても同様である。図1に示した例で
は、照射ビームの指向方向を非静止軌道通信衛星Li
真下から移動角度Δだけ移動した方向に設定し、これに
より、非静止軌道通信衛星Liの照射ビームを前記直線
から一定角度以上離れた照射ビームBi′としている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A beam arrangement method according to the present invention comprises:
As shown in FIG. 1, the non-geosynchronous orbit communication satellites L i and non-geostationary orbit communication satellites L i and geostationary orbit communications satellites G in the same longitude plane
From the straight line connecting the bets, and controls the directivity direction of the beam so as to release the directional beam of the non-geosynchronous orbit communication satellites L i of the non-geosynchronous orbit satellite communication system predetermined angle or more.
Here, although the to describe the case where the geostationary orbit position of the non-geosynchronous orbit communication satellites L i in the same longitude plane is geostationary communications satellites G, and if there is no geostationary communications satellites in geostationary orbit position also The same is true. In the example shown in FIG. 1, to set the orientation of the radiation beam in a direction moved by the moving angle Δ from beneath the non-geosynchronous orbit communication satellites L i, thereby, the irradiation beam of the non-geosynchronous orbit communication satellites L i The irradiation beam Bi 'is separated from the straight line by a certain angle or more.

【0010】かかる本発明によるビーム配置方法を、上
記図10に示したような静止軌道衛星通信システムと非
静止軌道衛星通信システムとが混在する状況において適
用する。ここで、図10では、上述したように、地球局
i+1と静止軌道通信衛星Gとを結ぶ直線上を非静止軌
道通信衛星Li+1が通過するような場合、すなわち、非
静止軌道通信衛星Li+1の照射エリアAi+1内に地球局G
i+1が存在するような場合、最も大きな相互干渉が発生
する。
The beam arranging method according to the present invention is applied to a situation where a geostationary orbit satellite communication system and a non-geostationary orbit satellite communication system as shown in FIG. 10 are mixed. Here, in FIG. 10, as described above, the case where the non-geostationary-orbit communication satellite L i + 1 passes on a straight line connecting the earth station G i + 1 and the geostationary-orbit communication satellite G, that is, Earth station G within irradiation area A i + 1 of orbital communication satellite L i + 1
When i + 1 exists, the largest mutual interference occurs.

【0011】これに対し、図1に示した本発明によるビ
ーム配置方法では、非静止軌道通信衛星Li+1が照射エ
リアAi+1をカバーするのではなく、非静止軌道通信衛
星Liが照射エリアAi+1をカバーするように非静止軌道
通信衛星Liのビームの指向方向が設定される。これに
より、静止軌道通信衛星による照射ビームと非静止軌道
通信衛星による照射ビームとの相互干渉は低減され、静
止軌道衛星通信システムと非静止軌道衛星通信システム
とが混在する状況においても、両システムで同一の周波
数帯を共用することが可能となる。
On the other hand, in the beam arranging method according to the present invention shown in FIG. 1, the non-geostationary-orbit communication satellite L i + 1 does not cover the irradiation area A i + 1 but the non-geostationary-orbit communication satellite L i. There directivity direction of the beam of non-geostationary orbit communication satellites L i to cover the irradiation area a i + 1 is set. As a result, the mutual interference between the irradiation beam from the geostationary orbit communication satellite and the irradiation beam from the non-geostationary-orbit communication satellite is reduced. It becomes possible to share the same frequency band.

【0012】以下、更に具体的に本発明の実施の形態を
説明する。図2は非静止軌道通信衛星と該非静止軌道通
信衛星と同一経度面内の静止軌道通信衛星の関係を示す
図である。この図における各符合は、以下のものを表し
ている。 R:地球の半径 h:非静止軌道通信衛星の高度 H:静止軌道の高度 αi:非静止軌道通信衛星の緯度 Li:非静止軌道通信衛星 G:Liと同一経度面内の静止軌道通信衛星 EG:静止軌道通信衛星と非静止軌道通信衛星とを結ぶ
直線と地表面との交点 C:地球の中心
Hereinafter, embodiments of the present invention will be described more specifically. FIG. 2 is a diagram showing the relationship between a non-geostationary-orbit communication satellite and a geostationary-orbit communication satellite in the same longitude plane as the non-geostationary-orbit communication satellite. Each symbol in this figure represents the following. R: Earth radius h: a non-geostationary orbit communications satellite altitude H: geosynchronous altitude alpha i: latitude L i of non-geostationary orbit communications satellites: non-geostationary orbit communications satellites G: L i and geostationary orbit in the same longitude plane communication satellite E G: intersection of the geosynchronous orbit communication satellites and non-geostationary orbit communications satellites and the connecting line and the ground surface C: center of the earth

