JPH10107339A - Method for manufacturing fine structure using sacrificial layer - Google Patents

Method for manufacturing fine structure using sacrificial layer

Info

Publication number
JPH10107339A
JPH10107339A JP9182398A JP18239897A JPH10107339A JP H10107339 A JPH10107339 A JP H10107339A JP 9182398 A JP9182398 A JP 9182398A JP 18239897 A JP18239897 A JP 18239897A JP H10107339 A JPH10107339 A JP H10107339A
Authority
JP
Japan
Prior art keywords
film
oxide film
sacrificial layer
microstructure
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9182398A
Other languages
Japanese (ja)
Other versions
JP2951922B2 (en
Inventor
Shohyun Ri
鐘▲ひゅん▼ 李
Genyoku Cho
元翼 張
Shosho Ri
昌承 李
Shutai Haku
種泰 白
Keishun Ryu
炯濬 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH10107339A publication Critical patent/JPH10107339A/en
Application granted granted Critical
Publication of JP2951922B2 publication Critical patent/JP2951922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3088Process specially adapted to improve the resolution of the mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the sealing phenomenon of a silicon first structure, due to the elimination of a sacrifice layer by eliminating the sacrificial oxide layer by performing etching with a steam phase atmosphere that contains a steam of HF anhydride and methanol. SOLUTION: An oxide film 32 and a nitride film 33 are deposited on a silicon substrate 31, and a first polysilicon film 37 is deposited on the nitride film 33. Then, a first TOSE film pattern is formed on the first polysilicon film 37 as a sacrificial layer for providing a space for forming a fine structure, and a second polysilicon film 35 that is the material of the fine structure is deposited. Then, a second TOSE film is deposited as the mask of the second polysilicon film 35, the second polysilicon film 35 is subjected to dry etching selectively, a fine structure pattern is formed, and then a photoresist is eliminated. After that, it is arranged in a space that is filled with the steam of HF anhydride and methanol, and the exposed first TOSE film pattern is subjected to steam phase etching by the HF anhydride and methanol, thus forming a space 100.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、表面マイクロマ
シニング技術を用いてMセンサー等の高機能化されたM
EMS(micro electro mechani
cal system)を製造する方法に関し、特に犠
牲層(sacrificial layer)を用いた
微細構造体製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly functionalized M sensor or the like using a surface micromachining technology.
EMS (micro electro mechani
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a cal system, and more particularly, to a method of manufacturing a microstructure using a sacrificial layer.

【0002】[0002]

【従来の技術】シリコン基板上の薄膜素材を加工する半
導体集積回路製作工程を基盤とした表面マイクロマシニ
ング技術は、シリコン基板上に微細構造体を製造し、こ
れを半導体回路と接合させることによって、マイクロセ
ンサー等のMEMS素子を作ることができる。この際、
微細構造体は、一方、または両端を除外した残りの部分
を基板から隔てて空間を形成しなければならない。従っ
て、微細構造体を形成するためには、犠牲層を利用する
方法を用いており、犠牲層はシリコン膜とのエッチング
選択比の優れた絶縁膜を用いている。図1〜図5は、従
来の技術によりMEMS素子の微細構造体を製造する工
程図であって、これらの技術は米国のBerkley大
学で発表したことであり、微細構造体であるシリコン膜
に均一な不純物分布を得るため、犠牲層としてPSG
(リン珪酸ガラス:Phosphosilicagla
ss)を利用し、犠牲層のPSGをHFケミカルを用い
た湿式エッチングで除去する技術である。
2. Description of the Related Art Surface micromachining technology based on a semiconductor integrated circuit manufacturing process for processing a thin film material on a silicon substrate involves manufacturing a microstructure on a silicon substrate and joining the microstructure to a semiconductor circuit. A MEMS element such as a microsensor can be manufactured. On this occasion,
The microstructure must form a space with one or both ends except the both ends separated from the substrate. Therefore, in order to form a microstructure, a method using a sacrifice layer is used, and the sacrifice layer uses an insulating film having an excellent etching selectivity with respect to a silicon film. FIGS. 1 to 5 are process diagrams for manufacturing a microstructure of a MEMS device according to a conventional technique. These techniques were announced at Berkley University in the United States, and a uniform film was formed on a silicon film as a microstructure. PSG as a sacrificial layer
(Phosphosilicate glass: Phosphosilicagla
ss) to remove the PSG of the sacrificial layer by wet etching using HF chemical.

