JPH1010703A - Semiconductor exposure device - Google Patents

Semiconductor exposure device

Info

Publication number
JPH1010703A
JPH1010703A JP18156196A JP18156196A JPH1010703A JP H1010703 A JPH1010703 A JP H1010703A JP 18156196 A JP18156196 A JP 18156196A JP 18156196 A JP18156196 A JP 18156196A JP H1010703 A JPH1010703 A JP H1010703A
Authority
JP
Japan
Prior art keywords
height
reticle
exposure apparatus
optical system
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18156196A
Other languages
Japanese (ja)
Other versions
JP3720462B2 (en
Inventor
Hideki Ine
秀樹 稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18156196A priority Critical patent/JP3720462B2/en
Publication of JPH1010703A publication Critical patent/JPH1010703A/en
Application granted granted Critical
Publication of JP3720462B2 publication Critical patent/JP3720462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain sufficiently high resolving power in spite of use of projecting optical system in which coma aberrations exist by setting the height of the chromium patterns of a reticle to be used at integer times of the half number of a central frequency. SOLUTION: The reticle 3 is formed with chromium layers 5 of a prescribed height H in the prescribed positions of a quartz glass substrate 4. The prescribed height H is set at a nearby value satisfying the conditions of H=N.λ/2 with respect to the central frequency λ for the purpose of exposure. N denotes a positive integer. The relation between the difference Idef between the intensity of the scattered light SL1 to 3 scattered on the left side of the chromium layers 5 on a wafer and the intensity of the scattered light SL4 to 6 scattered on the light side and the height H of the chromium layers 5 is such that the amplitude of the intensity difference Idef changes sign functionally of λ in the period in proportion to the coma aberrations. The height H of the chromium layers 5 at which the intensity difference Idef attains zero satisfies the relation H=N.λ/2 without depending on the coma aberrations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レチクル面上に形
成されているIC、LSI、VLSI等の微細な電子回
路パターンをウエハ上に転写する光リソグラフィによる
半導体露光装置に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor exposure apparatus using photolithography for transferring a fine electronic circuit pattern such as an IC, LSI, or VLSI formed on a reticle surface onto a wafer.

【0002】[0002]

【従来の技術】従来から半導体製造用の投影露光装置に
おいては、集積回路の高密度化に伴い、レチクル面上の
回路パターンをウエハ上に高い解像力で投影露光できる
ことが要求される。回路パターンの投影解像力を向上さ
せる方式としては、例えば露光光の波長を固定にして投
影光学系のレンズの開口数を大きくする方式や、露光光
を例えばg線よりi線、i線よりエキシマレーザー発振
波長のように短波長化する方式が採用されている。
2. Description of the Related Art Conventionally, a projection exposure apparatus for manufacturing a semiconductor has been required to be capable of projecting and exposing a circuit pattern on a reticle surface onto a wafer with a high resolving power in accordance with an increase in the density of integrated circuits. As a method for improving the projection resolution of a circuit pattern, for example, a method in which the wavelength of exposure light is fixed and the numerical aperture of a lens of a projection optical system is increased, or the exposure light is, for example, i-line rather than g-line, and excimer laser than i-line A method of shortening the wavelength such as the oscillation wavelength is employed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
従来例の半導体露光装置において、より高い解像力で撮
影露光するためには、レチクルのパターンをウエハ上に
投影する際の投影光学系の収差の量をより少なくするこ
とが必要となる。非対称性収差である所謂コマ収差が大
きい場合には、コマ収差の非対称性と投影光学系の非対
称性が強め合って急激に像性能が劣化するので、投影光
学系には高い均一性が要求され、また投影光学系のレン
ズの開口数を大きくするために、設計値や製造誤差の面
からも残存収差をより少なくする必要がある。
However, in the above-described conventional semiconductor exposure apparatus, in order to perform photographing exposure with a higher resolution, the amount of aberration of the projection optical system when projecting a reticle pattern onto a wafer is required. Needs to be reduced. When the so-called coma, which is an asymmetric aberration, is large, the asymmetry of the coma and the asymmetry of the projection optical system reinforce each other and the image performance is rapidly deteriorated. Therefore, high uniformity is required for the projection optical system. In addition, in order to increase the numerical aperture of the lens of the projection optical system, it is necessary to further reduce the residual aberration in terms of design values and manufacturing errors.