【0013】ここで、非静止軌道通信衛星Li、地球の
中心C、Liと同一の経度面内の静止軌道位置Gで作る
三角形LiCGに着目すると、直線LiG間の距離li
角度βi、角度γiが第二余弦定理、正弦定理により次式
にて求まる。
[0013] Here, the non-geosynchronous orbit communication satellites L i, the center of the earth C, and focusing on the triangle L i CG made of geostationary orbital positions G of L i same longitude plane and a straight line L i distance between G l i ,
The angle β i and the angle γ i are obtained by the following equations using the second cosine theorem and the sine theorem.

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 (Equation 3)

【0014】図3は低緯度地方において非静止軌道通信
衛星の指向ビームを衛星直下から低緯度側に移動した照
射領域を示す図であり、図4は高緯度地方において非静
止軌道通信衛星の指向ビームを衛星直下から低緯度側に
移動した照射領域を示す図である。これらの図におい
て、符合FH、FL、φはそれぞれ、 FH:移動した照射領域の高緯度側の境界 FL:移動した照射領域の低緯度側の境界 φ:非静止軌道通信衛星Liと同一経度面内の静止軌道
通信衛星Gとを結んだ直線と、照射ビームの高緯度側の
境界を示す直線LiHとのなす角度の必要最小値であ
る。
FIG. 3 is a diagram showing an irradiation area in which the directional beam of the non-geostationary-orbit communication satellite is moved from immediately below the satellite to the low-latitude side in the low-latitude region. FIG. FIG. 5 is a diagram showing an irradiation area in which the object has been moved to the low latitude side from immediately below the satellite. In these figures, reference numeral F H, F L, phi, respectively, are F H: boundary F of high latitude side of the moved illuminated areas L: boundary lower latitudes side of the moved illuminated areas phi: non-geostationary orbit communication satellites L i And a straight line connecting the geosynchronous orbit communication satellite G in the same longitude plane and a straight line L i F H indicating the boundary on the high latitude side of the irradiation beam.

【0015】ここで、非静止軌道通信衛星Li、地球の
中心C、移動した照射領域の高緯度側の境界FHで作る
三角形LiCFHに着目すると、直線LiCと直線LiH
のなす角xiは、高緯度地方においては非静止軌道通信
衛星の真下をビーム照射領域としても、角度EGiH
を必要最小値φ以上にすることが可能なことを考慮し、
次式のように求めることができる。
Here, focusing on the non-geostationary-orbit communication satellite L i , the center C of the earth, and the triangle L i CF H formed by the boundary F H on the high latitude side of the moved irradiation area, the straight line L i C and the straight line L i F H
The angle x i formed by the angle E G L i F H in a high-latitude region even if the beam irradiation area is directly below the non-geostationary-orbit communication satellite.
Considering that it is possible to make more than the required minimum value φ,
It can be obtained as in the following equation.

【数4】 ただし、x′は、照射ビームを非静止軌道通信衛星の真
下とした場合のビーム照射幅の1/2の角度である。
(Equation 4) Here, x ′ is an angle of 1 / of the beam irradiation width when the irradiation beam is right below the non-geostationary orbit communication satellite.

【0016】さらに直線LiHと直線CFHのなす角
(ε1i+90)、直線LiCと直線CF Hのなす角度yi
は以下の式により求まる。
Further, a straight line LiFHAnd straight line CFHCorner
1i+90), straight line LiC and straight line CF HAngle yi
Is determined by the following equation.