【0003】まず、図1はシリコン基板(11)上に絶
縁のための酸化膜(12)と窒化膜(13)とを順に積
層した状態である。次いで、図2のように微細構造体が
隔てられる空間を形成するため、窒化膜(13)上に犠
牲層酸化膜である第1PSG膜パターン(14)を形成
し、その上部に微細構造体の材料であるポリシリコン膜
(15)を蒸着する。次いで、図3のようにポリシリコ
ン膜(15)構造体のエッチングマスクおよびドーピン
グ効果をもたらすための第2PSG膜(16)を蒸着し
た後、図4のようにリソグラフィー工程によりポリシリ
コン膜を(15)パタニングし、リソグラフィー工程に
より形成されたフォトレジスト(図示しない)を除去す
る。この後、図5のように犠牲層酸化膜である第1PS
G膜パターン(14)を湿式エッチングで除去すると同
時に、第2PSG膜(16)を除去して微細構造体であ
るポリシリコン膜(15)が隔てられるように空間(1
00)を形成することができる。
First, FIG. 1 shows a state in which an oxide film (12) and a nitride film (13) for insulation are sequentially stacked on a silicon substrate (11). Next, a first PSG film pattern (14), which is a sacrificial layer oxide film, is formed on the nitride film (13) in order to form a space separating the fine structures as shown in FIG. A polysilicon film (15) as a material is deposited. Next, as shown in FIG. 3, an etching mask for the polysilicon film (15) structure and a second PSG film (16) for providing a doping effect are deposited, and then as shown in FIG. 3.) patterning and remove the photoresist (not shown) formed by the lithography process. Thereafter, as shown in FIG. 5, the first PS which is a sacrificial layer oxide film is formed.
The G film pattern (14) is removed by wet etching, and at the same time, the second PSG film (16) is removed so that the polysilicon film (15) as a microstructure is separated.
00) can be formed.

【0004】前記で説明したように、従来には犠牲層を
除去する方法として、主に湿式エッチング方法、即ち、
HF溶液を含むケミカル溶液にウェハーをつけてエッチ
ングして洗浄した後乾燥する方法を用いていた。この
際、図5に示したように、洗浄した後で乾燥するあいだ
に表面張力による毛細管力(capillary fo
rce)により、微細構造体のポリシリコン膜(15)
が犠牲層が除去された空間(100)に沈没されて固着
(stick)する現象(図5の部分a)が発生するよ
うになる。図6は、微細構造体の固着現象を詳細に示し
ている。
As described above, conventionally, as a method for removing a sacrificial layer, mainly a wet etching method, that is,
A method in which a wafer is attached to a chemical solution containing an HF solution, etched, washed, and then dried is used. At this time, as shown in FIG. 5, while washing and drying, capillary force due to surface tension (capillary fo).
rce), the polysilicon film of the microstructure (15)
A phenomenon occurs (see FIG. 5A) in which sunk is caused by sinking in the space (100) from which the sacrificial layer has been removed. FIG. 6 shows the sticking phenomenon of the fine structure in detail.

【0005】このような固着現象は、マイクロマシニン
グ技術を用いる微細構造体の製造において、センサーの
感度を低下させる要因となり、固着現象が激しい場合に
は、素子製造の失敗をもたらし、歩留まり低下の重要な
要素となる。
[0005] Such a sticking phenomenon causes a decrease in the sensitivity of a sensor in the manufacture of a microstructure using a micromachining technique. If the sticking phenomenon is severe, it causes a failure in element manufacture, and it is important to reduce the yield. Element.

【0006】なお、従来に犠牲層として用いられたPS
G酸化膜は、高濃度の不純物を添加するのが容易でない
ので、低い抵抗のシリコン構造体を製造するのが大変難
しいという短所を有している。
[0006] It should be noted that PS conventionally used as a sacrificial layer is
The G oxide film has a disadvantage that it is very difficult to manufacture a silicon structure having a low resistance because it is not easy to add a high concentration of impurities.

【0007】[0007]

【発明が解決しようとする課題】前記で説明したよう
に、表面マイクロマシニング技術において、シリコン微
細構造体の犠牲層をエッチングして基板から隔てる際、
従来の湿式エッチング方法においては、表面張力による
固着現象が発生し、センサーの感度および歩留まりが落
ちるようになる。
As described above, in the surface micromachining technology, when the sacrificial layer of the silicon microstructure is etched away from the substrate,
In the conventional wet etching method, a sticking phenomenon occurs due to surface tension, and the sensitivity and yield of the sensor decrease.