【0004】このために、投影光学系はレンズ枚数が多
くなって複雑化かつ大型化し、また製造誤差を少なくす
るために製造に長時間を要し、高コスト化するという問
題が発生する。
[0004] For this reason, the projection optical system has a problem that the number of lenses is increased and the system becomes complicated and large, and a long time is required for manufacturing in order to reduce a manufacturing error, thereby increasing the cost.

【0005】本発明の目的は、上述の問題点を解消し、
コマ収差が存在する投影光学系を使用した場合でも、十
分な高解像力が得られる半導体露光装置を提出すること
にある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a semiconductor exposure apparatus capable of obtaining a sufficiently high resolution even when a projection optical system having a coma aberration is used.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の第1発明に係る半導体露光装置は、中心波長λにより
レチクルパターンを投影光学系を介してウエハ上に転写
する光リソグラフィによる半導体露光装置において、使
用するレチクルのクロムパターンの高さをN・λ/2
(Nは正の整数)の近傍としたことを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor exposure apparatus using photolithography for transferring a reticle pattern onto a wafer via a projection optical system at a center wavelength λ. In, the height of the chrome pattern of the reticle to be used is N · λ / 2
(N is a positive integer).

【0007】第2発明に係る半導体露光装置は、複数の
異なる露光波長λ1 、λ2 、・・・によりレチクルパタ
ーンを投影光学系を介してウエハ上に転写する光リソグ
ラフィによる半導体露光装置において、使用するレチク
ルのクロムパターンの高さを前記異なる波長λ1 、λ
2 、・・・の半数の整数倍(N1・λ1 /2、N2・λ2
2、・・・)(N1、N2、・・・は正の整数)の近傍とし
たことを特徴とする。
According to a second aspect of the present invention, there is provided a semiconductor exposure apparatus using optical lithography for transferring a reticle pattern onto a wafer via a projection optical system using a plurality of different exposure wavelengths λ 1 , λ 2 ,. The height of the chrome pattern of the reticle to be used is set at the different wavelengths λ 1 and λ
2, an integer multiple of half of the ··· (N1 · λ 1/2 , N2 · λ 2 /
2,... (N1, N2,... Are positive integers).

【0008】[0008]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は露光装置の側面図を示し、ステ
ージ基台1上にウエハWが載置され、その上方に投影光
学系2が配置され、投影光学系2の上方にレチクル3が
設けられている。図2は第1の実施例のレチクルの側面
図を示し、レチクル3は石英ガラス基盤4の所定位置に
所定高さHのクロム層5が形成されてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a side view of the exposure apparatus. A wafer W is mounted on a stage base 1, a projection optical system 2 is disposed above the wafer W, and a reticle 3 is provided above the projection optical system 2. FIG. 2 is a side view of the reticle of the first embodiment. The reticle 3 has a chrome layer 5 having a predetermined height H at a predetermined position on a quartz glass substrate 4.

【0009】ここで、所定高さHは露光のための中心波
長λに対して、次の条件を満たす近傍の値である。 H=N・λ/2(Nは正の整数)
Here, the predetermined height H is a value near the center wavelength λ for exposure that satisfies the following condition. H = N · λ / 2 (N is a positive integer)

【0010】クロム層5の高さHは中心露光波長により
異なり、中心露光波長がi線ステッパ(365nm)、
KrFステッパ(248nm)、ArFステッパ(19
3nm)のときのN=1と2におけるクロム層5の高さ
を次の表1に示す。
The height H of the chrome layer 5 depends on the center exposure wavelength, and the center exposure wavelength is an i-line stepper (365 nm);
KrF stepper (248 nm), ArF stepper (19
Table 1 shows the height of the chromium layer 5 at N = 1 and 2 when the thickness is 3 nm).