【数5】 (Equation 5)

【数6】 (Equation 6)

【0017】従って、移動した照射領域の高緯度側の境
界FHの緯度θ1iは次式により求まる。なお、赤道近辺
においては、北半球側に位置する非静止軌道通信衛星と
南半球側に位置する非静止軌道通信衛星の照射ビーム
が、照射ビームを低緯度側に移動するため重ならないよ
う、各通信衛星の位置する半球の反対側の半球にはビー
ムを照射しないようにする。
Accordingly, the latitude θ 1i of the boundary F H on the high latitude side of the moved irradiation area is obtained by the following equation. In the vicinity of the equator, the communication beams of the non-geostationary-orbit communication satellites located on the northern hemisphere side and the non-geostationary-orbital communication satellites located on the southern hemisphere side will not overlap because the irradiation beams move to the low latitude side. The beam is not irradiated on the hemisphere on the opposite side of the hemisphere where is located.

【数7】 (Equation 7)

【0018】また、移動した照射領域の低緯度側の境界
Lの緯度θ2iは、非静止軌道衛星通信システムのサー
ビスエリアを隙間なく設定しようとした場合、隣接の非
静止軌道通信衛星の高緯度側の境界と接する必要がある
ことから、次式により求まる。
Further, the latitude theta 2i boundary F L of the lower latitudes side of the moved illuminated area, if the coverage of the non-geosynchronous orbit satellite communication system attempts to set without a gap, high latitudes of the adjacent non-geostationary orbit communications satellites Since it is necessary to make contact with the boundary on the side, it is obtained by the following equation.

【数8】 ただしi=0は、北半球、南半球各々の半球にいる非静
止軌道通信衛星のうち赤道面に最も近い非静止軌道通信
衛星を示すものとする。
(Equation 8) However, i = 0 indicates the non-geostationary-orbit communication satellite closest to the equatorial plane among the non-geostationary-orbit communication satellites in the northern hemisphere and the southern hemisphere.

【0019】以上のようにして求めた指向ビームの照射
領域は、図5に示すように、同一経度面内の静止軌道通
信衛星と、非静止軌道通信衛星とのなす直線から、一定
角度φ以上常に離れていることになる。
The irradiation area of the directional beam obtained as described above is, as shown in FIG. 5, a fixed angle φ or more from a straight line between the geosynchronous orbit communication satellite and the non-geostationary orbit communication satellite in the same longitude plane. You will always be away.

【0020】上記実施形態では、非静止軌道通信衛星の
緯度により照射ビームの通信衛星直下の領域からの移動
量が変化するが、非静止軌道通信衛星が赤道上を通過す
る場合に必要な移動量を固定的に使用しても必要な角度
φを保つことができる。この場合の照射領域の例を図6
に示す。
In the above embodiment, the amount of movement of the irradiation beam from the area immediately below the communication satellite changes depending on the latitude of the non-geostationary-orbit communication satellite, but the amount of movement required when the non-geostationary-orbit communication satellite passes on the equator Can be maintained at a required angle φ even when the is fixedly used. FIG. 6 shows an example of the irradiation area in this case.
Shown in