【0008】従って、この発明は、蒸気相エッチング方
法で犠牲層を除去し、シリコン微細構造体の固着現象を
防止する犠牲層を用いた微細構造体製造方法を提供する
ことをその目的とする。
Accordingly, an object of the present invention is to provide a method for manufacturing a microstructure using a sacrificial layer for removing a sacrificial layer by a vapor phase etching method and preventing a sticking phenomenon of a silicon microstructure.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、基板上から隔てられたシリコン微
細構造体を製造するために犠牲層の酸化膜を用いるマイ
クロマシニング工程において、前記犠牲層酸化膜の除去
時、無水HFとメタノールとの蒸気を含む蒸気相雰囲気
でエッチングして除去する段階を含むことを特徴とする
犠牲層酸化膜を用いた微細構造体の製造方法が提供され
る。
To achieve the above object, according to the present invention, there is provided a micromachining process using an oxide film of a sacrificial layer for manufacturing a silicon microstructure separated from a substrate. A method of manufacturing a microstructure using a sacrificial layer oxide film, comprising: removing the sacrificial layer oxide film by etching in a vapor phase atmosphere containing vapors of anhydrous HF and methanol. Is done.

【0010】[0010]

【発明の実施の形態】表面マイクロマシニング技術にお
いて、犠牲層をエッチングしてシリコン微細構造体を隔
てる際、液体を用いる湿式方法では表面張力により構造
体が基板に粘りつく固着現象が発生する。発明では、液
体状態でない無水(anhydrous)HFおよびメ
タノール(CH3 OH)を用いる蒸気相(gas p
hase)エッチング方法を用いることにより、微細構
造体の固着問題を防止する。また、蒸気相エッチング時
に生じる残留物質(SiNO化合物)の発生を抑制する
ために犠牲層の下部層として、絶縁膜(窒化膜)上層に
ポリシリコン膜を形成し、残留物質の発生を防止した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a surface micromachining technique, when a sacrifice layer is etched to separate a silicon microstructure, a wet phenomenon using a liquid causes a sticking phenomenon in which the structure sticks to a substrate due to surface tension. In the invention, a vapor phase (gasp) using anhydrous HF and methanol (CH3OH) which is not in a liquid state is used.
hase) By using the etching method, the problem of sticking of the fine structure is prevented. In addition, a polysilicon film was formed on the insulating film (nitride film) as a lower layer of the sacrificial layer in order to suppress the generation of the residual material (SiNO compound) generated during the vapor phase etching, thereby preventing the generation of the residual material.

【0011】犠牲層である酸化膜蒸気相エッチングにお
いて、酸化膜エッチング反応段階は、次のような化1お
よび化2の段階によりなされる。
In the oxide film vapor phase etching, which is a sacrificial layer, the oxide film etching reaction step is carried out by the following chemical formula 1 and chemical chemical formula 2 steps.

【0012】[0012]

【化1】 Embedded image

【0013】[0013]

【化2】 Embedded image

【0014】まず、酸化膜(SiO2 )の表面におい
て、メタノールは触媒であって、HF分子イオン化を発
生させ、発生されたHF2 - イオンは酸化膜と反応し
てより多くのH2 Oを発生することになる。HF2
- イオン増加により発生されたH2 Oは、HF分子の
イオン化反応を増加させ、このような反応が繰り返して
酸化膜エッチングがなされる。
First, on the surface of the oxide film (SiO 2), methanol is a catalyst and causes HF molecule ionization, and the generated HF 2 ions react with the oxide film to generate more H 2 O. become. HF2
- H2 O generated by increasing ion increases the ionization reaction of HF molecules, oxide film etching is performed repeatedly such a reaction.

【0015】一方、窒化膜基板上のTEOS(Tetr
aethylorthosilicateglass)
膜を前記のような蒸気相エッチング方法でエッチングし
た場合、同様にエッチングした表面からエッチング残留
物質が観察された。また、窒化膜とポリシリコン膜上の
PSGを前記のような蒸気相エッチング方法でエッチン
グした場合、同様に、エッチングした表面から残留物質
が観察された。しかし、ポリシリコン膜上のTEOS層
をエッチングした後には表面に残留物質が観察されなか
ったし、固着現象が発生されなかった。
On the other hand, TEOS (Tetr on a nitride film substrate)
aethylorthosilicate glass)
When the film was etched by the vapor phase etching method as described above, etching residue was observed from the similarly etched surface. Further, when PSG on the nitride film and the polysilicon film was etched by the vapor phase etching method as described above, similarly, a residual substance was observed from the etched surface. However, after etching the TEOS layer on the polysilicon film, no residual substance was observed on the surface, and no sticking phenomenon occurred.