【0011】 [0011]

【0012】図2において、SL1 はクロム層5の左側下
部での散乱光、SL2 はクロム層5の左側上部での左方向
への散乱光、SL3 はクロム層5の左側上部での右方向へ
の散乱光、SL4 はクロム層5の右側上部での左方向への
散乱光、SL5 はクロム層5の右側上部での右方向への散
乱光、SL6 はクロム層5の右側下部での散乱光を示して
いる。
In FIG. 2, SL1 is the scattered light at the lower left part of the chromium layer 5, SL2 is the scattered light at the upper left part of the chromium layer 5 in the left direction, and SL3 is the right scattered light at the upper left part of the chromium layer 5. , SL4 is scattered light to the left at the upper right of the chrome layer 5, SL5 is scattered light to the right at the upper right of the chrome layer 5, and SL6 is scattered light at the lower right of the chrome layer 5. Is shown.

【0013】レチクル3上のパターンは投影光学系2に
よりウエハWの表面に露光される。投影光学系2により
クロム層5のエッジで散乱した散乱光SL1 、SL2 、SL3
、SL4 、SL5 、SL6 はウエハWの上に結像するので、
そのときの光強度を求めてみる。ここで、散乱光SL1 を
基準にして、クロム層5の上部での散乱光SL2 、SL3 、
SL4 、SL5 は、クロム層5の高さH分だけ位相が遅れ、
更に投影光学系2に残存するコマ収差を考慮して、右方
向に向いた散乱光SL3 、SL5 、SL6 はコマ収差分だけ位
相が遅れるものとすると、散乱光SL1 、SL2 、SL3 、SL
4 、SL5 、SL6 の位相は次のように表現できる。 SL1 の位相P1:EXP(jωt) SL2 の位相P2:EXP(j( ωt+H)) SL3 の位相P3:EXP(j(ωt+H+C)) SL4 の位相P4:EXP(j(ωt+H)) SL5 の位相P5:EXP(j(ωt+H+C)) SL6 の位相P6:EXP(j(ωt+C))
The pattern on the reticle 3 is exposed on the surface of the wafer W by the projection optical system 2. Scattered light SL1, SL2, SL3 scattered at the edge of the chrome layer 5 by the projection optical system 2
, SL4, SL5, and SL6 form an image on the wafer W,
Let's find the light intensity at that time. Here, based on the scattered light SL1, the scattered lights SL2, SL3,
SL4 and SL5 are delayed in phase by the height H of the chrome layer 5,
Further, considering the coma aberration remaining in the projection optical system 2, if the scattered lights SL3, SL5, and SL6 directed to the right are delayed in phase by the amount of the coma aberration, the scattered lights SL1, SL2, SL3, and SL
4, the phases of SL5 and SL6 can be expressed as follows. Phase P1 of SL1: EXP (jωt) Phase P2 of SL2: EXP (j (ωt + H)) Phase P3 of SL3: EXP (j (ωt + H + C)) Phase P4 of SL4: EXP (j (ωt + H)) Phase P5 of SL5: EXP (j (ωt + H + C)) Phase P6 of SL6: EXP (j (ωt + C))

【0014】次に、投影光学系2のコマ収差の影響によ
る結像性能を位相P1〜P6を使用して表現すると、先ず投
影光学系2のコマ収差の影響を考える場合には、ウエハ
W上でのクロム層5での左側で散乱する散乱光SL1 、SL
2 、SL3 の強度ILと、右側で散乱する散乱光SL4 、SL5
、SL6 の強度IRとの差Idefに着目する。
Next, when the imaging performance due to the influence of the coma aberration of the projection optical system 2 is expressed using the phases P1 to P6, first, when the influence of the coma aberration of the projection optical system 2 is considered, Light SL1, SL scattered on the left side of the chrome layer 5 at
2, the intensity IL of SL3 and the scattered light SL4, SL5 scattered on the right side
And the difference Idef from the intensity IR of SL6.

【0015】強度IL、IRは各位相PL、PRの二乗を時間積
分した次式で表すことができる。
The intensities IL and IR can be expressed by the following equations obtained by time-integrating the squares of the phases PL and PR.