【0021】ここで、図7(a)に非静止軌道通信衛星
のアンテナ指向方向特性の例を示す。尚、同図(b)
は、アンテナ指向特性において横軸とした離隔φの定義
を示す図である。図7(a)に示すように、照射ビーム
からある角度離れた地域にある地球局と非静止軌道通信
衛星間との電波の送受信の電力は、照射ビームの領域内
に比べ大幅に低下する。例えば、離隔φが約15(degr
ee)では、非静止軌道通信衛星から静止軌道衛星通信シ
ステムの地球局への干渉量あるいは静止軌道衛星通信シ
ステムの地球局から非静止軌道通信衛星への干渉量が3
5(dB)低減できる。従って、上述した本発明による方
法によって非静止軌道通信衛星のビーム照射領域を設定
すると、静止軌道衛星通信システムの地球局と静止軌道
通信衛星間の直線上を非静止軌道通信衛星が通過する場
合にも、この直線と非静止軌道通信衛星の照射ビーム間
で最低限必要な離隔φが常に保証されるため、静止軌道
衛星通信システムと非静止軌道衛星通信システムで共通
の周波数帯を利用しても相互干渉を極めて小さくでき、
周波数の共用が可能となる。
FIG. 7A shows an example of the antenna directivity characteristics of the non-geostationary-orbit communication satellite. In addition, FIG.
FIG. 5 is a diagram showing a definition of a separation φ on a horizontal axis in antenna directivity characteristics. As shown in FIG. 7A, the power of transmitting and receiving radio waves between an earth station and a non-geostationary-orbit communication satellite located at a certain angle away from the irradiation beam is significantly lower than that in the irradiation beam region. For example, the separation φ is about 15 (degr
In ee), the amount of interference from the non-geostationary-orbit communication satellite to the earth station of the geostationary-orbit satellite communication system or the amount of interference from the earth station of the geostationary-orbit satellite communication system to the non-geostationary-orbit communication satellite is 3
5 (dB) can be reduced. Therefore, when the beam irradiation area of the non-geostationary-orbit communication satellite is set by the above-described method according to the present invention, when the non-geostationary-orbit communication satellite passes on a straight line between the earth station and the geostationary-orbit communication satellite in the geostationary-orbit satellite communication system, However, since the minimum required distance φ between this straight line and the irradiation beam of the non-geostationary-orbit communication satellite is always guaranteed, even if a common frequency band is used between the geostationary-orbit satellite communication system and the non-geostationary-orbit satellite communication system. Mutual interference can be extremely small,
Frequency sharing becomes possible.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、非
静止軌道通信衛星の指向ビームを該非静止軌道通信衛星
と静止衛星軌道上の位置とを結ぶ直線上から南北に一定
角度以上離すようビームの指向方向を制御することとし
たので、静止軌道衛星通信システムの地球局と静止軌道
通信衛星間の直線上を非静止軌道通信衛星が通過する場
合にも、この直線と非静止軌道通信衛星の照射ビーム間
で最低限必要な離隔が常に保証される。これにより、静
止軌道衛星通信システムと非静止軌道衛星通信システム
とで共通の周波数帯を利用しても相互干渉を極めて小さ
くすることができるので、両システムで周波数の共用が
可能となり、周波数の有効利用を図ることができるとい
う効果が得られる。また、本発明によるビーム配置方法
及び非静止軌道通信衛星を用いることとした場合には、
静止軌道衛星通信システムの地球局の位置情報、静止衛
星の位置情報を非静止軌道衛星通信システムが必要とし
ないという利点もある。
As described above, according to the present invention, the directional beam of the non-geostationary-orbit communication satellite is separated from the straight line connecting the non-geostationary-orbit communication satellite and the position in the geostationary-satellite orbit by a certain angle north and south. Since the beam directing direction is controlled, even when the non-geostationary-orbit communication satellite passes on a straight line between the earth station and the geostationary-orbit communication satellite in the geostationary-orbit satellite communication system, this straight line and the non-geostationary-orbit communication satellite The minimum required separation between the irradiation beams is always guaranteed. As a result, even if a common frequency band is used between the geosynchronous orbit satellite communication system and the non-geostationary orbit satellite communication system, mutual interference can be extremely reduced. The effect that utilization can be aimed at is obtained. Further, when using the beam placement method and the non-geostationary orbit communication satellite according to the present invention,
There is also an advantage that the non-geostationary-orbit satellite communication system does not need the position information of the earth station and the position information of the geostationary satellite in the geostationary-orbit satellite communication system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 非静止軌道通信衛星の照射ビームを衛星直下
から低緯度地方に移動した例を示す図である。
FIG. 1 is a diagram showing an example in which an irradiation beam of a non-geostationary-orbit communication satellite is moved from immediately below the satellite to a low-latitude region.

【図2】 非静止軌道衛星通信システムの通信衛星と同
一経度面内の静止軌道位置との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a communication satellite of a non-geostationary orbit satellite communication system and a geosynchronous orbit position in the same longitude plane.

【図3】 低緯度地方において非静止軌道通信衛星の指
向ビームを衛星直下から低緯度側に移動した照射領域を
示す図である。
FIG. 3 is a diagram showing an irradiation area in which a directional beam of a non-geostationary-orbit communication satellite has moved to a low latitude side from immediately below the satellite in a low latitude region.

【図4】 高緯度地方において非静止軌道通信衛星の指
向ビームを衛星直下から低緯度側に移動した照射領域を
示す図である。
FIG. 4 is a diagram showing an irradiation area in which a directional beam of a non-geostationary orbit communication satellite has been moved from immediately below the satellite to a lower latitude side in a high latitude region.

【図5】 本発明による非静止軌道通信衛星のビーム配
置の一例を示す図である。
FIG. 5 is a diagram showing an example of a beam arrangement of a non-geostationary orbit communication satellite according to the present invention.

【図6】 本発明による非静止軌道通信衛星のビーム配
置の他の例を示す図である。
FIG. 6 is a diagram showing another example of a beam arrangement of a non-geostationary orbit communication satellite according to the present invention.

【図7】 非静止軌道通信衛星のアンテナ指向方向特性
の一例を示す図である。
FIG. 7 is a diagram illustrating an example of antenna directivity characteristics of a non-geostationary-orbit communication satellite.

【図8】 静止軌道衛星通信システムと非静止軌道衛星
通信システムを説明する図である。
FIG. 8 is a diagram illustrating a geosynchronous orbit satellite communication system and a non-geostationary orbit satellite communication system.

【図9】 従来における非静止軌道衛星通信システムの
照射ビームの配置の一例を示す図である。
FIG. 9 is a diagram showing an example of an arrangement of irradiation beams in a conventional non-geostationary orbit satellite communication system.

【図10】 静止軌道衛星通信システムと非静止軌道衛
星通信システム間の電波干渉の例を示す図である。
FIG. 10 is a diagram illustrating an example of radio wave interference between a geostationary orbit satellite communication system and a non-geostationary orbit satellite communication system.

【符号の説明】[Explanation of symbols]

i 非静止軌道通信衛星Li直下の照射エリア Ai′非静止軌道通信衛星Liの移動した照射エリア Bi′非静止軌道通信衛星Liの指向方向を移動した照射
ビーム G 静止軌道通信衛星 L1〜Li+1 非静止軌道通信衛星
Illumination beam G geostationary orbit communications moving the directivity direction of A i non-geostationary orbit communications satellites L i illuminated area A i non-geostationary orbit communications satellites L i 'non-geostationary orbit communications satellites L i illumination area B i and the movement of' the right under satellite L 1 ~L i + 1 non-geostationary orbit communications satellites

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地球の非静止軌道上を周回する非静止軌
道通信衛星と該非静止軌道通信衛星と同一経度の静止衛
星軌道上の位置と地球の中心とで決定される面内で、前
記非静止軌道通信衛星の指向ビームを前記非静止軌道通
信衛星と前記静止衛星軌道上の位置とを結ぶ直線上から
南北に一定角度以上離すようビームの指向方向を制御す
ることを特徴とする非静止軌道通信衛星のビーム配置方
法。
1. A non-geostationary-orbit communication satellite orbiting the earth in a non-geostationary orbit, a position in a geosynchronous satellite orbit at the same longitude as the non-geostationary-orbit communication satellite, and a plane determined by the center of the earth. Non-geostationary orbit characterized by controlling a beam pointing direction of a geosynchronous orbit communication satellite so as to be at least a fixed angle north and south from a straight line connecting the non-geostationary orbit communication satellite and a position on the geostationary satellite orbit. How to place a beam on a communication satellite.
【請求項2】 地球の非静止軌道上を周回する非静止軌
道通信衛星を用いた衛星通信システムと静止軌道通信衛
星を用いた衛星通信システムの両システムが同一の周波
数帯を利用して各々通信を行う場合、前記非静止軌道通
信衛星が前記静止軌道通信衛星との間で通信を行う地球
局に対して、あるいは、前記地球局が前記非静止軌道通
信衛星に対して共に大きな干渉源とならないように、前
記非静止軌道通信衛星のビームの指向方向を制御するこ
とを特徴とする請求項1に記載の非静止軌道通信衛星の
ビーム配置方法。
2. A satellite communication system using a non-geostationary orbit communication satellite orbiting a non-geostationary orbit of the earth and a satellite communication system using a geosynchronous orbit communication satellite communicate with each other using the same frequency band. Is performed, the non-geostationary-orbit communication satellite does not become a large interference source with respect to the earth station communicating with the geosynchronous-orbit communication satellite, or the earth station does not interfere with the non-geostationary-orbit communication satellite. The beam positioning method for a non-geostationary-orbit communication satellite according to claim 1, wherein the direction of the beam of the non-geostationary-orbit communication satellite is controlled as described above.
【請求項3】 地球の非静止軌道上を周回する非静止軌
道通信衛星が、該非静止軌道通信衛星と該非静止軌道通
信衛星と同一経度の静止衛星軌道上の位置と地球の中心
とで決定される面内で、前記非静止軌道通信衛星の指向
ビームを前記非静止軌道通信衛星と前記静止衛星軌道上
の位置とを結ぶ直線上から南北に一定角度以上離すよう
ビームの指向方向を制御する手段を備えたことを特徴と
する非静止軌道通信衛星。
3. A non-geostationary-orbit communication satellite orbiting the earth in a non-geostationary orbit is determined by the non-geostationary-orbit communication satellite, a position in a geostationary-satellite orbit at the same longitude as the non-geostationary-orbit communication satellite, and a center of the earth. Means for controlling a beam pointing direction of the non-geostationary-orbit communication satellite so as to be at least a certain angle north and south from a straight line connecting the non-geostationary-orbit communication satellite and a position in the geostationary satellite orbit in a plane where A non-geostationary orbit communication satellite comprising:
JP8253510A 1996-09-25 1996-09-25 Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit Pending JPH10107717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8253510A JPH10107717A (en) 1996-09-25 1996-09-25 Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8253510A JPH10107717A (en) 1996-09-25 1996-09-25 Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit

Publications (1)

Publication Number Publication Date
JPH10107717A true JPH10107717A (en) 1998-04-24

Family

ID=17252384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8253510A Pending JPH10107717A (en) 1996-09-25 1996-09-25 Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit

Country Status (1)

Country Link
JP (1) JPH10107717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100530A (en) * 2014-11-24 2017-09-04 월드뷰 새틀라이트 리미티드 Communication-Satellite System That Causes Reduced Interference
CN115242298A (en) * 2022-09-22 2022-10-25 鹏城实验室 Method and system for simulating satellite beam coverage area based on space geometric model

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100530A (en) * 2014-11-24 2017-09-04 월드뷰 새틀라이트 리미티드 Communication-Satellite System That Causes Reduced Interference
CN107210805A (en) * 2014-11-24 2017-09-26 世界卫星有限公司 Make the communication satellite system of interference reduction
CN115242298A (en) * 2022-09-22 2022-10-25 鹏城实验室 Method and system for simulating satellite beam coverage area based on space geometric model
CN115242298B (en) * 2022-09-22 2022-12-23 鹏城实验室 Method and system for simulating satellite beam coverage area based on space geometric model

Similar Documents

Publication Publication Date Title
AU2022200377B2 (en) Low earth orbit satellite constellation system for communications with re-use of geostationary satellite spectrum
US11871245B2 (en) Architecture for simultaneous spectrum usage by air-to-ground and terrestrial networks
EP3629494B1 (en) Spectrum sharing between an aircraft-based air-to-ground communication system and existing geostationary satellite services
RU2660952C2 (en) Inclined orbit satellite systems
US6236834B1 (en) Method and apparatus for limiting interference between satellite systems
US5822680A (en) Frequency sharing for satellite communication system
JPH08213945A (en) Satellite communication system
JP2018526879A (en) Communication satellite system with enhanced capability at specified locations
WO1996031016A1 (en) Method and apparatus for limiting interference between satellite systems
JPH10107717A (en) Communication satellite on non-geosynchronous orbit and beam arrangement method for communication satellite on nongeosynchronous orbit
US6304225B1 (en) Lens system for antenna system
WO2000021216A2 (en) Beam overloading solution for overlapped fixed beams
Hills Satellites and mobile phones: Planning a marriage: Dramatic improvements in rural communications may be in the offing as direct service by satellite to mobile phones moves closer to reality
JP2000174686A (en) Beam arrangement method for ultrahigh altitude radio station and ultrahigh altitude radio station
Pikus Legal Implications of Direct Broadcast Technology
JPH11298393A (en) Radio system
JPH05218723A (en) Antenna system for helicopter
RU2660958C2 (en) Inclined orbit satellite systems
Pattan The advent of land mobile satellite service systems
JPH0482329A (en) Satellite communication system
JPH08340291A (en) Mobile satellite communication system
Lutz et al. Interference problems of co-channel communication satellite systems
JPS5877342A (en) Multiple access system for data relay satellite
WO2000011811A1 (en) Satellite communication system utilizing a ratcheting footprint