【0016】窒化膜に犠牲層であるTOESを積層して
用いる場合、蒸気相エッチング方法でTOESを除去し
た時発生される残留物質を分析した結果、残留物質の構
成は、TOES膜のSi結合状態であるSiO2 組成
が窒化膜との界面からSiOxNy 形態で現われる。
SiOx Ny は蒸気相エッチングにおいて蒸発され
ずに残留物質として残る。しかし、ポリシリコンの表面
においては、TEOS膜の結合がSiOx 形態のみ存
在するので、エッチングされて残留物質が発生されな
い。
In the case where TOES as a sacrificial layer is stacked on the nitride film, the residual material generated when the TOES is removed by the vapor phase etching method is analyzed. As a result, the structure of the residual material is determined by the Si bond state of the TOES film. SiO2 composition appears in the form of SiOxNy from the interface with the nitride film.
SiOx Ny remains as a residual substance without being evaporated in the vapor phase etching. However, on the surface of the polysilicon, since the TEOS film is bonded only in the form of SiOx, no residue is generated by etching.

【0017】なお、一般にPSG膜は、HF湿式とH2
O蒸気エッチングでH3 PO4が形成される。H3
PO4 は、H2 OとPSGのリン(P)の結合状
態であるP2 O5 と反応して発生される。ここでH
2 O4 は、化学式2と同様にHFとPSG膜とのS
i結合状態であるSiO2 と反応して形成される。H
3 PO4 は吸湿性が非常に高いので、HFとSiO
2 との継続的な反応から発生されたH2 Oを容易に
吸着してH3 PO4 (H2 O)を生成する。従っ
て、PSGのエッチング反応は、次のように化学式3で
表示することができる。
In general, the PSG film is formed of HF wet type and H2 type.
H3PO4 is formed by O vapor etching. H3
PO4 is generated by reacting with P2O5 which is a bonding state of H2O and phosphorus (P) of PSG. Where H
2 O4 is the same as in Chemical Formula 2 except that S
It is formed by reacting with SiO2 in an i-bond state. H
Since 3 PO4 is very hygroscopic, HF and SiO
H2O generated from continuous reaction with H2O is easily adsorbed to produce H3PO4 (H2O). Therefore, the etching reaction of PSG can be represented by the following chemical formula 3.

【0018】[0018]

【化3】 Embedded image

【0019】化3において、H3 PO4 (H2
O)は液体形態に生成され、これはPSG層の蒸気相エ
ッチング時蒸発されずに残留物質として残る。
In the chemical formula 3, H3 PO4 (H2
O) is produced in liquid form, which is not evaporated during the vapor phase etching of the PSG layer and remains as a residue.

【0020】通常的な半導体集約技術においては、犠牲
層の酸化膜を除去した後、超純水(DI Water)
で洗浄を実施しているので残留物の発生が問題にならな
いこともあるが、この発明の適用産業分野であるマイク
ロマシニング技術では、表面張力による固着現象誘発問
題のため、洗浄工程を伴うことができない。このため、
残留物の発生が素子の特性および歩留まりを低下させる
重要な要素となる。
In a general semiconductor intensive technique, after removing an oxide film of a sacrificial layer, ultrapure water (DI Water) is used.
Although the generation of residues may not be a problem because the cleaning is carried out in, the micro-machining technology, which is an industrial field to which the present invention is applied, may involve a cleaning process due to a sticking phenomenon induction problem due to surface tension. Can not. For this reason,
The generation of the residue is an important factor for deteriorating the characteristics and yield of the device.

【0021】本発明のように、蒸気相エッチングを用
い、犠牲層酸化膜としてTEOS膜を利用し、さらに、
これをポリシリコン膜の上に蒸着した時、より優れた特
性を有する微細構造体の製造が可能である。
As in the present invention, a vapor phase etching is used, a TEOS film is used as a sacrificial layer oxide film,
When this is deposited on a polysilicon film, it is possible to manufacture a fine structure having more excellent characteristics.

【0022】以上で説明したような実験結果を基づいた
この発明の一実施の形態を添附した図面の図7〜図11
を参照して詳細に調べる。
FIGS. 7 to 11 are drawings attached with an embodiment of the present invention based on the experimental results as described above.
See for more information.

【0023】まず、図7のようにシリコン基板(31)
に電気的絶縁のために酸化膜(32)と窒化膜(33)
とを蒸着する。次いで、窒化膜(33)上に第1ポリシ
リコン膜(37)を蒸着する。この第1ポリシリコン膜
(37)は、犠牲層を蒸気相エッチング工程で除去する
後続工程において、残留物質の発生を防止する役割を果
たしているが、それに関するメカニズムは上述したよう
である。続いて、図8のように微細構造体を形成する空
間を提供する犠牲層として第1TOES膜パターン(3
4)を前記第1ポリシリコン膜(37)上に形成し、微
細構造体の材料である第2ポリシリコン膜(35)を蒸
着する。
First, as shown in FIG. 7, a silicon substrate (31)
Oxide film (32) and nitride film (33) for electrical insulation
Is deposited. Next, a first polysilicon film (37) is deposited on the nitride film (33). The first polysilicon film 37 plays a role of preventing the generation of residual substances in a subsequent process of removing the sacrificial layer by a vapor phase etching process, and the mechanism related thereto is as described above. Subsequently, as shown in FIG. 8, the first TOES film pattern (3) is formed as a sacrificial layer providing a space for forming a microstructure.
4) is formed on the first polysilicon film (37), and a second polysilicon film (35), which is a material of the fine structure, is deposited.

【0024】次いで、図9のように、前記第2ポリシリ
コン膜(35)のエッチングマスクの役割をするマスク
酸化膜として第2TOES膜(36)を蒸着し、図10
のようにリソグラフィー工程により、第2ポリシリコン
膜(35)を選択的に乾式エッチングし、微細構造体パ
ターンを形成した後、リソグラフィー工程で用いたフォ
トレジスト(図示しない)を除去する。
Next, as shown in FIG. 9, a second TOES film (36) is deposited as a mask oxide film serving as an etching mask for the second polysilicon film (35).
As described above, the second polysilicon film (35) is selectively dry-etched by a lithography process to form a fine structure pattern, and then the photoresist (not shown) used in the lithography process is removed.

【0025】次いで、図10の構造体を、無水(anh
ydrous)HFとメタノールの蒸気が満たさされた
空間に配置し、上記図11のように露呈された第1TO
ES膜パターン(34)を無水(anhydrous)
HFおよびメタノール(CH3 OH)による蒸気相エ
ッチング方法でエッチングして空間(100)を形成す
る。この際、第2TEOS膜36も共にエッチングされ
る。これにより、エッチング残留物が発生せず、しか
も、固着現象が発生しない所望の形状の微細構造体が図
11のように良好に規定(Define)されている。
Next, the structure of FIG.
ydrous) placed in a space filled with the vapors of HF and methanol, and exposed to the first TO as shown in FIG.
ES film pattern (34) is anhydrous
The space (100) is formed by etching with a vapor phase etching method using HF and methanol (CH3 OH). At this time, the second TEOS film 36 is also etched. As a result, a fine structure having a desired shape in which no etching residue is generated and no sticking phenomenon occurs is well defined (Define) as shown in FIG.

【0026】以上で説明したこの発明は、前述の実施例
および添附された図面に限られるものではなく、この発
明の技術的思想を外れない範囲内でいろいろな置換、変
形および変更が可能だということは、この発明が属する
技術分野で通常の知識を有した者において明白であるだ
ろう。
The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications and changes can be made without departing from the technical idea of the present invention. This will be apparent to those of ordinary skill in the art to which this invention pertains.

【0027】[0027]

【発明の効果】表面マイクロマシニング技術において、
犠牲層酸化膜をエッチングしてシリコン微細構造体を基
板から隔てる時、この発明の蒸気相エッチング方法を用
いれば、固着問題を効果的に解決できるので、センサー
の感度が高くなる。また、犠牲層除去時の残留物質問題
は、TEOS膜の下部にポリシリコンを形状することに
よって残留物質の抑制する効果が得られる。
In the surface micromachining technology,
When the silicon microstructure is separated from the substrate by etching the sacrificial layer oxide film, if the vapor phase etching method of the present invention is used, the sticking problem can be effectively solved, and the sensitivity of the sensor increases. In addition, the problem of residual substances at the time of removing the sacrificial layer can be suppressed by forming polysilicon below the TEOS film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による微細構造体の製造工程を示す側
面図である。
FIG. 1 is a side view showing a manufacturing process of a microstructure according to a conventional technique.

【図2】従来技術による微細構造体の製造工程を示す側
面図である。
FIG. 2 is a side view showing a manufacturing process of a microstructure according to the related art.

【図3】従来技術による微細構造体の製造工程を示す側
面図である。
FIG. 3 is a side view showing a manufacturing process of a microstructure according to the related art.

【図4】従来技術による微細構造体の製造工程を示す側
面図である。
FIG. 4 is a side view showing a manufacturing process of a microstructure according to the related art.

【図5】従来技術による微細構造体の製造工程を示す側
面図である。
FIG. 5 is a side view showing a manufacturing process of a microstructure according to the related art.

【図6】微細構造体の固着現象を示す断面図である。FIG. 6 is a cross-sectional view showing a fixation phenomenon of a fine structure.

【図7】本発明の一実施の形態による微細構造体の製造
方法の工程を示す側面図である。
FIG. 7 is a side view showing the steps of the method for manufacturing a microstructure according to one embodiment of the present invention.

【図8】本発明の一実施の形態による微細構造体の製造
方法の工程を示す側面図である。
FIG. 8 is a side view showing the steps of the method for manufacturing a microstructure according to one embodiment of the present invention.

【図9】本発明の一実施の形態による微細構造体の製造
方法の工程を示す側面図である。
FIG. 9 is a side view showing the steps of the method for manufacturing a microstructure according to one embodiment of the present invention.

【図10】本発明の一実施の形態による微細構造体の製
造方法の工程を示す側面図である。
FIG. 10 is a side view showing the steps of the method for manufacturing a microstructure according to one embodiment of the present invention.

【図11】本発明の一実施の形態による微細構造体の製
造方法の工程を示す側面図である。
FIG. 11 is a side view showing the steps of the method for manufacturing a microstructure according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

31 シリコン基板 32 酸化膜 33 窒化膜 37 第1ポリシリコン膜 34 TOES膜パターン 35 第2ポリシリコン膜 36 マスク酸化膜 100 空間 31 silicon substrate 32 oxide film 33 nitride film 37 first polysilicon film 34 TOES film pattern 35 second polysilicon film 36 mask oxide film 100 space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白 種泰 大韓民国大田廣域市儒城区魚隱洞99ハンビ ィットアパートメント129洞708戸 (72)発明者 劉 炯濬 大韓民国大田廣域市儒城区魚隱洞99ハンビ ィットアパートメント130洞1206戸 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Bai Tanyesu 129 Handong Apartment 129-dong, 99 Uogi-dong, Yuseong-gu, Daejeon, Republic of Korea (72) Inventor Liu Hyung-Jun Dong 99 Hanbit Apartment 130 Dong 1206 units

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上から隔てられたシリコン微細構造
体を製造するために犠牲層の酸化膜を用いるマイクロマ
シニング工程において、 前記犠牲層酸化膜の除去時、無水HFとメタノールとの
蒸気を含む蒸気相雰囲気でエッチングして除去する段階
を含むことを特徴とする犠牲層酸化膜を用いた微細構造
体の製造方法。
In a micro-machining process using an oxide film of a sacrificial layer to manufacture a silicon microstructure separated from a substrate, a vapor of anhydrous HF and methanol is included when removing the oxide film of the sacrificial layer. A method for manufacturing a microstructure using a sacrificial oxide film, comprising a step of etching and removing in a vapor phase atmosphere.
【請求項2】 前記犠牲層酸化膜の除去段階でエッチン
グ残留物が生じることを防止するために、前記除去段階
の前に、前記犠牲層酸化膜の下部層にポリシリコン膜を
形成し、その上部に前記犠牲層酸化膜を形成することを
特徴とする請求項1記載の犠牲層酸化膜を用いた微細構
造体の製造方法。
2. A polysilicon film is formed on a lower layer of the sacrificial layer oxide film before the removing step to prevent an etching residue from being generated in the removing step of the sacrificial layer oxide film. 2. The method for manufacturing a microstructure using a sacrificial layer oxide film according to claim 1, wherein the sacrificial layer oxide film is formed thereon.
【請求項3】 前記犠牲層酸化膜は、テトラエチルオル
トシリケートガラス(Tetraethylortho
silicateglass)膜であることを特徴とす
る請求項2記載の犠牲層酸化膜を用いた微細構造体の製
造方法。
3. The sacrifice layer oxide film is made of tetraethylorthosilicate glass (Tetraethylortho).
3. The method for manufacturing a microstructure using a sacrificial layer oxide film according to claim 2, wherein the film is a silicon glass film.
【請求項4】 基板上から隔てられたシリコン微細構造
体を製造するためのマイクロマシニング工程において、 シリコン基板上に最上層を窒化膜とする複数層の絶縁膜
を形成する段階と、 前記窒化膜上に第1ポリシリコン膜を形成する段階と、 前記第1ポリシリコン膜上に、微細構造体が隔てられる
空間を提供するための犠牲層として、テトラエチルオル
トシリケートガラス膜のパターンを形成する段階と、 これらの構造の全体の上部に微細構造体の材料である第
2ポリシリコン膜を形成する段階と、 前記第2ポリシリコン膜を選択的にエッチングして微細
構造体パターンを形成する段階と、 無水HFとメタノールとの蒸気を含む蒸気相雰囲気に、
前記基板を配置することにより、前記テトラエチルオル
トシリケートガラス膜パターンをエッチングして除去す
る段階とを含むことを特徴とする微細構造体の製造方
法。
4. A micro-machining process for manufacturing a silicon microstructure separated from a substrate, wherein a plurality of insulating films having a top layer as a nitride film are formed on the silicon substrate; Forming a first polysilicon film thereon; forming a pattern of a tetraethylorthosilicate glass film on the first polysilicon film as a sacrificial layer for providing a space where a microstructure is separated; Forming a second polysilicon film, which is a material of a fine structure, over the entire structure; selectively etching the second polysilicon film to form a fine structure pattern; In a vapor phase atmosphere containing vapors of anhydrous HF and methanol,
Etching the tetraethylorthosilicate glass film pattern by arranging the substrate, and removing the pattern.
【請求項5】 前記第2ポリシリコン膜を選択的にエッ
チングして微細構造体パターンを形成する段階は、 前記第2ポリシリコン膜上にマスク用の酸化膜を形成す
る段階と、 前記マスク用の酸化膜をリソグラフィー工程によりパタ
ニングする段階と、 前記パタニングされたマスク用の酸化膜をエッチング障
壁として、前記第2ポリシリコン膜をエッチングする段
階を含むことを特徴とする請求項4記載の微細構造体の
製造方法。
5. The step of selectively etching the second polysilicon film to form a fine structure pattern includes: forming an oxide film for a mask on the second polysilicon film; 5. The microstructure according to claim 4, further comprising: patterning the oxide film by a lithography process; and etching the second polysilicon film using the patterned oxide film for a mask as an etching barrier. How to make the body.
【請求項6】 前記マスク用の酸化膜は、テトラエチル
オルトシリケートガラス膜であることを特徴とする請求
項5記載の微細構造体製造方法。
6. The method according to claim 5, wherein the oxide film for the mask is a tetraethylorthosilicate glass film.
JP9182398A 1996-09-21 1997-07-08 Method for manufacturing microstructure using sacrificial layer Expired - Lifetime JP2951922B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR96-41474 1996-09-21
KR1019960041474A KR100237000B1 (en) 1996-09-21 1996-09-21 Method for fabricating microstructures by using sacrifical oxide

Publications (2)

Publication Number Publication Date
JPH10107339A true JPH10107339A (en) 1998-04-24
JP2951922B2 JP2951922B2 (en) 1999-09-20

Family

ID=19474744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182398A Expired - Lifetime JP2951922B2 (en) 1996-09-21 1997-07-08 Method for manufacturing microstructure using sacrificial layer

Country Status (2)

Country Link
JP (1) JP2951922B2 (en)
KR (1) KR100237000B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696364B2 (en) * 2001-10-19 2004-02-24 Stmicroelectronics S.R.L. Method for manipulating MEMS devices, integrated on a wafer semiconductor and intended to be diced one from the other, and relevant support
US6713235B1 (en) 1999-03-30 2004-03-30 Citizen Watch Co., Ltd. Method for fabricating thin-film substrate and thin-film substrate fabricated by the method
WO2005124869A1 (en) * 2004-06-18 2005-12-29 Electronics And Telecommunications Research Institute Micro-mechanical structure and method for manufacturing the same
JP2007524517A (en) * 2003-06-24 2007-08-30 アイディーシー、エルエルシー Thin film precursor stack for MEMS manufacturing
US7683429B2 (en) 2005-05-31 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Microstructure and manufacturing method of the same
US7719754B2 (en) 2008-09-30 2010-05-18 Qualcomm Mems Technologies, Inc. Multi-thickness layers for MEMS and mask-saving sequence for same
US7741687B2 (en) 2006-03-10 2010-06-22 Semiconductor Energy Laboratory Co., Ltd. Microstructure, semiconductor device, and manufacturing method of the microstructure
US7906353B2 (en) 2004-09-27 2011-03-15 Qualcomm Mems Technologies, Inc. Method of fabricating interferometric devices using lift-off processing techniques
CN102963861A (en) * 2012-11-12 2013-03-13 北京大学 Method for determining etching time of sacrificial layer in real time
JP2014504805A (en) * 2011-01-24 2014-02-24 メムススター リミテッド Vapor etching of silicon dioxide with improved selectivity
CN104627955A (en) * 2015-02-06 2015-05-20 苏州工业园区纳米产业技术研究院有限公司 Method for preparing MEMS closed chamber
CN104671192A (en) * 2013-11-29 2015-06-03 无锡华润上华半导体有限公司 Manufacturing method of movable mass block for micro electro mechanical system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532991B1 (en) * 1999-05-17 2005-12-02 엘지전자 주식회사 Fabricating method of rf switch
KR100380274B1 (en) * 1999-06-23 2003-04-14 주식회사 하이닉스반도체 Method for forming etching silicon oxide layer using DUV process
KR100393768B1 (en) * 2000-12-20 2003-08-02 엘지전자 주식회사 Radio frequency switch and fabricating method thereof
JP2006167849A (en) 2004-12-15 2006-06-29 Denso Corp Manufacturing method of microstructure
KR100882148B1 (en) * 2007-06-22 2009-02-06 한국과학기술원 Electrostatic actuator, the method of actuating the same and applicable devices using thereof
WO2019200028A1 (en) * 2018-04-11 2019-10-17 Wisys Technology Foundation, Inc. Stiction-aided fabrication of flat nanomembranes for microelectronics applications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317274A1 (en) * 1993-05-25 1994-12-01 Bosch Gmbh Robert Process for the production of surface-micromechanical structures

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713235B1 (en) 1999-03-30 2004-03-30 Citizen Watch Co., Ltd. Method for fabricating thin-film substrate and thin-film substrate fabricated by the method
US6696364B2 (en) * 2001-10-19 2004-02-24 Stmicroelectronics S.R.L. Method for manipulating MEMS devices, integrated on a wafer semiconductor and intended to be diced one from the other, and relevant support
JP4800937B2 (en) * 2003-06-24 2011-10-26 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド Thin film precursor stack for MEMS manufacturing
JP2007524517A (en) * 2003-06-24 2007-08-30 アイディーシー、エルエルシー Thin film precursor stack for MEMS manufacturing
US7728395B2 (en) 2004-06-18 2010-06-01 Electronics And Telecommunications Research Institute Micro-mechanical structure and method for manufacturing the same
WO2005124869A1 (en) * 2004-06-18 2005-12-29 Electronics And Telecommunications Research Institute Micro-mechanical structure and method for manufacturing the same
US7906353B2 (en) 2004-09-27 2011-03-15 Qualcomm Mems Technologies, Inc. Method of fabricating interferometric devices using lift-off processing techniques
US7683429B2 (en) 2005-05-31 2010-03-23 Semiconductor Energy Laboratory Co., Ltd. Microstructure and manufacturing method of the same
US7741687B2 (en) 2006-03-10 2010-06-22 Semiconductor Energy Laboratory Co., Ltd. Microstructure, semiconductor device, and manufacturing method of the microstructure
US7719754B2 (en) 2008-09-30 2010-05-18 Qualcomm Mems Technologies, Inc. Multi-thickness layers for MEMS and mask-saving sequence for same
JP2014504805A (en) * 2011-01-24 2014-02-24 メムススター リミテッド Vapor etching of silicon dioxide with improved selectivity
CN102963861A (en) * 2012-11-12 2013-03-13 北京大学 Method for determining etching time of sacrificial layer in real time
CN104671192A (en) * 2013-11-29 2015-06-03 无锡华润上华半导体有限公司 Manufacturing method of movable mass block for micro electro mechanical system
CN104627955A (en) * 2015-02-06 2015-05-20 苏州工业园区纳米产业技术研究院有限公司 Method for preparing MEMS closed chamber

Also Published As

Publication number Publication date
KR19980022353A (en) 1998-07-06
JP2951922B2 (en) 1999-09-20
KR100237000B1 (en) 2000-01-15

Similar Documents

Publication Publication Date Title
JP2951922B2 (en) Method for manufacturing microstructure using sacrificial layer
US5314572A (en) Method for fabricating microstructures
KR100515423B1 (en) Rotational speed sensor manufacturing method
US7262071B2 (en) Micromechanical component and suitable method for its manufacture
JP2002301695A (en) Precision mechanical structural element and manufacturing method therefor
JP5602761B2 (en) Micro-electromechanical system device having separated microstructure and manufacturing method thereof
US9875965B2 (en) Semiconductor device
JP2008072091A5 (en)
JP5341579B2 (en) Manufacturing method of fine structure
JP2000190299A (en) Manufacture of micro-mechanical structural member
KR101632650B1 (en) Method for increasing a sacrificial layer etching rate and device formed thereof
US20180057351A1 (en) MEMS Structure with Graphene Component
TW201118035A (en) Fabricating method of single chip for intergating with field-effect transistor and MEMS
US6365056B1 (en) Method for producing a suspended element in a micro-machined structure
JP2005028504A (en) Micro electromechanical system (mems) element and method for manufacturing the same
JP6021914B2 (en) Elimination of silicon residue from the bottom of the MEMS cavity
JP3067737B2 (en) Plasma etching method for vanadium oxide film
JP2004230546A (en) Method for releasing surface micromachined structure in epitaxial reactor
US6969628B2 (en) Microstructure and method for the production thereof
JP3603347B2 (en) Manufacturing method of semiconductor sensor
JP2004066379A (en) Method for manufacturing micro structural body
WO2003015183A1 (en) Method for manufacturing thin-film structure
JP4465090B2 (en) Manufacturing method of mask member
JP6381332B2 (en) Manufacturing method of semiconductor device
JP4049226B2 (en) Manufacturing method of microstructure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term