【0016】[0016]

【式1】 (Equation 1)

【0017】ただし、 PL=P1+P2+P3 PR=P4+P5+P6Where PL = P1 + P2 + P3 PR = P4 + P5 + P6

【0018】従って、強度差Idefは強度IL、IRの差分な
のでIdef=IL−IRとなる。また、位相PL、PRの実部は次
のようになる。 Re(PL)=cos(ωt)+cos(ωt+H)+cos(ωt+H+C) Re(PR)=cos(ωt+H)+cos(ωt+H+C)+cos(ωt+C)
Therefore, since the intensity difference Idef is a difference between the intensities IL and IR, Idef = IL-IR. The real parts of the phases PL and PR are as follows. Re (PL) = cos (ωt) + cos (ωt + H) + cos (ωt + H + C) Re (PR) = cos (ωt + H) + cos (ωt + H + C) + cos (ωt + C)

【0019】これらの式を使用して、強度差Idefの実部
のみの数値積分を行い、強度差Idefとクロム層5の高さ
Hとの関係を求めると、図3に示すようなグラフ図にな
る。このグラフ図は縦軸を強度差Idef、横軸をクロム層
5の高さHとし、投影光学系2のコマ収差の量をλ/1
0として計算したグラフC1と、λ/20として計算した
グラフC2である。これらのグラフC1、C2では、横軸のク
ロム層5の高さHを中心露光波長λで正規化して表現し
てあるので、中心露光波長λを限定する必要はない。
Using these equations, numerical integration of only the real part of the intensity difference Idef is performed, and the relationship between the intensity difference Idef and the height H of the chromium layer 5 is obtained. become. In this graph, the vertical axis is the intensity difference Idef, the horizontal axis is the height H of the chrome layer 5, and the amount of coma of the projection optical system 2 is λ / 1.
A graph C1 calculated as 0 and a graph C2 calculated as λ / 20. In these graphs C1 and C2, since the height H of the chromium layer 5 on the horizontal axis is represented by being normalized by the center exposure wavelength λ, there is no need to limit the center exposure wavelength λ.

【0020】従って、これら2つの曲線から、強度差Id
efは振幅がコマ収差に比例し周期がλのサイン関数的に
変化することが分かる。また、強度差Idefが0となるク
ロム層5の高さHはコマ収差によらず、次の関係を満足
するλ/2、λ、3λ/2、・・であることが分かる。 H=N・λ/2(Nは正の整数)
Therefore, from these two curves, the intensity difference Id
It can be seen that the amplitude of ef is proportional to the coma aberration and the period changes like a sine function of λ. Further, it can be seen that the height H of the chromium layer 5 where the intensity difference Idef becomes 0 is λ / 2, λ, 3λ / 2,... H = N · λ / 2 (N is a positive integer)

【0021】実際の光リソグラフィでは、強度差Idefの
許容値は0とならず有限の値となるので、クロム層5の
高さHも上述の式を満足する近傍の高さでよいことにな
る。なお、ここではIL、IRの実部で計算を行ったが、虚
部の場合は上述の2つの式のcosを sinとすればよいの
で、数値積分した結果は全く同様となる。
In actual optical lithography, the allowable value of the intensity difference Idef is not 0 but a finite value, so that the height H of the chromium layer 5 may be a height close to satisfying the above equation. . Here, the calculation is performed using the real parts of IL and IR. However, in the case of the imaginary part, since the cos of the above two equations may be set to sin, the result of numerical integration is exactly the same.

【0022】また、クロム層5の上部と下部での散乱光
の強度が等しいとして計算したが、強度が異なる場合に
は、上部の散乱光の強度が下部の散乱光の強度の半分と
して計算すると、左右での位相PL2 、PR2 は、P1〜P6を
使用して次の式のようになる。 PL2 =P1 +P2/2 +P3/2 PR2 =P4/2 +P5/2 +P6
Further, the calculation was made on the assumption that the intensity of the scattered light at the upper part and the lower part of the chromium layer 5 was equal. However, when the intensity was different, it was calculated that the intensity of the scattered light at the upper part was half the intensity of the scattered light at the lower part. , And the left and right phases PL2 and PR2 are expressed by the following equations using P1 to P6. PL2 = P1 + P2 / 2 + P3 / 2 PR2 = P4 / 2 + P5 / 2 + P6

【0023】従って、このときの強度差Idefの数値積分
の結果は、図4に示すように振幅が図3の半分の同じ特
性を有するグラフC3、C4となる。
Accordingly, as a result of the numerical integration of the intensity difference Idef at this time, as shown in FIG. 4, the amplitudes are graphs C3 and C4 having the same characteristics as those of FIG.

【0024】また、複数の異なる露光波長λ1 、λ2
・・・を同一露光装置又はそれぞれ異なる露光装置に使
用し、これら異なる波長λ1 、λ2 、・・・によりレク
チルパターンを投影光学系2を介してウェハW上に転写
する際に、使用するレチクル3のクロム層5の高さH
を、それぞれ異なる波長λ1 、λ2 、・・・の半分の値
の整数倍の近傍とすることにより、更に高解像力を達成
する露光方式が可能となる。
Also, a plurality of different exposure wavelengths λ 1 , λ 2 ,
Are used for the same exposure apparatus or different exposure apparatuses, and are used when a reticle pattern is transferred onto the wafer W via the projection optical system 2 using these different wavelengths λ 1 , λ 2 ,. Height H of chrome layer 5 of reticle 3
Are set to near integer multiples of half the values of the different wavelengths λ 1 , λ 2 ,..., It becomes possible to achieve an exposure method that achieves a higher resolution.

【0025】図5は第2の実施例の2層クロムレチクル
の側面図を示し、石英ガラス基盤4にクロム層5と酸化
クロム層10が積層されており、クロム層5の厚みが本
実施例のクロム層高さHとなる。このクロム層高さHの
中心露光波長に対する量は表1と同じである。
FIG. 5 shows a side view of the two-layer chrome reticle of the second embodiment, in which a chromium layer 5 and a chromium oxide layer 10 are laminated on a quartz glass substrate 4, and the thickness of the chromium layer 5 is The chrome layer height H. The amount of the chrome layer height H with respect to the center exposure wavelength is the same as in Table 1.

【0026】図6は第3の実施例の3層クロムレチクル
の側面図を示し、石英ガラス基盤4は酸化クロム層1
1、クロム層5、酸化クロム層10が積層されており、
屈折率差が大きい2つの境界面において反射光及び散乱
光が発生するので、クロム層5の厚みが本実施例のクロ
ム層高さHとなる。このクロム層高さHの中心露光波長
に対する量は表1と同じである。
FIG. 6 shows a side view of a three-layer chrome reticle according to the third embodiment.
1, a chromium layer 5 and a chromium oxide layer 10 are laminated,
Since reflected light and scattered light are generated at two boundary surfaces having a large difference in refractive index, the thickness of the chromium layer 5 becomes the chrome layer height H in the present embodiment. The amount of the chrome layer height H with respect to the center exposure wavelength is the same as in Table 1.

【0027】図7は第4の実施例のハーフトーンレチク
ルの側面図を示し、例えば光量を8%透過し、位相を1
80°ずらす部材から成る遮光帯12が使用され、その
高さが高さHとなる。この高さHの中心露光波長に対す
る量は表1と同じである。
FIG. 7 is a side view of a halftone reticle according to a fourth embodiment.
A light-shielding band 12 made of a member shifted by 80 ° is used, and its height becomes the height H. The amount of the height H with respect to the center exposure wavelength is the same as in Table 1.

【0028】[0028]

【発明の効果】以上説明したように第1発明に係る半導
体露光装置は、中心波長λによるレチクルパターンを使
用してクロムパターンの高さをN・λ/2の近傍とする
ことにより、投影光学系のコマ収差の残存量に影響され
ずに、コマ収差が無い場合と同様の良好な解像性能を得
ることが可能となり、投影光学系のコマ収差の要求性能
を軽減することができるので、軽量、小型、簡素化及び
コストダウンが可能である。
As described above, the semiconductor exposure apparatus according to the first aspect of the present invention uses the reticle pattern having the center wavelength λ to set the height of the chromium pattern near N · λ / 2, thereby reducing the projection optical system. Without affecting the residual amount of coma of the system, it is possible to obtain the same good resolution performance as when there is no coma, and it is possible to reduce the required performance of coma of the projection optical system. Light weight, small size, simplification and cost reduction are possible.

【0029】第2発明に係る半導体露光装置は、複数の
異なる露光波長λ1 、λ2 、・・・に対応するレチクル
パターンを使用し、各レチクルパターンのクロムパター
ンの高さをレチクルパターンに対応する露光波長λ1
λ2 、・・・の半分の整数倍(N1・λ/2、N2・λ/
2、・・・)の近傍とすることにより、投影光学系のコ
マ収差の残存量に影響されずに、コマ収差が無い場合と
同様の良好な解像性能を得ることが可能となり、投影光
学系のコマ収差の要求性能を軽減することができるの
で、軽量、小型、簡素化及びコストダウンが可能であ
る。
The semiconductor exposure apparatus according to the second invention uses reticle patterns corresponding to a plurality of different exposure wavelengths λ 1 , λ 2 ,..., And adjusts the chrome pattern height of each reticle pattern to the reticle pattern. Exposure wavelength λ 1 ,
λ 2 ,... an integral multiple of half (N1 · λ / 2, N2 · λ /
2,...), It is possible to obtain the same good resolution performance as in the case where there is no coma aberration, without being affected by the residual amount of coma aberration of the projection optical system. Since the required performance of the system for coma can be reduced, it is possible to reduce the weight, size, simplification and cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体露光装置の側面図である。FIG. 1 is a side view of a semiconductor exposure apparatus.

【図2】第1の実施例のレチクルの側面図である。FIG. 2 is a side view of the reticle of the first embodiment.

【図3】強度差とクロム層高さの関係のグラフ図であ
る。
FIG. 3 is a graph showing a relationship between a difference in intensity and a chromium layer height.

【図4】強度差とクロム層高さの関係のグラフ図であ
る。
FIG. 4 is a graph showing the relationship between the intensity difference and the chromium layer height.

【図5】第2の実施例の2層クロムレチクルの側面図で
ある。
FIG. 5 is a side view of a two-layer chrome reticle of a second embodiment.

【図6】第3の実施例の3層クロムレチクルの側面図で
ある。
FIG. 6 is a side view of a three-layer chrome reticle of a third embodiment.

【図7】第4の実施例のハーフトーンレチクルの側面図
である。
FIG. 7 is a side view of a halftone reticle according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

2 撮影光学系 3 レチクル 4 石英ガラス基盤 5 クロム層 10、11 酸化クロム層 12 遮光帯 Reference Signs List 2 shooting optical system 3 reticle 4 quartz glass substrate 5 chrome layer 10, 11 chromium oxide layer 12 light-shielding band

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 中心波長λによりレチクルパターンを投
影光学系を介してウエハ上に転写する光リソグラフィに
よる半導体露光装置において、使用するレチクルのクロ
ムパターンの高さをN・λ/2(Nは正の整数)の近傍
としたことを特徴とする半導体露光装置。
In a semiconductor exposure apparatus using photolithography for transferring a reticle pattern onto a wafer via a projection optical system using a center wavelength λ, the height of a chrome pattern of a reticle to be used is set to N · λ / 2 (N is a positive value). Semiconductor exposure apparatus.
【請求項2】 複数の異なる露光波長λ1 、λ2 、・・
・によりレチクルパターンを投影光学系を介してウエハ
上に転写する光リソグラフィによる半導体露光装置にお
いて、使用するレチクルのクロムパターンの高さを前記
異なる波長λ1 、λ2 、・・・の半数の整数倍(N1・λ
1 /2、N2・λ2 /2、・・・)(N1、N2、・・・は正
の整数)の近傍としたことを特徴とする半導体露光装
置。
2. A plurality of different exposure wavelengths λ 1 , λ 2 ,.
In a semiconductor exposure apparatus using photolithography that transfers a reticle pattern onto a wafer via a projection optical system, the height of a chrome pattern of a reticle to be used is an integer of a half of the different wavelengths λ 1 , λ 2 ,. Times (N1 / λ
1/2, N2 · λ 2 /2, ···) (N1, N2, ··· semiconductor exposure apparatus is characterized in that the vicinity of a positive integer).
【請求項3】 前記異なる波長λ1 、λ2 、・・・を同
一の露光装置で使用する請求項2に記載の半導体露光装
置。
3. The semiconductor exposure apparatus according to claim 2 , wherein the different wavelengths λ 1 , λ 2 ,... Are used in the same exposure apparatus.
【請求項4】 前記異なる波長λ1 、λ2 、・・・を異
なる露光装置で使用する請求項2に記載の半導体露光装
置。
4. The semiconductor exposure apparatus according to claim 2 , wherein the different wavelengths λ 1 , λ 2 ,... Are used in different exposure apparatuses.
【請求項5】 前記クロムパターンは光透過特性を有す
るものとした請求項1又は2に記載の半導体露光装置。
5. The semiconductor exposure apparatus according to claim 1, wherein the chromium pattern has a light transmission characteristic.
【請求項6】 前記クロムパターンは酸化クロム層と共
に積層した請求項1又は2に記載の半導体露光装置。
6. The semiconductor exposure apparatus according to claim 1, wherein the chromium pattern is laminated together with a chromium oxide layer.
JP18156196A 1996-06-21 1996-06-21 Semiconductor exposure equipment Expired - Fee Related JP3720462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18156196A JP3720462B2 (en) 1996-06-21 1996-06-21 Semiconductor exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18156196A JP3720462B2 (en) 1996-06-21 1996-06-21 Semiconductor exposure equipment

Publications (2)

Publication Number Publication Date
JPH1010703A true JPH1010703A (en) 1998-01-16
JP3720462B2 JP3720462B2 (en) 2005-11-30

Family

ID=16102956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18156196A Expired - Fee Related JP3720462B2 (en) 1996-06-21 1996-06-21 Semiconductor exposure equipment

Country Status (1)

Country Link
JP (1) JP3720462B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184069A (en) * 1997-12-22 1999-07-09 Canon Inc Method and device for exposing semiconductor and reticle used for it
JP2000182951A (en) * 1998-12-17 2000-06-30 Canon Inc Method and device for semiconductor exposure and reflection mask therefor
JP2000181050A (en) * 1998-12-17 2000-06-30 Canon Inc Reticle, exposure method and aligner for semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184069A (en) * 1997-12-22 1999-07-09 Canon Inc Method and device for exposing semiconductor and reticle used for it
JP2000182951A (en) * 1998-12-17 2000-06-30 Canon Inc Method and device for semiconductor exposure and reflection mask therefor
JP2000181050A (en) * 1998-12-17 2000-06-30 Canon Inc Reticle, exposure method and aligner for semiconductor
JP4497569B2 (en) * 1998-12-17 2010-07-07 キヤノン株式会社 Evaluation method of coma aberration of projection optical system

Also Published As

Publication number Publication date
JP3720462B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3574417B2 (en) Optical proximity correction
US6229647B1 (en) Reflection and refraction optical system and projection exposure apparatus using the same
JP2004521376A (en) Structure and method for correcting proximity effects in a tri-tone attenuated phase shift mask
US20110262849A1 (en) Photomask and pattern formation method using the same
US6377337B1 (en) Projection exposure apparatus
JP3347670B2 (en) Mask and exposure method using the same
JP2000077325A (en) Exposure method and aligner
KR19990072804A (en) A process for device fabrication using a variable transmission aperture
JP4143156B2 (en) Semiconductor exposure method and apparatus and reticle used therefor
JPH1010703A (en) Semiconductor exposure device
JP3296296B2 (en) Exposure method and exposure apparatus
JP3647270B2 (en) Exposure method and exposure apparatus
JP3323815B2 (en) Exposure method and exposure apparatus
JP4497569B2 (en) Evaluation method of coma aberration of projection optical system
JP3123542B2 (en) Exposure apparatus and device manufacturing method
JPH0815848A (en) Photoreticle
JP3554246B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JPH09288346A (en) Photomask
JP2000021761A (en) Exposure method and apparatus
JPH04212154A (en) Photomask
JPH06289590A (en) Photomask and exposing method
JP3647271B2 (en) Exposure method and exposure apparatus
JP2000182951A (en) Method and device for semiconductor exposure and reflection mask therefor
JP2007019098A (en) Exposure device and exposure method
JP3123543B2 (en) Exposure method and exposure apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees