JPH10106738A - Induction heater apparatus - Google Patents

Induction heater apparatus

Info

Publication number
JPH10106738A
JPH10106738A JP26266696A JP26266696A JPH10106738A JP H10106738 A JPH10106738 A JP H10106738A JP 26266696 A JP26266696 A JP 26266696A JP 26266696 A JP26266696 A JP 26266696A JP H10106738 A JPH10106738 A JP H10106738A
Authority
JP
Japan
Prior art keywords
switching element
input power
voltage
detecting means
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26266696A
Other languages
Japanese (ja)
Other versions
JP3666140B2 (en
Inventor
Taizou Ogata
大象 緒方
Kiyoshi Izaki
潔 井崎
Naoaki Ishimaru
直昭 石丸
Hidekazu Yamashita
秀和 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26266696A priority Critical patent/JP3666140B2/en
Publication of JPH10106738A publication Critical patent/JPH10106738A/en
Application granted granted Critical
Publication of JP3666140B2 publication Critical patent/JP3666140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accomplish cost reduction more than before by decreasing a breakdown voltage of a switching element used in an inverter circuit for an induction heater apparatus. SOLUTION: This apparatus comprises a first switching element 14 connected in series with a coil 12 through a direct current voltage source 11, a first capacitor 13 combined with the coil 12 to constitute a resonance circuit, a series connection between a second resonance capacitor 16 and a second switching element 17 connected in parallel with the coil 12, and a control circuit 19 for conductively controlling the first switching element 14 and the second switching element 17. At the time of conductively controlling the switching elements 14 and 17 alternately, the conduction time of the first switching element 14 is fixed, and that of the second switching element 17 is changed. Then the second resonance element 16 and the second switching element 17 are caused to clamp the voltage of the first switching element 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般家庭及びレス
トランなどで使用される誘導加熱調理器に代表される誘
導加熱装置に関するもので、更に詳しく述べればその誘
導加熱用インバータ回路の入力電力制御手段に特徴を有
する誘導加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating apparatus typified by an induction heating cooker used in ordinary households and restaurants, and more particularly, to an input power control means of an induction heating inverter circuit. The present invention relates to an induction heating device having the following characteristics.

【0002】[0002]

【従来の技術】近年、安全な加熱源としての誘導加熱調
理器が脚光を浴びつつある。この誘導加熱調理器は、ス
イッチング素子をオンオフさせてコイルに高周波電流を
流すことにより、コイル近傍に誘導磁界が発生するた
め、コイル近傍に鉄などの金属を材料とした鍋を載置
し、鍋に誘導磁界による誘導電流を発生させて、鉄損に
よる発熱を利用した機器である。
2. Description of the Related Art In recent years, induction heating cookers as a safe heating source have been in the spotlight. In this induction heating cooker, a switching element is turned on and off, and a high-frequency current is applied to the coil to generate an induction magnetic field near the coil. This is a device that utilizes the heat generated by iron loss by generating an induced current due to an induced magnetic field.

【0003】従来の誘導加熱調理器における制御手段を
用いてなる誘導加熱調理器のインバータ回路の一例を図
54、図55を用いて説明する。
An example of an inverter circuit of an induction heating cooker using control means in a conventional induction heating cooker will be described with reference to FIGS. 54 and 55.

【0004】図54は従来の誘導加熱調理器の回路の一
例である。図54で551は直流電源、552は加熱コ
イルで、図には特に記載していないがこの上に被加熱物
(鍋等)が置かれる。553は第一コンデンサで、加熱
コイル552と共振回路を構成している。554は第一
スイッチング素子で、本例では高耐圧のIGBTを用い
ており、555は逆導通ダイオードで、第一スイッチン
グ素子554と並列回路を構成している。557は第一
スイッチング素子555を制御する制御回路、558は
第一スイッチング素子の電圧検知手段で、第一スイッチ
ング素子554の両端電圧Vceを検知し、制御回路5
59に出力している。制御回路557は、第一スイッチ
ング素子の電圧検知手段558によってVceを検知
し、第一スイッチング素子554の両端電圧がゼロボル
ト以下になった場合に、第一スイッチング素子554を
導通させるように制御している。
FIG. 54 shows an example of a circuit of a conventional induction heating cooker. In FIG. 54, reference numeral 551 denotes a DC power supply, and 552 denotes a heating coil, on which an object to be heated (a pan or the like) is placed, though not particularly shown in the figure. Reference numeral 553 denotes a first capacitor, which forms a resonance circuit with the heating coil 552. Reference numeral 554 denotes a first switching element, which uses a high-breakdown-voltage IGBT in this example. Reference numeral 555 denotes a reverse conducting diode, which forms a parallel circuit with the first switching element 554. 557 is a control circuit for controlling the first switching element 555, 558 is a voltage detection means for the first switching element, detects the voltage Vce across the first switching element 554, and
59. The control circuit 557 detects Vce by the voltage detection means 558 of the first switching element, and controls the first switching element 554 to conduct when the voltage across the first switching element 554 becomes zero volt or less. I have.

【0005】図55は従来のインバータ回路の動作波形
であり、(A)は制御回路559から出力されるドライ
ブ信号でこの出力がHighの時に第一スイッチング素
子554が導通状態になる。(B)は、第一スイッチン
グ素子554のIGBTと逆導通ダイオード555に流
れる電流Icで、(C)は第一スイッチング素子554
の両端電圧Vceである。
FIG. 55 shows operation waveforms of the conventional inverter circuit. FIG. 55A shows a drive signal output from the control circuit 559, and when this output is High, the first switching element 554 becomes conductive. (B) is a current Ic flowing through the IGBT of the first switching element 554 and the reverse conducting diode 555, and (C) is a current Ic flowing through the first switching element 554.
Is the voltage Vce between both ends.

【0006】以下、図54、図55をもとに、この回路
の動作の説明を行う。制御回路559は第一スイッチン
グ素子554を所定時間導通させた後、開放して加熱コ
イル552と第一コンデンサ553からなる共振回路を
共振させる。さらに制御回路557は、第一スイッチン
グ素子の電圧検知手段558によって第一スイッチング
素子の両端電圧Vceを検知しており、Vceがゼロボ
ルトよりも低くなると再び、第一スイッチング素子55
4をオンさせる。以上の動作を繰り返すため、図55に
おいて制御回路559から出力されるドライブ信号
(A)に対して、Icは(B)の様に、Vceは、
(C)の様になり、加熱コイル552上に置かれた鍋等
の被加熱物が発熱する。被加熱物に供給される電力、及
び第一スイッチング素子の電圧Vceはスイッチング素
子554の導通時間を制御することにより自在に制御す
ることができる。
The operation of this circuit will be described below with reference to FIGS. 54 and 55. After conducting the first switching element 554 for a predetermined time, the control circuit 559 opens to resonate the resonance circuit including the heating coil 552 and the first capacitor 553. Further, the control circuit 557 detects the voltage Vce across the first switching element by the voltage detecting means 558 of the first switching element, and when Vce becomes lower than zero volt, the first switching element 55 again.
4 is turned on. In order to repeat the above operation, in response to the drive signal (A) output from the control circuit 559 in FIG.
As shown in (C), an object to be heated such as a pan placed on the heating coil 552 generates heat. The power supplied to the object to be heated and the voltage Vce of the first switching element can be freely controlled by controlling the conduction time of the switching element 554.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来のインバータ回路の制御手段では、入力電力の増加に
伴って共振電圧であるVceも増加するため、大きな入
力電力を必要とする機器はVceのピーク値が高くなる
ために高耐圧のスイッチング素子が必要であり、低コス
ト化の妨げとなっていた。また、所定の入力電力を入れ
る場合に、その動作周波数は、コイルと第一コンデンサ
の共振によって決定するため、その周波数が鍋などの被
加熱物の有する固有振動周波数と合致した場合には、耳
障りな音が発生していた。
However, in the above-described conventional inverter circuit control means, since Vce which is a resonance voltage increases with an increase in input power, a device requiring a large input power requires a peak of Vce. Since the value becomes high, a switching element with a high withstand voltage is required, which hinders cost reduction. When a predetermined input power is applied, the operating frequency is determined by the resonance between the coil and the first capacitor. Therefore, if the frequency matches the natural vibration frequency of the object to be heated, such as a pan, it is annoying. Sound was generated.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、直流電源にその一端を接続されたコイル
と、前記直流電源に対して前記コイルと直列に接続され
る第一スイッチング素子と、前記コイルと共振回路を形
成する第一コンデンサと、前記コイルと並列接続される
第二スイッチング素子と第二共振コンデンサの直列接続
と、前記第一スイッチング素子と前記第二スイッチング
素子を導通制御する制御回路とを備え、前記制御回路は
前記各スイッチング素子を交互に導通制御するととも
に、入力電力を制御すべく第一スイッチング素子の導通
時間を固定し、第二スイッチング素子の導通時間を変更
してなるものである。
According to the present invention, there is provided a coil having one end connected to a DC power supply, and a first switching element connected in series with the coil to the DC power supply. A first capacitor forming a resonance circuit with the coil, a series connection of a second switching element and a second resonance capacitor connected in parallel with the coil, and conduction control of the first switching element and the second switching element. A control circuit for controlling the conduction of the switching elements alternately, fixing the conduction time of the first switching element to control the input power, and changing the conduction time of the second switching element. It is.

【0009】[0009]

【発明の実施の形態】請求項1に記載の発明は、直流電
源にその一端を接続されたコイルと、前記直流電源に対
して前記コイルと直列に接続される第一スイッチング素
子と第一逆導通ダイオードの並列回路と、前記コイルと
共振回路を形成する第一コンデンサと、前記コイルと並
列接続される第二スイッチング素子と第二逆導通ダイオ
ードの並列回路と直列接続される第二共振コンデンサと
でなる直列回路と、前記第一スイッチング素子と前記第
二スイッチング素子を導通制御する制御回路とを備え、
前記制御回路は前記各スイッチング素子を交互に導通制
御するとともに、入力電力を制御すべく第一スイッチン
グ素子の導通時間を固定し、第二スイッチング素子の導
通時間を変更するために、第一スイッチング素子の両端
電圧が入力電力の増加に伴って上がるものの、第二共振
コンデンサと第二スイッチング素子と第二逆導通ダイオ
ードによって、第一スイッチング素子の共振電圧がクラ
ンプされ、従来よりも低い両端電圧で制御する事が可能
となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is a coil having one end connected to a DC power supply, a first switching element connected in series with the coil with respect to the DC power supply, and a first reverse connection. A parallel circuit of a conducting diode, a first capacitor forming a resonant circuit with the coil, a second resonant capacitor connected in series with a parallel circuit of a second switching element and a second reverse conducting diode connected in parallel with the coil, And a control circuit for controlling conduction of the first switching element and the second switching element,
The control circuit controls the conduction of each of the switching elements alternately, fixes the conduction time of the first switching element to control the input power, and changes the conduction time of the second switching element by changing the first switching element. Although the voltage between both ends increases with an increase in the input power, the resonance voltage of the first switching element is clamped by the second resonance capacitor, the second switching element, and the second reverse conducting diode, and the voltage is controlled at a lower end voltage than before. It is possible to do.

【0010】請求項2に記載の発明は、入力電力を制御
すべく第一スイッチング素子の導通時間を変更し、第二
スイッチング素子の導通時間を固定するために、第一ス
イッチング素子の両端電圧が入力電力の増加に伴って上
がるものの、第二共振コンデンサと第二スイッチング素
子と第二逆導通ダイオードによって、一定時間だけ第一
スイッチング素子の共振電圧をクランプした状態で制御
する事が可能である。また、請求項1に記載の発明に比
べて、入力電力が大きい時に動作周波数が低くなるの
で、第一スイッチング素子のスイッチング損失を低減す
ることが可能となる。
According to a second aspect of the present invention, in order to control the input power, the conduction time of the first switching element is changed, and in order to fix the conduction time of the second switching element, the voltage across the first switching element is reduced. Although it increases with an increase in input power, it is possible to control the resonance voltage of the first switching element in a state where the resonance voltage of the first switching element is clamped for a fixed time by the second resonance capacitor, the second switching element, and the second reverse conducting diode. Further, as compared with the first aspect of the present invention, the operating frequency is reduced when the input power is large, so that the switching loss of the first switching element can be reduced.

【0011】請求項3に記載の発明は、請求項1記載の
回路において、直流電源の出力電流を検知する電流検知
手段を備え、前記電流検知手段からの情報によって入力
電力の制御を請求項1、請求項2、もしくはその両方の
手段を用いておこなうため、請求項1、請求項2に記載
の発明に比べて、精度良く入力電力の制御が行える。
According to a third aspect of the present invention, there is provided the circuit according to the first aspect, further comprising current detection means for detecting an output current of the DC power supply, and controlling input power based on information from the current detection means. , Or both means, so that the input power can be controlled more accurately than the inventions of claim 1 and claim 2.

【0012】請求項4に記載の発明は、請求項1記載の
回路において、コイルなどの構成部品の動作周波数を検
知する動作周波数検知手段を備え、前記動作周波数検知
手段からの情報によって入力電力の制御を請求項1、請
求項2、もしくはその両方の手段を用いておこなうた
め、請求項1、請求項2に記載の発明に比べて、精度良
く入力電力の制御が行える。
According to a fourth aspect of the present invention, in the circuit of the first aspect, there is provided an operating frequency detecting means for detecting an operating frequency of a component such as a coil, and an input power of the input power is determined based on information from the operating frequency detecting means. Since the control is performed by using the means of claim 1, claim 2, or both, the input power can be controlled more accurately than the inventions of claim 1 and claim 2.

【0013】請求項5に記載の発明は、請求項1記載の
回路において、コイルなどの構成部品の動作周波数を検
知する動作周波数検知手段を備え、前記動作周波数検知
手段からの情報によって予め設定された所定の動作周波
数範囲内で、入力電力の制御を請求項1、請求項2、も
しくはその両方の手段を用いておこなうため、負荷や回
路部品から耳障りな音が発生することなく、入力電力の
制御を行える。
According to a fifth aspect of the present invention, in the circuit according to the first aspect, there is provided an operating frequency detecting means for detecting an operating frequency of a component such as a coil, wherein the operating frequency is set in advance by information from the operating frequency detecting means. The input power is controlled within the predetermined operating frequency range by using the means of claim 1, claim 2, or both of them, so that the input power can be controlled without generating harsh sounds from loads and circuit components. Can control.

【0014】請求項6に記載の発明は、請求項1記載の
回路において、第一スイッチング素子、第一逆導通ダイ
オード、もしくはその両方に流れる電流のピーク値を検
知するピーク電流値検知手段を備え、前記ピーク電流値
検知手段からの情報によって入力電力の制御を請求項
1、請求項2、もしくはその両方の手段を用いておこな
うため、請求項1、請求項2に記載の発明に比べて、精
度良く入力電力の制御が行える。
According to a sixth aspect of the present invention, in the circuit of the first aspect, there is provided a peak current value detecting means for detecting a peak value of a current flowing through the first switching element, the first reverse conducting diode, or both. Since the input power is controlled by the information from the peak current value detecting means using the first, second, or both means, the present invention can provide a control device that is capable of controlling the input power as compared with the first and second aspects. The input power can be controlled with high accuracy.

【0015】請求項7に記載の発明は、請求項1記載の
回路において、第一スイッチング素子、第一逆導通ダイ
オード、もしくはその両方に流れる電流の実効値を検知
する実効値電流検知手段を備え、前記実効値電流検知手
段からの情報によって入力電力の制御を請求項1、請求
項2、もしくはその両方の手段を用いておこなうため、
請求項1、請求項2に記載の発明に比べて、精度良く入
力電力の制御が行える。
According to a seventh aspect of the present invention, in the circuit of the first aspect, there is provided an effective value current detecting means for detecting an effective value of a current flowing through the first switching element, the first reverse conducting diode, or both. In order to control the input power using the information from the effective value current detecting means, using the means of claim 1, claim 2, or both means,
As compared with the first and second aspects of the present invention, the input power can be controlled with higher accuracy.

【0016】請求項8に記載の発明は、請求項1記載の
回路において、第二スイッチング素子、第二逆導通ダイ
オード、もしくはその両方に流れる電流のピーク値を検
知するピーク電流値検知手段を備え、前記ピーク電流値
検知手段からの情報によって入力電力の制御を請求項
1、請求項2、もしくはその両方の手段を用いておこな
うため、請求項1、請求項2に記載の発明に比べて、精
度良く入力電力の制御が行える。
According to an eighth aspect of the present invention, in the circuit of the first aspect, there is provided a peak current value detecting means for detecting a peak value of a current flowing through the second switching element, the second reverse conducting diode, or both. Since the input power is controlled by the information from the peak current value detecting means using the first, second, or both means, the present invention can provide a control device that is capable of controlling the input power as compared with the first and second aspects. The input power can be controlled with high accuracy.

【0017】請求項9に記載の発明は、請求項1記載の
回路において、第二スイッチング素子、第二逆導通ダイ
オード、もしくはその両方に流れる電流の実効値を検知
する実効値電流検知手段を備え、前記実効値電流検知手
段からの情報によって入力電力の制御を請求項1、請求
項2、もしくはその両方の手段を用いておこなうため、
請求項1、請求項2に記載の発明に比べて、精度良く入
力電力の制御が行える。
According to a ninth aspect of the present invention, in the circuit of the first aspect, there is provided an effective value current detecting means for detecting an effective value of a current flowing through the second switching element, the second reverse conducting diode, or both. In order to control the input power using the information from the effective value current detecting means, using the means of claim 1, claim 2, or both means,
As compared with the first and second aspects of the present invention, the input power can be controlled with higher accuracy.

【0018】請求項10に記載の発明は、請求項1記載
の回路において、第二スイッチング素子と第二逆導通ダ
イオードに流れる電流の実効値を検知する実効値電流検
知手段を備え、前記実効値電流検知手段からの情報によ
って、第二スイッチング素子と第二逆導通ダイオードに
流れる実効値電流、すなわち第二コンデンサに流れる実
効値電流が、所定値を以下となるように入力電力の制御
を請求項1、請求項2、もしくはその両方の手段を用い
ておこなうため、第二コンデンサの発熱を抑え、破損を
防ぐことができる。
According to a tenth aspect of the present invention, the circuit according to the first aspect further comprises an effective value current detecting means for detecting an effective value of a current flowing through the second switching element and the second reverse conducting diode, The input power is controlled such that the effective value current flowing through the second switching element and the second reverse conducting diode, that is, the effective value current flowing through the second capacitor, is equal to or less than a predetermined value, based on information from the current detection means. Since this is performed using the first, second, or both means, the heat generation of the second capacitor can be suppressed and breakage can be prevented.

【0019】請求項11に記載の発明は、請求項1記載
の回路において、コイルに流れる電流のピーク値を検知
するピーク電流値検知手段を備え、前記ピーク電流値検
知手段からの情報によって入力電力の制御を請求項1、
請求項2、もしくはその両方の手段を用いておこなうた
め、請求項1、請求項2に記載の発明に比べて、精度良
く入力電力の制御が行える。
According to an eleventh aspect of the present invention, in the circuit according to the first aspect, there is provided a peak current value detecting means for detecting a peak value of a current flowing through the coil, and the input power is determined based on information from the peak current value detecting means. The control of claim 1,
Since the control is performed using the means of claim 2 or both of them, the input power can be controlled more accurately than the inventions of claim 1 and claim 2.

【0020】請求項12に記載の発明は、請求項1記載
の回路において、コイルに流れる電流の実効値を検知す
る実効値電流検知手段を備え、前記実効値電流検知手段
からの情報によって入力電力の制御を請求項1、請求項
2、もしくはその両方の手段を用いておこなうため、請
求項1、請求項2に記載の発明に比べて、精度良く入力
電力の制御が行える。
According to a twelfth aspect of the present invention, in the circuit of the first aspect, there is provided an effective value current detecting means for detecting an effective value of a current flowing through the coil, and the input power is determined based on information from the effective value current detecting means. Is performed using the means of claim 1, claim 2, or both means, so that the input power can be controlled more accurately than the inventions of claim 1 and claim 2.

【0021】請求項13に記載の発明は、請求項1記載
の回路において、第一コンデンサに流れる電流のピーク
値を検知するピーク電流値検知手段を備え、前記ピーク
電流値検知手段からの情報によって入力電力の制御を請
求項1、請求項2、もしくはその両方の手段を用いてお
こなうため、請求項1、請求項2に記載の発明に比べ
て、精度良く入力電力の制御が行える。
According to a thirteenth aspect of the present invention, in the circuit according to the first aspect, there is provided a peak current value detecting means for detecting a peak value of a current flowing through the first capacitor, and the information is supplied from the peak current value detecting means. Since the control of the input power is performed by using the means of claim 1 or claim 2 or both, the control of the input power can be performed more accurately than the inventions of claim 1 and claim 2.

【0022】請求項14に記載の発明は、請求項1記載
の回路において、第一コンデンサに流れる電流の実効値
を検知する実効値電流検知手段を備え、前記実効値電流
検知手段からの情報によって入力電力の制御を請求項
1、請求項2、もしくはその両方の手段を用いておこな
うため、請求項1、請求項2に記載の発明に比べて、精
度良く入力電力の制御が行える。
According to a fourteenth aspect of the present invention, in the circuit of the first aspect, an effective value current detecting means for detecting an effective value of a current flowing through the first capacitor is provided, and the information from the effective value current detecting means is provided. Since the control of the input power is performed by using the means of claim 1 or claim 2 or both, the control of the input power can be performed more accurately than the inventions of claim 1 and claim 2.

【0023】請求項15に記載の発明は、請求項1記載
の回路において、第一スイッチング素子の両端電圧検知
手段を備え、前記両端電圧検知手段からの情報によって
入力電力の制御を請求項1、請求項2の手段を用いて行
うため、請求項1、請求項2に記載の発明に比べて、精
度良く入力電力の制御が行える。
According to a fifteenth aspect of the present invention, in the circuit according to the first aspect, a voltage detecting means is provided between both ends of the first switching element, and the input power is controlled based on information from the voltage detecting means. Since the control is performed using the means of claim 2, the input power can be controlled with higher accuracy than the inventions of claim 1 and claim 2.

【0024】請求項16に記載の発明は、請求項1記載
の回路において、第二スイッチング素子の両端電圧検知
手段を備え、前記両端電圧検知手段からの情報によって
入力電力の制御を請求項1、請求項2の手段を用いて行
うため、請求項1、請求項2に記載の発明に比べて、精
度良く入力電力の制御が行える。
According to a sixteenth aspect of the present invention, in the circuit of the first aspect, a voltage detecting means is provided between both ends of the second switching element, and the input power is controlled based on information from the voltage detecting means. Since the control is performed using the means of claim 2, the input power can be controlled with higher accuracy than the inventions of claim 1 and claim 2.

【0025】請求項17に記載の発明は、請求項1記載
の回路において、第一スイッチング素子の両端電圧検知
手段、第二スイッチング素子の両端電圧検知手段、及び
前記各両端電圧検知手段で検知した電圧の差を求める減
算手段を備え、前記減算手段からの情報によって入力電
力の制御を請求項1、請求項2の手段を用いて行うた
め、請求項1、請求項2に記載の発明に比べて、精度良
く入力電力の制御が行える。
According to a seventeenth aspect of the present invention, in the circuit according to the first aspect, the voltage is detected by the voltage detecting means at both ends of the first switching element, the voltage detecting means at both ends of the second switching element, and each of the voltage detecting means at both ends. There is provided a subtraction means for obtaining a voltage difference, and the input power is controlled by means of the first and second means according to information from the subtraction means. As a result, the input power can be accurately controlled.

【0026】請求項18に記載の発明は、請求項1記載
の回路において、第一コンデンサの両端電圧検知手段を
備え、前記両端電圧検知手段からの情報によって入力電
力の制御を請求項1、請求項2の手段を用いて行うた
め、請求項1、請求項2に記載の発明に比べて、精度良
く入力電力の制御が行える。
According to an eighteenth aspect of the present invention, in the circuit according to the first aspect, a voltage detecting means is provided between both ends of the first capacitor, and the input power is controlled by information from the voltage detecting means between both ends. Since the control is performed using the means of the second aspect, the input power can be controlled with higher accuracy than the inventions of the first and second aspects.

【0027】請求項19に記載の発明は、請求項1記載
の回路において、第二コンデンサの両端電圧検知手段を
備え、前記両端電圧検知手段からの情報によって入力電
力の制御を請求項1、請求項2の手段を用いて行うた
め、請求項1、請求項2に記載の発明に比べて、精度良
く入力電力の制御が行える。
According to a nineteenth aspect of the present invention, in the circuit of the first aspect, a voltage detecting means is provided between both ends of the second capacitor, and the input power is controlled based on information from the voltage detecting means. Since the control is performed using the means of the second aspect, the input power can be controlled with higher accuracy than the inventions of the first and second aspects.

【0028】請求項20に記載の発明は、請求項3記載
の回路において、第一スイッチング素子の両端電圧検知
手段を備え、請求項3記載の制御回路は、入力電力の制
御と、第一スイッチング素子の両端電圧を所定値以下に
する制御を行う機能を有するため、第一スイッチング素
子を保護しつつ、入力電流の制御を行うことが出来る。
According to a twentieth aspect of the present invention, in the circuit according to the third aspect, there is provided means for detecting a voltage between both ends of the first switching element, and the control circuit according to the third aspect controls the input power and the first switching. Since it has a function of controlling the voltage between both ends of the element to be equal to or less than a predetermined value, it is possible to control the input current while protecting the first switching element.

【0029】請求項21に記載の発明は、請求項3記載
の回路において、第二スイッチング素子の両端電圧検知
手段を備え、請求項3記載の制御回路は、入力電力の制
御と、第二スイッチング素子の両端電圧を所定値以下に
する制御を行う機能を有するため、第二スイッチング素
子を保護しつつ、入力電流の制御を行うことが出来る。
According to a twenty-first aspect of the present invention, in the circuit according to the third aspect, there is provided a means for detecting a voltage between both ends of the second switching element, and the control circuit according to the third aspect controls the input power and the second switching. Since it has a function of controlling the voltage across the element to be equal to or lower than a predetermined value, it is possible to control the input current while protecting the second switching element.

【0030】請求項22に記載の発明は、請求項3記載
の回路において、第一コンデンサの両端電圧検知手段を
備え、請求項3記載の制御回路は、入力電力の制御と、
第一コンデンサの両端電圧を所定値以下にする制御を行
う機能を有するため、第一コンデンサを保護しつつ、入
力電流の制御を行うことが出来る。
According to a twenty-second aspect of the present invention, in the circuit according to the third aspect, a means for detecting a voltage between both ends of the first capacitor is provided.
Since it has a function of controlling the voltage across the first capacitor to be equal to or lower than a predetermined value, it is possible to control the input current while protecting the first capacitor.

【0031】請求項23に記載の発明は、請求項3記載
の回路において、第二コンデンサの両端電圧検知手段を
備え、請求項3記載の制御回路は、入力電力の制御と、
第二コンデンサの両端電圧を所定値以下にする制御を行
う機能を有するため、第二コンデンサを保護しつつ、入
力電流の制御を行うことが出来る。
According to a twenty-third aspect of the present invention, in the circuit according to the third aspect, there is provided means for detecting a voltage between both ends of the second capacitor, wherein the control circuit according to the third aspect controls input power,
Since it has a function of controlling the voltage across the second capacitor to a predetermined value or less, it is possible to control the input current while protecting the second capacitor.

【0032】[0032]

【実施例】【Example】

(実施例1)図1に、本発明の第1の実施例の誘導加熱
調理器の回路の一例を示す。図1で11は直流電源であ
る。12は加熱コイルで直流電源1のプラス側に一端を
接続されており、図には特に記載していないがこの上に
被加熱物(鍋等)が置かれる。13は第一コンデンサ
で、加熱コイル12と並列共振回路を形成している。1
4は第一スイッチング素子で、本例ではIGBT用いて
おり、15は第一逆導通ダイオードで第一スイッチング
素子14と並列回路を構成している。この第一スイッチ
ング素子14と第一逆導通ダイオード15の並列回路
は、加熱コイル12の他端と直流電源11のマイナス側
に接続されている。直流電源11、加熱コイル12、第
一コンデンサ13、第一スイッチング素子14、及び第
一逆導通ダイオード15の構成は、従来例に示した回路
と同じ構成であり、16の第二コンデンサは、17の第
二スイッチング素子と18の第二逆導通ダイオードの並
列回路と直列に接続され、加熱コイル12と並列回路を
構成しており、第二コンデンサと第二スイッチング素子
16の直列回路は、第一スイッチング素子15解放時の
共振電圧を、第二コンデンサの充放電によって、クラン
プする役割を持っている。19の制御回路は第一スイッ
チング素子14と第二スイッチング素子17を交互に導
通させるドライブ信号を出力し、入力電力制御を行う。
(Embodiment 1) FIG. 1 shows an example of a circuit of an induction heating cooker according to a first embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a DC power supply. Reference numeral 12 denotes a heating coil, one end of which is connected to the positive side of the DC power supply 1, on which an object to be heated (a pan or the like) is placed, although not particularly shown in the figure. A first capacitor 13 forms a parallel resonance circuit with the heating coil 12. 1
Reference numeral 4 denotes a first switching element, which uses an IGBT in this example, and 15 denotes a first reverse conducting diode which forms a parallel circuit with the first switching element 14. The parallel circuit of the first switching element 14 and the first reverse conducting diode 15 is connected to the other end of the heating coil 12 and the minus side of the DC power supply 11. The configuration of the DC power supply 11, the heating coil 12, the first capacitor 13, the first switching element 14, and the first reverse conducting diode 15 is the same as that of the circuit shown in the conventional example. Are connected in series with the parallel circuit of the second switching element and the second reverse conducting diode of 18 to form a parallel circuit with the heating coil 12, and the series circuit of the second capacitor and the second switching element 16 It has a role of clamping the resonance voltage when the switching element 15 is released by charging and discharging the second capacitor. The control circuit 19 outputs a drive signal for alternately turning on the first switching element 14 and the second switching element 17, and performs input power control.

【0033】図2に、図1の回路図に記載の第一スイッ
チング素子と第二スイッチング素子の電圧電流波形を示
す。図2は、vge1は第一スイッチング素子のゲート
・エミッタ間電圧、vge2は第二スイッチング素子の
ゲート・エミッタ間電圧、ic1とvce1は第一スイ
ッチング素子のコレクタ電流とコレクタ・エミッタ間電
圧、ic2とvce2は第二スイッチング素子のコレク
タ電流とコレクタ・エミッタ間電圧をそれぞれ表してお
り、第一スイッチング素子の解放時の電圧が、第二スイ
ッチング素子の導通時にクランプされている様子を示し
ている。
FIG. 2 shows voltage-current waveforms of the first switching element and the second switching element shown in the circuit diagram of FIG. FIG. 2 shows that vge1 is the gate-emitter voltage of the first switching element, vge2 is the gate-emitter voltage of the second switching element, ic1 and vce1 are the collector current and the collector-emitter voltage of the first switching element, and ic2 and vce2 represents the collector current and the collector-emitter voltage of the second switching element, respectively, and shows how the voltage when the first switching element is released is clamped when the second switching element is conductive.

【0034】図3に、当実施例の制御手段による入力電
力特性の一例を示す。図3は、横軸を第二スイッチング
素子の導通時間、縦軸を入力電力として特性を表してお
り、第二スイッチング素子の導通時間の増加に伴って入
力電力が低下するため、入力電力の制御を第二スイッチ
ング素子の導通時間で行うことが可能である。
FIG. 3 shows an example of the input power characteristic by the control means of this embodiment. FIG. 3 shows the characteristics with the horizontal axis representing the conduction time of the second switching element and the vertical axis representing the input power. The input power decreases as the conduction time of the second switching element increases. Can be performed during the conduction time of the second switching element.

【0035】なお、以上の説明では、第二コンデンサ1
6と、第二スイッチング素子17、第二逆導通ダイオー
ド18の直列回路を図1の様に構成したが、図4の様に
第二コンデンサ16と、第二スイッチング素子17、第
二逆導通ダイオード18を入れ替えた構成にしても、ま
た、図5の様に直列回路を第一スイッチング素子14に
並列に接続した構成にしても、同様に実施可能である。
In the above description, the second capacitor 1
6 and the series circuit of the second switching element 17 and the second reverse conducting diode 18 is configured as shown in FIG. 1, but as shown in FIG. The present invention can be similarly implemented by a configuration in which 18 is replaced, or a configuration in which a series circuit is connected in parallel to the first switching element 14 as shown in FIG.

【0036】図6に、当実施例の別な制御手段による入
力電力特性の一例を示す。図6は、横軸を第一スイッチ
ング素子の導通時間、縦軸を入力電力として特性を表し
ており、第一スイッチング素子の導通時間の増加に伴っ
て入力電力が増加するため、入力電力の制御を第一スイ
ッチング素子の導通時間で行うことが可能である。ま
た、入力電力が大きい時に動作周波数が低くなるため、
第一スイッチング素子のスイッチング損失を低減するこ
とが可能となる。
FIG. 6 shows an example of an input power characteristic by another control means of this embodiment. FIG. 6 shows the characteristics with the horizontal axis representing the conduction time of the first switching element and the vertical axis representing the input power. Since the input power increases as the conduction time of the first switching element increases, the control of the input power is performed. Can be performed during the conduction time of the first switching element. Also, since the operating frequency decreases when the input power is large,
It is possible to reduce the switching loss of the first switching element.

【0037】(実施例2)図7に、本発明の第2の実施
例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、直流電源11からの出力電
流を検知する電流検知手段20を備えたもので、出力電
流の情報を基にフィードバックを行い入力電力を制御す
る。
(Embodiment 2) FIG. 7 shows an example of a circuit diagram of an induction heating cooker according to a second embodiment of the present invention. In this configuration, current detection means 20 for detecting an output current from the DC power supply 11 is added to the circuit configuration of the first embodiment, and feedback is performed based on output current information to control input power.

【0038】図8に、図7の回路図に記載の直流電源1
1からの出力電流と入力電力の特性の一例を示す。図8
は、横軸を直流電源11からの出力電流、縦軸を入力電
力として特性を表しており、直流電源11からの出力電
流の増加に伴って入力電力が増加するため、入力電力の
制御は、直流電源の出力電流の情報を基にフィードバッ
クを行うことによって、精度の良い制御が可能となる。
FIG. 8 shows the DC power supply 1 shown in the circuit diagram of FIG.
1 shows an example of the characteristics of output current and input power from No. 1. FIG.
Represents the characteristics with the horizontal axis representing the output current from the DC power supply 11 and the vertical axis representing the input power. Since the input power increases as the output current from the DC power supply 11 increases, the control of the input power is as follows. By performing feedback based on information on the output current of the DC power supply, highly accurate control can be performed.

【0039】(実施例3)図9に、本発明の第3の実施
例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、加熱コイル12の動作周波
数を検知する周波数検知手段21を備えたもので、動作
周波数の情報を基にフィードバックを行い、入力電力を
制御する。
(Embodiment 3) FIG. 9 shows an example of a circuit diagram of an induction heating cooker according to a third embodiment of the present invention. In this configuration, the circuit configuration of the first embodiment is provided with frequency detecting means 21 for detecting the operating frequency of the heating coil 12, and the input power is controlled by performing feedback based on information on the operating frequency.

【0040】図10に、実施例1の制御手段を用いて入
力電力の制御を行った場合の、図9の回路図に記載の動
作周波数検知手段21によって検知された動作周波数と
入力電力の特性の一例を示す。図10は、横軸を動作周
波数、縦軸を入力電力として特性を表しており、第二ス
イッチング素子の導通時間の減少、すなわち動作周波数
の増加に伴って入力電力が増加することを示している。
よって、入力電力の制御は、動作周波数の情報を基にフ
ィードバックを行うことによって、精度の良い制御が可
能となる。
FIG. 10 shows the characteristics of the operating frequency and the input power detected by the operating frequency detecting means 21 shown in the circuit diagram of FIG. 9 when the input power is controlled using the control means of the first embodiment. An example is shown below. FIG. 10 shows the characteristics with the horizontal axis representing the operating frequency and the vertical axis representing the input power, showing that the conduction time of the second switching element decreases, that is, the input power increases as the operating frequency increases. .
Therefore, the input power can be controlled with high accuracy by performing feedback based on the information on the operating frequency.

【0041】図11に、当実施例の制御手段を用いて入
力電力の制御を行った場合の、図9の回路図に記載の動
作周波数検知手段21によって検知された動作周波数と
入力電力の特性の一例を示す。図11は、横軸を動作周
波数、縦軸を入力電力として特性を表しており、第一ス
イッチング素子の導通時間の増加、すなわち動作周波数
の減少に伴って入力電力が増加することを示している。
よって、入力電力の制御は、動作周波数の情報を基にフ
ィードバックを行うことによって、精度の良い制御が可
能となる。
FIG. 11 shows the characteristics of the operating frequency and the input power detected by the operating frequency detecting means 21 shown in the circuit diagram of FIG. 9 when the input power is controlled using the control means of this embodiment. An example is shown below. FIG. 11 illustrates the characteristics with the horizontal axis representing the operating frequency and the vertical axis representing the input power, and shows that the input power increases as the conduction time of the first switching element increases, that is, as the operating frequency decreases. .
Therefore, the input power can be controlled with high accuracy by performing feedback based on the information on the operating frequency.

【0042】図12に、当実施例の別の制御手段を用い
て入力電力の制御を行った場合の、図9回路図記載の動
作周波数検知手段21によって検知された動作周波数と
入力電力の特性の一例を示す。図10、図11で説明し
たように、第二スイッチング素子の導通時間の減少は、
動作周波数を増加し、入力電力を増加する特性があり、
第一スイッチング素子の導通時間の増加は、動作周波数
を減少し、入力電力を増加する働きがある。この特性
を、所定の動作周波数範囲内に適用し、図の矢印で示し
たように入力電力を増加させる。この制御方法によっ
て、鍋などの負荷が有する固有振動周波数を避けた制御
が可能となる。
FIG. 12 shows the characteristics of the operating frequency and the input power detected by the operating frequency detecting means 21 shown in the circuit diagram of FIG. 9 when the input power is controlled using another control means of this embodiment. An example is shown below. As described with reference to FIGS. 10 and 11, the reduction in the conduction time of the second switching element is as follows.
There is a characteristic that increases the operating frequency and the input power,
The increase in the conduction time of the first switching element has a function of reducing the operating frequency and increasing the input power. This characteristic is applied within a predetermined operating frequency range, and the input power is increased as shown by the arrow in the figure. With this control method, it is possible to perform control while avoiding the natural vibration frequency of a load such as a pan.

【0043】また、本実施例においては、加熱コイルの
電流から動作周波数を検知しているが、このインバータ
を構成しているどの部品も動作周波数は同じであるた
め、例えばスイッチング素子の動作周波数を検知する構
成をとっても、得られる値は同じである。
Also, in this embodiment, the operating frequency is detected from the current of the heating coil. However, since the operating frequencies of all the components constituting the inverter are the same, for example, the operating frequency of the switching element is changed. The values obtained are the same even if the configuration for detection is used.

【0044】(実施例4)図13に、本発明の第4の実
施例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、第一スイッチング素子に流
れる電流のピーク値を検知するピーク電流値検知手段2
2を備えたもので、ピーク電流値の情報を基にフィード
バックを行い入力電力を制御する。
(Embodiment 4) FIG. 13 shows an example of a circuit diagram of an induction heating cooker according to a fourth embodiment of the present invention. This configuration is different from the circuit configuration of the first embodiment in that the peak current value detection unit 2 detects the peak value of the current flowing through the first switching element.
2, which controls the input power by performing feedback based on the information on the peak current value.

【0045】図14に、当実施例の制御手段を用いて、
図13の回路図記載のピーク電流値検値手段によって検
知されたピーク電流値と入力電力の特性を示す。図13
は、横軸をピーク電流値、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわちピーク電流値の増加に伴って入力電力が増加す
るため、入力電力の制御は、ピーク電流値の情報を基に
フィードバックを行うことによって、精度の良い制御が
可能となる。
FIG. 14 shows an example in which the control means of this embodiment is used.
FIG. 14 shows characteristics of a peak current value and input power detected by peak current value detection means described in the circuit diagram of FIG. FIG.
Represents the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, the increase in the conduction time of the first switching element,
That is, since the input power increases with an increase in the peak current value, the input power can be controlled with high accuracy by performing feedback based on the information on the peak current value.

【0046】(実施例5)図15に、本発明の第6の実
施例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、第一逆導通ダイオードに流
れる電流のピーク値を検知するピーク電流値検知手段2
2を備えたもので、ピーク電流値の情報を基にフィード
バックを行い入力電力を制御する。
(Embodiment 5) FIG. 15 shows an example of a circuit diagram of an induction heating cooker according to a sixth embodiment of the present invention. This configuration is different from the circuit configuration of the first embodiment in that the peak current value detection unit 2 detects the peak value of the current flowing through the first reverse conducting diode.
2, which controls the input power by performing feedback based on the information on the peak current value.

【0047】図16に、当実施例の制御手段を用いて、
図15の回路図記載のピーク電流値検値手段によって検
知されたピーク電流値と入力電力の特性を示す。図16
は、横軸をピーク電流値、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加に
よって、第一逆導通ダイオードのピーク電流値は、第一
スイッチング素子のピーク電流値と同様に増加し、入力
電力も増加するため、入力電力の制御は、ピーク電流値
の情報を基にフィードバックを行うことによって、精度
の良い制御が可能となる。尚、図14、図16共に第一
スイッチング素子の導通時間の増加に伴って、ピーク電
流値は増加するため、和を求めても増加特性となるた
め、同様の効果があることは言うまでもない。
FIG. 16 shows an example in which the control means of this embodiment is used.
FIG. 16 shows characteristics of a peak current value and input power detected by peak current value detection means described in the circuit diagram of FIG. FIG.
Represents the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power.By increasing the conduction time of the first switching element, the peak current value of the first reverse conduction diode becomes the peak current value of the first switching element. Since the input power increases in the same manner as the value, the input power also increases. Therefore, the input power can be controlled with high accuracy by performing feedback based on the information on the peak current value. In both FIGS. 14 and 16, the peak current value increases as the conduction time of the first switching element increases, so that even if the sum is obtained, the increase characteristic is obtained.

【0048】(実施例6)図17に、本発明の第6の実
施例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、第一スイッチング素子に流
れる電流の実効値を検知する実効値電流検知手段23を
備えたもので、実効値電流の情報を基にフィードバック
を行い入力電力を制御する。
(Embodiment 6) FIG. 17 shows an example of a circuit diagram of an induction heating cooker according to a sixth embodiment of the present invention. In this configuration, an effective value current detecting means 23 for detecting an effective value of a current flowing through the first switching element is added to the circuit configuration of the first embodiment. Control.

【0049】図18に、当実施例の制御手段を用いて、
図17の回路図記載の実効値電流検値手段によって検知
された実効値電流と入力電力の特性を示す。図17は、
横軸を実効値電流、縦軸を入力電力として特性を表して
おり、第一スイッチング素子の導通時間の増加、すなわ
ち実効値電流の増加に伴って入力電力が増加するため、
入力電力の制御は、実効値電流の情報を基にフィードバ
ックを行うことによって、精度の良い制御が可能とな
る。
FIG. 18 shows an example in which the control means of this embodiment is used.
18 shows characteristics of an effective value current and input power detected by an effective value current detecting means described in the circuit diagram of FIG. 17. FIG.
The horizontal axis represents the rms current, and the vertical axis represents the characteristics with the input power.The input power increases with an increase in the conduction time of the first switching element, that is, an increase in the rms current.
The input power can be controlled with high accuracy by performing feedback based on information on the effective value current.

【0050】(実施例7)図19に、本発明の第7の実
施例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、第二逆導通ダイオードに流
れる電流のピーク値を検知するピーク電流値検知手段2
2を備えたもので、ピーク電流値の情報を基にフィード
バックを行い入力電力を制御する。
(Embodiment 7) FIG. 19 shows an example of a circuit diagram of an induction heating cooker according to a seventh embodiment of the present invention. This configuration is different from the circuit configuration of the first embodiment in that the peak current value detection unit 2 detects the peak value of the current flowing through the second reverse conducting diode.
2, which controls the input power by performing feedback based on the information on the peak current value.

【0051】図20に、当実施例の制御手段を用いて、
図20の回路図記載のピーク電流値検値手段によって検
知されたピーク電流値と入力電力の特性を示す。図20
は、横軸をピーク電流値、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわちピーク電流値の増加に伴って入力電力が増加す
るため、入力電力の制御は、ピーク電流値の情報を基に
フィードバックを行うことによって、精度の良い制御が
可能となる。
FIG. 20 shows an example in which the control means of this embodiment is used.
FIG. 21 shows characteristics of a peak current value and input power detected by peak current value detection means described in the circuit diagram of FIG. 20. FIG.
Represents the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, the increase in the conduction time of the first switching element,
That is, since the input power increases with an increase in the peak current value, the input power can be controlled with high accuracy by performing feedback based on the information on the peak current value.

【0052】(実施例8)図21に、本発明の第8の実
施例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、第二スイッチング素子と第
二逆導通ダイオードに流れる電流の実効値を検知する実
効値電流検知手段23を備えたもので、この実効値電流
は第二コンデンサの実効値電流でもあり、この実効値電
流の情報を基にフィードバックを行い入力電力を制御す
る。
(Eighth Embodiment) FIG. 21 shows an example of a circuit diagram of an induction heating cooker according to an eighth embodiment of the present invention. In this configuration, the circuit configuration of the first embodiment is provided with an effective value current detection unit 23 that detects an effective value of a current flowing through the second switching element and the second reverse conducting diode. It is also the effective value current of the capacitor, and the input power is controlled by performing feedback based on the information of the effective value current.

【0053】図22に、実施例1の制御手段を用いて、
図21の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図2
2は、横軸を実効値電流、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわち実効値電流の増加に伴って入力電力が増加する
ため、入力電力の制御は、実効値電流の情報を基にフィ
ードバックを行うことによって、精度の良い制御が可能
となる。
Referring to FIG. 22, using the control means of the first embodiment,
FIG. 22 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detection means described in the circuit diagram of FIG. 21. FIG.
2, the horizontal axis represents the effective value current, and the vertical axis represents the characteristics of the input power, the increase of the conduction time of the first switching element,
That is, since the input power increases with an increase in the effective current, the input power can be controlled with high accuracy by performing feedback based on information on the effective current.

【0054】図23に、実施例1の制御手段を用いて、
図21の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図2
3は、図22と同様に横軸を実効値電流、縦軸を入力電
力として特性を表しており、第二スイッチング素子の導
通時間の減少、すなわち実効値電流の減少に伴って入力
電力が増加するため、入力電力の制御は、実効値電流の
情報を基にフィードバックを行うことによって、精度の
良い制御が可能となる。
In FIG. 23, using the control means of the first embodiment,
FIG. 22 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detection means described in the circuit diagram of FIG. 21. FIG.
3, the horizontal axis represents the rms current and the vertical axis represents the input power, as in FIG. 22. The input power increases as the conduction time of the second switching element decreases, that is, as the rms current decreases. Therefore, the input power can be controlled with high accuracy by performing feedback based on the effective current information.

【0055】図24に、当実施例の制御手段を用いて、
図21の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図2
4は、図22、図23と同様に横軸を実効値電流、縦軸
を入力電力として特性を表している。図22、図23の
説明で述べたように、第一スイッチング素子の導通時間
の増加は、実効電流を増加して入力電力を増加するが、
第二スイッチング素子の導通時間の減少は、実効値電流
を減少して入力電力を増加するため、第二コンデンサの
実効値電流を一定値以下に抑えて、発熱による破壊を防
ぎつつ入力電力の制御が可能となる。
In FIG. 24, using the control means of this embodiment,
FIG. 22 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detection means described in the circuit diagram of FIG. 21. FIG.
4 shows the characteristics with the effective value current on the horizontal axis and the input power on the vertical axis, as in FIGS. As described in the description of FIGS. 22 and 23, the increase in the conduction time of the first switching element increases the effective current and increases the input power.
Since the conduction time of the second switching element decreases, the effective value current decreases and the input power increases, so the effective value current of the second capacitor is suppressed to a certain value or less, and the input power is controlled while preventing destruction due to heat generation. Becomes possible.

【0056】(実施例9)図25に、本発明の第9の実
施例の誘導加熱調理器の回路図の一例を示す。この構成
は、実施例1の回路構成に、加熱コイルに流れる電流の
ピーク値を検知するピーク電流値検知手段22を備えた
もので、ピーク電流値の情報を基にフィードバックを行
い入力電力を制御する。
(Embodiment 9) FIG. 25 shows an example of a circuit diagram of an induction heating cooker according to a ninth embodiment of the present invention. In this configuration, a peak current value detecting unit 22 for detecting a peak value of a current flowing through a heating coil is provided in the circuit configuration of the first embodiment, and input power is controlled by performing feedback based on the information on the peak current value. I do.

【0057】図26に、当実施例の制御手段を用いて、
図25の回路図記載のピーク電流値検値手段によって検
知されたピーク電流値と入力電力の特性を示す。図25
は、横軸をピーク電流値、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわちピーク電流値の増加に伴って入力電力が増加す
るため、入力電力の制御は、ピーク電流値の情報を基に
フィードバックを行うことによって、精度の良い制御が
可能となる。
In FIG. 26, using the control means of this embodiment,
26 shows characteristics of a peak current value and input power detected by peak current value detection means described in the circuit diagram of FIG. FIG.
Represents the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, the increase in the conduction time of the first switching element,
That is, since the input power increases with an increase in the peak current value, the input power can be controlled with high accuracy by performing feedback based on the information on the peak current value.

【0058】(実施例10)図27に、本発明の第10
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、実施例1の回路構成に、加熱コイルに流れる電
流の実効値を検知する実効値電流検知手段23を備えた
もので、この実効値電流の情報を基にフィードバックを
行い入力電力を制御する。
(Embodiment 10) FIG. 27 shows a tenth embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. In this configuration, an effective value current detection unit 23 for detecting an effective value of a current flowing through a heating coil is provided in the circuit configuration of the first embodiment, and feedback is performed based on information on the effective value current to reduce input power. Control.

【0059】図28に、当実施例の制御手段を用いて、
図27の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図2
8は、横軸を実効値電流、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわち実効値電流の増加に伴って入力電力が増加する
ため、入力電力の制御は、実効値電流の情報を基にフィ
ードバックを行うことによって、精度の良い制御が可能
となる。
In FIG. 28, using the control means of this embodiment,
28 illustrates an example of characteristics of an effective value current and input power detected by an effective value current detection unit illustrated in the circuit diagram of FIG. 27. FIG.
8, the horizontal axis represents the effective value current, and the vertical axis represents the characteristics of the input power, the increase of the conduction time of the first switching element,
That is, since the input power increases with an increase in the effective current, the input power can be controlled with high accuracy by performing feedback based on information on the effective current.

【0060】(実施例11)図29に、本発明の第11
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、実施例1の回路構成に、第一コンデンサに流れ
る電流のピーク値を検知するピーク電流値検知手段22
を備えたもので、ピーク電流値の情報を基にフィードバ
ックを行い入力電力を制御する。
(Embodiment 11) FIG. 29 shows an eleventh embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. This configuration is different from the circuit configuration of the first embodiment in that the peak current value detection unit 22 that detects the peak value of the current flowing through the first capacitor is used.
The input power is controlled by performing feedback based on the information on the peak current value.

【0061】図30に、当実施例の制御手段を用いて、
図29の回路図記載のピーク電流値検値手段によって検
知されたピーク電流値と入力電力の特性を示す。図30
は、横軸をピーク電流値、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわちピーク電流値の増加に伴って入力電力が増加す
るため、入力電力の制御は、ピーク電流値の情報を基に
フィードバックを行うことによって、精度の良い制御が
可能となる。
FIG. 30 shows an example in which the control means of this embodiment is used.
FIG. 29 shows characteristics of a peak current value and input power detected by peak current value detection means described in the circuit diagram of FIG. FIG.
Represents the characteristics with the horizontal axis representing the peak current value and the vertical axis representing the input power, the increase in the conduction time of the first switching element,
That is, since the input power increases with an increase in the peak current value, the input power can be controlled with high accuracy by performing feedback based on the information on the peak current value.

【0062】(実施例12)図31に、本発明の第12
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、実施例1の回路構成に、第一コンデンサに流れ
る電流の実効値を検知する実効値電流検知手段23を備
えたもので、この実効値電流の情報を基にフィードバッ
クを行い入力電力を制御する。
(Embodiment 12) FIG. 31 shows a twelfth embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. In this configuration, an effective value current detecting means 23 for detecting an effective value of a current flowing through the first capacitor is provided in the circuit configuration of the first embodiment. Control.

【0063】図32に、当実施例の制御手段を用いて、
図31の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図3
2は、横軸を実効値電流、縦軸を入力電力として特性を
表しており、第二スイッチング素子の導通時間の減少、
すなわち実効値電流の増加に伴って入力電力が増加する
ため、入力電力の制御は、実効値電流の情報を基にフィ
ードバックを行うことによって、精度の良い制御が可能
となる。
In FIG. 32, using the control means of this embodiment,
FIG. 32 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detection means described in the circuit diagram of FIG. 31. FIG.
2 represents a characteristic in which the horizontal axis represents the effective value current and the vertical axis represents the input power, the reduction of the conduction time of the second switching element,
That is, since the input power increases with an increase in the effective current, the input power can be controlled with high accuracy by performing feedback based on information on the effective current.

【0064】図33に、当実施例の制御手段を用いて、
図31の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図3
3は、横軸を実効値電流、縦軸を入力電力として特性を
表しており、第一スイッチング素子の導通時間の増加、
すなわち実効値電流の増加に伴って入力電力が増加する
ため、入力電力の制御は、実効値電流の情報を基にフィ
ードバックを行うことによって、精度の良い制御が可能
となる。尚、実施例1の制御手段を用いた場合よりも傾
きが急になっている。
In FIG. 33, using the control means of this embodiment,
FIG. 32 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detection means described in the circuit diagram of FIG. 31. FIG.
3 represents the characteristic with the abscissa representing the effective value current and the ordinate representing the input power, wherein the conduction time of the first switching element is increased,
That is, since the input power increases with an increase in the effective current, the input power can be controlled with high accuracy by performing feedback based on information on the effective current. Note that the inclination is steeper than when the control unit of the first embodiment is used.

【0065】図34に、当実施例の制御手段を用いて、
図31の回路図記載の実効値電流検知手段によって検知
された実効値電流と入力電力の特性の一例を示す。図3
4は、図32、図33と同様に横軸を実効値電流、縦軸
を入力電力として特性を表している。図32、図33の
説明で述べたように、第二スイッチング素子の導通時間
の減少、第一スイッチング素子の導通時間の増加は、実
効電流を増加して入力電力を増加するが、その傾きは図
34に示すように異なっており、第二スイッチング素子
の導通時間の増加は、第一スイッチング素子の導通時間
の減少に比べて、実効値電流を大幅に減少するため、第
一コンデンサの実効値電流を一定値以下に抑えて、発熱
による破壊を防ぎつつ入力電力の制御が可能となる。
In FIG. 34, using the control means of this embodiment,
FIG. 32 shows an example of the characteristics of the effective value current and the input power detected by the effective value current detection means described in the circuit diagram of FIG. 31. FIG.
4 shows the characteristics with the effective value current on the horizontal axis and the input power on the vertical axis as in FIGS. 32 and 33. As described in the description of FIGS. 32 and 33, the decrease in the conduction time of the second switching element and the increase in the conduction time of the first switching element increase the effective current and increase the input power. As shown in FIG. 34, the conduction time of the second switching element is increased, and the effective value current is greatly reduced as compared with the decrease of the conduction time of the first switching element. It is possible to control the input power while keeping the current below a certain value to prevent destruction due to heat generation.

【0066】(実施例13)図35に、本発明の第13
の実施例の誘導加熱調理器の回路図を示す。この構成
は、実施例1の回路図に、第一スイッチング素子14の
両端電圧検知手段24を備え、両端電圧を検知してフィ
ードバックをおこない、入力電力を制御する。
(Embodiment 13) FIG. 35 shows a thirteenth embodiment of the present invention.
FIG. 3 is a circuit diagram of the induction heating cooker according to the embodiment. In this configuration, the circuit diagram of the first embodiment includes the voltage detecting means 24 at both ends of the first switching element 14, and detects the voltage at both ends to perform feedback to control the input power.

【0067】図36に、実施例1の制御手段を用いて、
図35の回路図記載の第一スイッチング素子の両端電圧
検知手段によって検知された両端電圧と入力電力の特性
の一例を示す。図36は、横軸を第一スイッチング素子
の両端電圧、縦軸を入力電力として特性を表しており、
第二スイッチング素子の導通時間の減少、すなわち第一
スイッチング素子の両端電圧の増加に伴って入力電力が
増加するため、入力電力の制御を第一スイッチング素子
の両端電圧の情報を基にフィードバックを行うことによ
って、精度の良い制御が可能となる。
In FIG. 36, using the control means of the first embodiment,
36 shows an example of the characteristics of the voltage between both ends and the input power detected by the voltage detection means between both ends of the first switching element shown in the circuit diagram of FIG. 35. FIG. 36 shows the characteristics with the horizontal axis representing the voltage across the first switching element and the vertical axis representing the input power,
Since the input power increases with a decrease in the conduction time of the second switching element, that is, an increase in the voltage across the first switching element, feedback of the control of the input power is performed based on the information on the voltage across the first switching element. This enables accurate control.

【0068】図37に、当実施例の制御手段を用いて、
図35の回路図記載の第一スイッチング素子の両端電圧
検知手段によって検知された両端電圧と入力電力の特性
の一例を示す。図37は、図36で示したように横軸は
両端電圧、縦軸は入力電力であり、第一スイッチング素
子の導通時間の増加によって、両端電圧が増加し、入力
電力も増加するので、入力電力の制御を第一スイッチン
グ素子の両端電圧を検知してフィードバックを行うこと
が可能となる。
FIG. 37 shows an example in which the control means of this embodiment is used.
36 shows an example of the characteristics of the voltage between both ends and the input power detected by the voltage detection means between both ends of the first switching element shown in the circuit diagram of FIG. 35. In FIG. 37, as shown in FIG. 36, the horizontal axis is the voltage at both ends, and the vertical axis is the input power. As the conduction time of the first switching element increases, the voltage at both ends increases and the input power also increases. The power can be controlled by detecting the voltage between both ends of the first switching element and performing feedback.

【0069】(実施例14)図38に、本発明の第14
の実施例の誘導加熱調理器の回路図を示す。この構成
は、実施例1の回路図に、第二スイッチング素子17の
両端電圧検知手段25を備え、両端電圧を検知してフィ
ードバックをおこない、入力電力を制御する。
(Embodiment 14) FIG. 38 shows a fourteenth embodiment of the present invention.
FIG. 3 is a circuit diagram of the induction heating cooker according to the embodiment. In this configuration, the circuit diagram of the first embodiment includes the voltage detecting means 25 at both ends of the second switching element 17, detects the voltage at both ends, performs feedback, and controls the input power.

【0070】図39に、当実施例の制御手段を用いて、
図38の回路図記載の第二スイッチング素子の両端電圧
検知手段25によって検知された両端電圧と入力電力の
特性の一例を示す。図39は、横軸を第二スイッチング
素子の両端電圧、縦軸を入力電力として特性を表してお
り、第二スイッチング素子の導通時間の減少、すなわち
第二スイッチング素子の両端電圧の増加に伴って入力電
力が増加するため、入力電力の制御を第一スイッチング
素子の両端電圧の情報を基にフィードバックを行うこと
によって、精度の良い制御が可能となる。
In FIG. 39, using the control means of this embodiment,
39 shows an example of the characteristics of the voltage between both ends and the input power detected by the voltage detecting means 25 across the second switching element shown in the circuit diagram of FIG. 38. FIG. 39 shows the characteristics with the horizontal axis representing the voltage across the second switching element and the vertical axis representing the input power, with the decrease in the conduction time of the second switching element, that is, with the increase in the voltage across the second switching element. Since the input power increases, the input power is controlled based on the information on the voltage between both ends of the first switching element, so that accurate control can be performed.

【0071】(実施例15)図40に、本発明の第15
の実施例の誘導加熱調理器の回路図を示す。この構成
は、実施例1の回路図に、第一スイッチング素子14の
両端電圧検知手段24と、第二スイッチング素子17の
両端電圧検知手段25と、各電圧検知手段によって検知
された両端電圧の差を求める減算手段26を備え、各ス
イッチング素子の両端電圧を検知し、その差を求めてフ
ィードバックをおこない、入力電力を制御する。
(Embodiment 15) FIG. 40 shows a fifteenth embodiment of the present invention.
FIG. 3 is a circuit diagram of the induction heating cooker according to the embodiment. This configuration is different from the circuit diagram of the first embodiment in that the voltage detection means 24 at both ends of the first switching element 14, the voltage detection means 25 at both ends of the second switching element 17, and the difference between the voltages at both ends detected by each voltage detection means. , Which detects the voltage between both ends of each switching element, obtains the difference between them, performs feedback, and controls the input power.

【0072】図41に、当実施例の制御手段を用いて、
図40の回路図記載の減算手段によって検知された各ス
イッチング素子の両端電圧の差と入力電力の特性の一例
を示す。図41は、横軸を各スイッチング素子の両端電
圧の差、縦軸を入力電力として特性を表しており、第二
スイッチング素子の導通時間の減少、すなわち各スイッ
チング素子の両端電圧の差の減少に伴って入力電力が増
加するため、入力電力の制御を各スイッチング素子の両
端電圧の差の情報を基にフィードバックを行うことによ
って、精度の良い制御が可能となる。
In FIG. 41, using the control means of this embodiment,
41 shows an example of the difference between the voltage between both ends of each switching element detected by the subtraction means described in the circuit diagram of FIG. 40 and the characteristic of the input power. FIG. 41 shows the characteristics with the horizontal axis representing the difference between the voltages at both ends of the switching elements and the vertical axis representing the characteristics as the input power. The decrease in the conduction time of the second switching element, that is, the decrease in the difference between the voltages across the switching elements, is shown. Accordingly, the input power increases, so that the control of the input power can be performed with high accuracy by performing the feedback based on the information on the voltage difference between both ends of each switching element.

【0073】(実施例16)図42に、本発明の第16
の実施例の誘導加熱調理器の回路図を示す。この構成
は、実施例1の回路図に、第一コンデンサ13の両端電
圧検知手段24を備え、両端電圧を検知してフィードバ
ックをおこない、入力電圧を制御する。
(Embodiment 16) FIG. 42 shows a sixteenth embodiment of the present invention.
FIG. 3 is a circuit diagram of the induction heating cooker according to the embodiment. In this configuration, the circuit diagram of the first embodiment includes the voltage detecting means 24 at both ends of the first capacitor 13, and detects the voltage at both ends to perform feedback to control the input voltage.

【0074】図43に、当実施例の制御手段を用いて、
図42の回路図記載の第一コンデンサの両端電圧検知手
段によって検知された両端電圧と入力電力の特性の一例
を示す。図43は、横軸を第一コンデンサの両端電圧、
縦軸を入力電力として特性を表しており、第二スイッチ
ング素子の導通時間の減少、すなわち第一コンデンサの
両端電圧の増加に伴って入力電力が増加するため、入力
電力の制御を第一コンデンサの両端電圧の情報を基にフ
ィードバックを行うことによって、精度の良い制御が可
能となる。
FIG. 43 shows an example in which the control means of this embodiment is used.
43 shows an example of the characteristics of the voltage across the terminals and the input power detected by the voltage detecting means between both ends of the first capacitor described in the circuit diagram of FIG. 42. 43, the horizontal axis represents the voltage across the first capacitor,
The vertical axis represents the characteristics as input power, and the conduction time of the second switching element decreases, that is, the input power increases with an increase in the voltage across the first capacitor. By performing feedback based on information on the voltage between both ends, highly accurate control can be performed.

【0075】(実施例17)図44に、本発明の第17
の実施例の誘導加熱調理器の回路図を示す。この構成
は、実施例1の回路図に、第二コンデンサ16の両端電
圧検知手段24を備え、両端電圧を検知してフィードバ
ックをおこない、入力電圧を制御する。
(Embodiment 17) FIG. 44 shows a seventeenth embodiment of the present invention.
FIG. 3 is a circuit diagram of the induction heating cooker according to the embodiment. In this configuration, the circuit diagram of the first embodiment includes the voltage detecting means 24 at both ends of the second capacitor 16, and detects the voltage at both ends to perform feedback to control the input voltage.

【0076】図45に、当実施例の制御手段を用いて、
図44の回路図記載の第二コンデンサの両端電圧検知手
段によって検知された両端電圧と入力電力の特性の一例
を示す。図45は、横軸を第二コンデンサの両端電圧、
縦軸を入力電力として特性を表しており、第二スイッチ
ング素子の導通時間の減少、すなわち第二コンデンサの
両端電圧の減少に伴って入力電力が増加するため、入力
電力の制御を第二コンデンサの両端電圧の情報を基にフ
ィードバックを行うことによって、精度の良い制御が可
能となる。
FIG. 45 shows an example in which the control means of this embodiment is used.
FIG. 45 shows an example of the characteristics of the voltage between both ends and the input power detected by the voltage detection means between both ends of the second capacitor shown in the circuit diagram of FIG. 44. FIG. 45 shows the voltage across the second capacitor on the horizontal axis,
The vertical axis represents the characteristics as the input power, the input power increases with a decrease in the conduction time of the second switching element, that is, a decrease in the voltage across the second capacitor. By performing feedback based on information on the voltage between both ends, highly accurate control can be performed.

【0077】(実施例18)図46に、本発明の第18
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、第一スイッチング素子14の両端電圧検知手段
を備え、直流電源11からの出力電流を検知する電流検
知手段の情報を基に入力電力を制御すると同時に、第一
スイッチング素子の両端電圧が所定値以下となるように
制御する。
(Embodiment 18) FIG. 46 shows an eighteenth embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. This configuration includes voltage detecting means at both ends of the first switching element 14, and controls input power based on information of current detecting means for detecting an output current from the DC power supply 11, and at the same time, voltage at both ends of the first switching element is Control is performed so as to be equal to or less than a predetermined value.

【0078】図47に、当実施例の制御手段を用いて、
図46の回路図記載の第一スイッチング素子の両端電圧
検知手段によって検知された両端電圧と入力電力の特性
の制御手段の一例を示す。図47は、横軸を第一スイッ
チング素子の両端電圧、縦軸を入力電力として特性を表
しており、第一スイッチング素子の導通時間の増加、す
なわち入力電力の増加に伴って第一スイッチング素子の
両端電圧は増加し、両端電圧が設定値となると、第二ス
イッチング素子の導通時間を増加して、両端電圧を下げ
て、再び、第一スイッチング素子の導通時間を増加し
て、入力電力を増加させる。
FIG. 47 shows an example in which the control means of this embodiment is used.
FIG. 47 shows an example of control means for controlling the characteristics of the input voltage and the voltage between both ends detected by the voltage detection means between both ends of the first switching element shown in the circuit diagram of FIG. 46. FIG. 47 shows the characteristics with the horizontal axis representing the voltage across the first switching element and the vertical axis representing the input power. With the increase in the conduction time of the first switching element, that is, with the increase in the input power, the characteristic of the first switching element is shown. The voltage between both ends increases, and when the voltage between both ends reaches a set value, the conduction time of the second switching element is increased, the voltage between both ends is decreased, and the conduction time of the first switching element is increased again, and the input power is increased. Let it.

【0079】(実施例19)図48に、本発明の第19
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、第二スイッチング素子17の両端電圧検知手段
を備え、直流電源11からの出力電流を検知する電流検
知手段の情報を基に入力電力を制御すると同時に、第二
スイッチング素子の両端電圧が所定値以下となるように
制御する。
(Embodiment 19) FIG. 48 shows a nineteenth embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. This configuration includes voltage detection means at both ends of the second switching element 17, and controls input power based on information of current detection means for detecting an output current from the DC power supply 11, and at the same time, voltage at both ends of the second switching element is Control is performed so as to be equal to or less than a predetermined value.

【0080】図49に、当実施例の制御手段を用いて、
図48の回路図記載の第二スイッチング素子の両端電圧
検知手段によって検知された両端電圧と入力電力の特性
の制御手段の一例を示す。図47は、横軸を第二スイッ
チング素子の両端電圧、縦軸を入力電力として特性を表
しており、第一スイッチング素子の導通時間の増加、す
なわち入力電力の増加に伴って第二スイッチング素子の
両端電圧は増加し、両端電圧が設定値となると、第二ス
イッチング素子の導通時間を増加して、両端電圧を下げ
て、再び、第一スイッチング素子の導通時間を増加し
て、入力電力を増加させる。
In FIG. 49, using the control means of this embodiment,
FIG. 49 illustrates an example of a control unit for controlling the characteristics of the input voltage and the voltage between both ends detected by the voltage detection unit between both ends of the second switching element illustrated in the circuit diagram of FIG. 48. FIG. 47 shows the characteristics with the horizontal axis representing the voltage between both ends of the second switching element and the vertical axis representing the input power. The conduction time of the first switching element increases, that is, the input power increases. The voltage between both ends increases, and when the voltage between both ends reaches a set value, the conduction time of the second switching element is increased, the voltage between both ends is decreased, and the conduction time of the first switching element is increased again, and the input power is increased. Let it.

【0081】(実施例20)図50に、本発明の第20
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、第一コンデンサ13の両端電圧検知手段を備
え、直流電源11からの出力電流を検知する電流検知手
段の情報を基に入力電力を制御すると同時に、第一コン
デンサの両端電圧が所定値以下となるように制御する。
(Embodiment 20) FIG. 50 shows a twentieth embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. This configuration includes a voltage detecting means at both ends of the first capacitor 13, and controls the input power based on the information of the current detecting means for detecting the output current from the DC power supply 11, and at the same time, sets the voltage across the first capacitor to a predetermined value. Control is performed as follows.

【0082】図51に、当実施例の制御手段を用いて、
図50の回路図記載の第一コンデンサの両端電圧検知手
段によって検知された両端電圧と入力電力の特性の制御
手段の一例を示す。図51は、横軸を第一コンデンサの
両端電圧、縦軸を入力電力として特性を表しており、第
一スイッチング素子の導通時間の増加、すなわち入力電
力の増加に伴って第一コンデンサの両端電圧は増加し、
両端電圧が設定値となると、第二スイッチング素子の導
通時間を増加して、両端電圧を下げて、再び、第一スイ
ッチング素子の導通時間を増加して、入力電力を増加さ
せる。
FIG. 51 shows an example in which the control means of this embodiment is used.
50 shows an example of control means for controlling the characteristics of the input voltage and the voltage at both ends of the first capacitor shown in the circuit diagram of FIG. FIG. 51 shows the characteristics with the horizontal axis representing the voltage across the first capacitor and the vertical axis representing the input power. As the conduction time of the first switching element increases, that is, as the input power increases, the voltage across the first capacitor increases. Increases,
When the voltage at both ends reaches the set value, the conduction time of the second switching element is increased, the voltage at both ends is decreased, and the conduction time of the first switching element is increased again to increase the input power.

【0083】(実施例21)図52に、本発明の第21
の実施例の誘導加熱調理器の回路図の一例を示す。この
構成は、第二コンデンサ16の両端電圧検知手段を備
え、直流電源11からの出力電流を検知する電流検知手
段の情報を基に入力電力を制御すると同時に、第二コン
デンサの両端電圧が所定値以下となるように制御する。
Embodiment 21 FIG. 52 shows a twenty-first embodiment of the present invention.
FIG. 3 is an example of a circuit diagram of the induction heating cooker according to the embodiment. This configuration includes means for detecting the voltage across the second capacitor 16 and controls the input power based on the information of the current detecting means for detecting the output current from the DC power supply 11, and at the same time, the voltage across the second capacitor 16 is a predetermined value. Control is performed as follows.

【0084】図53に、当実施例の制御手段を用いて、
図52の回路図記載の第二コンデンサの両端電圧検知手
段によって検知された両端電圧と入力電力の特性の制御
手段の一例を示す。図53は、横軸を第二コンデンサの
両端電圧、縦軸を入力電力として特性を表しており、第
一スイッチング素子の導通時間の増加、すなわち入力電
力の増加に伴って第二コンデンサの両端電圧は増加し、
両端電圧が設定値となると、第二スイッチング素子の導
通時間を増加して、両端電圧を下げて、再び、第一スイ
ッチング素子の導通時間を増加して、入力電力を増加さ
せる。
FIG. 53 shows an example in which the control means of this embodiment is used.
52 shows an example of control means for controlling the characteristics of the input voltage and the voltage across the second capacitor detected by the voltage detection means across the second capacitor shown in the circuit diagram of FIG. 52. FIG. 53 shows the characteristics with the horizontal axis representing the voltage across the second capacitor and the vertical axis representing the input power. As the conduction time of the first switching element increases, that is, as the input power increases, the voltage across the second capacitor increases. Increases,
When the voltage at both ends reaches the set value, the conduction time of the second switching element is increased, the voltage at both ends is decreased, and the conduction time of the first switching element is increased again to increase the input power.

【0085】[0085]

【発明の効果】以上の実施例から明らかなように、請求
項1記載の発明によれば、入力電力を制御すべく第一ス
イッチング素子の導通時間を固定し、第二スイッチング
素子の導通時間を変更するために、第一スイッチング素
子の両端電圧が入力電力の増加に伴って上がるものの、
第二共振コンデンサと第二スイッチング素子によって、
第一スイッチング素子の電圧がクランプされ、第二スイ
ッチング素子が動作しない従来例よりも低い両端電圧で
制御する事が可能となり、第一スイッチング素子を低耐
圧で低コストの部品と変換可能となる効果が得られる
る。
As is apparent from the above embodiment, according to the first aspect of the present invention, the conduction time of the first switching element is fixed and the conduction time of the second switching element is controlled to control the input power. In order to change, although the voltage across the first switching element rises with an increase in input power,
By the second resonance capacitor and the second switching element,
The voltage of the first switching element is clamped, and it is possible to control the voltage at both ends lower than that of the conventional example in which the second switching element does not operate, so that the first switching element can be converted to a low withstand voltage and low cost component. Is obtained.

【0086】請求項2に記載の発明は、入力電力を制御
すべく第一スイッチング素子の導通時間を変更し、第二
スイッチング素子の導通時間を固定するために、第一ス
イッチング素子の両端電圧が入力電力の増加に伴って上
がるものの、第二共振コンデンサと第二スイッチング素
子によって一定時間クランプした状態で制御し、第一ス
イッチング素子を低耐圧で低コストの部品と変換する事
が可能である。また、請求項1に記載の発明に記載の発
明に比べて、入力電力が大きい時に動作周波数が低くな
るので、第一スイッチング素子のスイッチング損失を低
減する効果が得られる。
According to a second aspect of the present invention, in order to control the input power, the conduction time of the first switching element is changed, and the conduction time of the second switching element is fixed. Although it increases with an increase in input power, it is possible to control the second switching capacitor and the second switching element in a state of being clamped for a certain period of time to convert the first switching element into a low-withstand-voltage and low-cost component. Further, as compared with the invention described in the first aspect, the operating frequency is reduced when the input power is large, so that the effect of reducing the switching loss of the first switching element can be obtained.

【0087】請求項3に記載の発明は、請求項1記載の
直流電源の出力電流を検知する電流検知手段を備え、前
記請求項1記載の制御回路は前記電流検知手段からの情
報を基に入力電力の制御を請求項1、請求項2の手段を
用いて行うため、請求項1、請求項2に記載の発明に記
載の発明に比べて、精度良く入力電力の制御が可能とな
る効果が得られる。
According to a third aspect of the present invention, there is provided a current detecting means for detecting an output current of the DC power supply according to the first aspect, and the control circuit according to the first aspect is provided based on information from the current detecting section. Since the control of the input power is performed by using the means of the first and second aspects, the effect that the input power can be controlled with higher accuracy than that of the first and second aspects of the invention can be achieved. Is obtained.

【0088】請求項4に記載の発明は、請求項1記載の
コイルに流れる電流の動作周波数を検知する周波数検知
手段を備え、請求項1記載の制御回路は、前記周波数検
知手段からの情報を基に入力電力の制御を請求項1、請
求項2の手段を用いて行うため、請求項3と同様に、請
求項1、請求項2に記載の発明に比べ精度良く入力電力
の制御が可能となる効果が得られる。
According to a fourth aspect of the present invention, there is provided a frequency detecting means for detecting an operating frequency of a current flowing through the coil according to the first aspect, and the control circuit according to the first aspect detects information from the frequency detecting section. Since the input power is controlled based on the first and second means based on the above, the input power can be controlled more accurately than the first and second aspects of the invention, as in the third aspect. The following effect can be obtained.

【0089】請求項5に記載の発明は、請求項1記載の
コイルに流れる電流の動作周波数を検知する周波数検知
手段を備えた請求項4と同じ構成の回路において、請求
項1記載の制御回路は、周波数検知手段からの情報によ
って、所定動作周波数範囲内で入力電力の制御を行うた
め、負荷となる鍋の固有振動周波数を避けて、耳障りな
音が発生することなく入力電力の制御を行うことが可能
となる効果が得られる。
According to a fifth aspect of the present invention, there is provided a control circuit as set forth in the first aspect, further comprising a frequency detecting means for detecting an operating frequency of a current flowing through the coil according to the first aspect. Controls the input power within a predetermined operating frequency range based on information from the frequency detection means, so that the input power is controlled without generating harsh sounds while avoiding the natural vibration frequency of the pan serving as a load. The effect that becomes possible is obtained.

【0090】請求項6に記載の発明は、請求項1記載の
第一スイッチング素子、第一逆導通ダイオード、もしく
はその両方に流れる電流のピーク電流値を検知するピー
ク電流値検知手段を備え、請求項1記載の制御回路は、
前記ピーク電流値検知手段からの情報を基に入力電力の
制御を請求項1、請求項2の手段を用いて行うため、請
求項3と同様に、請求項1、請求項2に記載の発明に比
べ精度良く入力電力の制御が可能となる効果が得られ
る。
According to a sixth aspect of the present invention, there is provided a peak current value detecting means for detecting a peak current value of a current flowing through the first switching element, the first reverse conducting diode, or both of the first switching element and the first reverse conducting diode. The control circuit according to item 1 is
Since the control of the input power is performed using the means of claim 1 and claim 2 based on the information from the peak current value detecting means, the invention according to claim 1 and claim 2 as in claim 3 As a result, the effect that the input power can be controlled with higher accuracy than that of the first embodiment is obtained.

【0091】請求項7に記載の発明は、請求項1記載の
第一スイッチング素子、第一逆導通ダイオード、もしく
はその両方に流れる電流の実効値電流を検知する実効値
電流検知手段を備え、請求項1記載の制御回路は、前記
実効値電流検知手段からの情報を基に入力電力の制御を
請求項1、請求項2の手段を用いて行うため、請求項3
と同様に、請求項1、請求項2に記載の発明に比べ精度
良く入力電力の制御が可能となる効果が得られる。
According to a seventh aspect of the present invention, there is provided an effective current detecting means for detecting an effective current of a current flowing through the first switching element, the first reverse conducting diode, or both of the first switching element and the first reverse conducting diode. The control circuit according to the first aspect controls the input power based on the information from the effective value current detection means by using the means of the first and second aspects.
Similarly to the first and second aspects of the present invention, an effect that the input power can be controlled with higher accuracy can be obtained.

【0092】請求項8に記載の発明は、請求項1記載の
第二スイッチング素子、第二逆導通ダイオード、もしく
はその両方に流れる電流のピーク電流値を検知するピー
ク電流値検知手段を備え、請求項1記載の制御回路は、
前記ピーク電流値検知手段からの情報を基に入力電力の
制御を請求項1、請求項2の手段を用いて行うため、請
求項3と同様に、請求項1、請求項2に記載の発明に比
べ精度良く入力電力の制御が可能となる効果が得られ
る。
According to an eighth aspect of the present invention, there is provided a peak current value detecting means for detecting a peak current value of a current flowing through the second switching element, the second reverse conducting diode, or both of the first switching element and the second reverse conducting diode. The control circuit according to item 1 is
Since the control of the input power is performed using the means of claim 1 and claim 2 based on the information from the peak current value detecting means, the invention according to claim 1 and claim 2 as in claim 3 As a result, the effect that the input power can be controlled with higher accuracy than that of the first embodiment is obtained.

【0093】請求項9に記載の発明は、請求項1記載の
第二スイッチング素子、第二逆導通ダイオード、もしく
はその両方に流れる電流の実効値電流を検知する実効値
電流検知手段を備え、請求項1記載の制御回路は、前記
実効値電流検知手段からの情報を基に入力電力の制御を
請求項1、請求項2の手段を用いて行うため、請求項3
と同様に、請求項1、請求項2に記載の発明に比べ精度
良く入力電力の制御が可能となる効果が得られる。
According to a ninth aspect of the present invention, there is provided an effective current detecting means for detecting an effective current of a current flowing through the second switching element, the second reverse conducting diode, or both of the first switching element and the second reverse conducting diode. The control circuit according to the first aspect controls the input power based on the information from the effective value current detection means by using the means of the first and second aspects.
Similarly to the first and second aspects of the present invention, an effect that the input power can be controlled with higher accuracy can be obtained.

【0094】請求項10に記載の発明は、請求項1記載
の第二スイッチング素子と第二逆導通ダイオードに流れ
る電流の実効値電流、すなわち第二コンデンサに流れる
実効値電流を検知する実効値電流検知手段を備え、請求
項1記載の制御回路は、前記実効値電流検知手段からの
情報を基に所定値以下に実効値電流を抑える制御を行い
ながら、入力電力の制御を請求項1、請求項2の手段を
用いて行うため、第二コンデンサの発熱による破壊を防
止しつつ、入力電力の制御が可能となる効果が得られ
る。
According to a tenth aspect of the present invention, an effective value current of a current flowing through the second switching element and the second reverse conducting diode according to the first aspect, that is, an effective value current for detecting an effective value current flowing through the second capacitor is provided. The control circuit according to claim 1, further comprising a detection unit, wherein the control circuit controls the input power while controlling the effective value current to a predetermined value or less based on the information from the effective value current detection unit. Since this is performed using the means of item 2, an effect is obtained in which input power can be controlled while preventing destruction of the second capacitor due to heat generation.

【0095】請求項11に記載の発明は、請求項1記載
のコイルに流れる電流のピーク電流値を検知するピーク
電流値検知手段を備え、請求項1記載の制御回路は、前
記ピーク電流値検知手段からの情報を基に入力電力の制
御を請求項1、請求項2の手段を用いて行うため、請求
項3と同様に、請求項1、請求項2に記載の発明に比べ
精度良く入力電力の制御が可能となる効果が得られる。
According to an eleventh aspect of the present invention, the control circuit according to the first aspect includes a peak current value detecting means for detecting a peak current value of a current flowing through the coil according to the first aspect. Since the input power is controlled based on the information from the means by using the means of claims 1 and 2, the input power is more accurately input than in the invention of claims 1 and 2, as in claim 3. The effect that power control becomes possible is obtained.

【0096】請求項12に記載の発明は、請求項1記載
のコイルに流れる電流の実効値電流を検知する実効値電
流検知手段を備え、請求項1記載の制御回路は、前記実
効値電流検知手段からの情報を基に入力電力の制御を請
求項1、請求項2の手段を用いて行うため、請求項3と
同様に、請求項1、請求項2に記載の発明に比べ精度良
く入力電力の制御が可能となる効果が得られる。
According to a twelfth aspect of the present invention, the control circuit according to the first aspect further comprises an effective value current detecting means for detecting an effective value current of the current flowing through the coil. Since the input power is controlled based on the information from the means by using the means of claims 1 and 2, the input power is more accurately input than in the invention of claims 1 and 2, as in claim 3. The effect that power control becomes possible is obtained.

【0097】請求項13に記載の発明は、請求項1記載
の第一コンデンサに流れる電流のピーク電流値を検知す
るピーク電流値検知手段を備え、請求項1記載の制御回
路は、前記ピーク電流値検知手段からの情報を基に入力
電力の制御を請求項1、請求項2の手段を用いて行うた
め、請求項3と同様に、請求項1、請求項2に記載の発
明に比べ精度良く入力電力の制御が可能となる効果が得
られる。
According to a thirteenth aspect of the present invention, the control circuit according to the first aspect further comprises a peak current value detecting means for detecting a peak current value of a current flowing through the first capacitor. Since the input power is controlled using the means of claim 1 and claim 2 based on the information from the value detection means, the accuracy is higher than that of claim 1 and claim 2 as in claim 3. The effect that the input power can be controlled well is obtained.

【0098】請求項14に記載の発明は、請求項1記載
の第一コンデンサに流れる電流の実効値電流を検知する
実効値電流検知手段を備え、請求項1記載の制御回路
は、前記実効値電流検知手段からの情報を基に入力電力
の制御を請求項1、請求項2の手段を用いて行うため、
請求項3と同様に、請求項1、請求項2に記載の発明に
比べ精度良く入力電力の制御が可能となる効果が得られ
る。
According to a fourteenth aspect of the present invention, the control circuit according to the first aspect further comprises an effective value current detecting means for detecting an effective value current of the current flowing through the first capacitor according to the first aspect. Since the input power is controlled based on the information from the current detecting means using the means of claim 1 and claim 2,
As in the case of the third aspect, the effect that the input power can be controlled with higher accuracy than the inventions of the first and second aspects is obtained.

【0099】請求項15に記載の発明は、請求項1記載
の第一コンデンサに流れる実効値電流を検知する実効値
電流検知手段を備え、請求項1記載の制御回路は、前記
実効値電流検知手段からの情報を基に所定値以下に実効
値電流を抑える制御を行いながら、入力電力の制御を請
求項1、請求項2の手段を用いて行うため、第一コンデ
ンサの発熱による破壊を防止しつつ、入力電力の制御が
可能となる効果が得られる。
According to a fifteenth aspect of the present invention, the control circuit according to the first aspect further comprises an effective value current detecting means for detecting an effective value current flowing through the first capacitor. The input power is controlled using the means of claims 1 and 2, while controlling the effective value current to be equal to or less than a predetermined value based on information from the means, thereby preventing destruction of the first capacitor due to heat generation. In addition, the effect that the input power can be controlled is obtained.

【0100】請求項16に記載の発明は、請求項1記載
の第一スイッチング素子の両端電圧検知手段を備え、請
求項1記載の制御回路は、前記両端電圧検知手段からの
情報を基に入力電力の制御を請求項1、請求項2の手段
を用いて行うため、請求項3と同様に、請求項1、請求
項2に記載の発明に比べ精度良く入力電力の制御が可能
となる効果が得られる。
According to a sixteenth aspect of the present invention, there is provided the first switching element according to the first aspect, further comprising a voltage detecting means, and the control circuit according to the first aspect inputs the voltage based on information from the voltage detecting means. Since power control is performed using the means of claim 1 and claim 2, the effect that input power can be controlled with higher accuracy than the inventions of claim 1 and claim 2 can be achieved, similarly to claim 3. Is obtained.

【0101】請求項17に記載の発明は、請求項1記載
の第二スイッチング素子の両端電圧検知手段を備え、請
求項1記載の制御回路は、前記両端電圧検知手段からの
情報を基に入力電力の制御を請求項1、請求項2の手段
を用いて行うため、請求項3と同様に、請求項1、請求
項2に記載の発明に比べ精度良く入力電力の制御が可能
となる効果が得られる。
According to a seventeenth aspect of the present invention, there is provided a second switching element according to the first aspect, further comprising a voltage detecting means, and the control circuit according to the first aspect inputs the voltage based on information from the voltage detecting means. Since power control is performed using the means of claim 1 and claim 2, the effect that input power can be controlled with higher accuracy than the inventions of claim 1 and claim 2 can be achieved, similarly to claim 3. Is obtained.

【0102】請求項18に記載の発明は、請求項1記載
の第一スイッチング素子の両端電圧検知手段、第二スイ
ッチング素子の両端電圧検知手段、及び前記各両端電圧
の差を求める減算手段を備え、請求項1記載の制御回路
は、前記減算手段からの情報を基に入力電力の制御を請
求項1、請求項2の手段を用いて行うため、請求項3と
同様に、請求項1、請求項2に記載の発明に比べ精度良
く入力電力の制御が可能となる効果が得られる。
The invention as set forth in claim 18 is provided with the means for detecting the voltage between both ends of the first switching element, the means for detecting the voltage between both ends of the second switching element, and the subtraction means for obtaining a difference between the respective voltages of both ends. Since the control circuit according to the first aspect controls the input power based on the information from the subtraction means using the means of the first and second aspects, the control circuit according to the first and second aspects has the same features as the first and second aspects. The effect that the input power can be controlled with higher accuracy than the invention described in claim 2 is obtained.

【0103】請求項19に記載の発明は、請求項1記載
の第一コンデンサの両端電圧検知手段を備え、請求項1
記載の制御回路は、前記両端電圧検知手段からの情報を
基に入力電力の制御を請求項1、請求項2の手段を用い
て行うため、請求項3と同様に、請求項1、請求項2に
記載の発明に比べ精度良く入力電力の制御が可能となる
効果が得られる。
According to a nineteenth aspect of the present invention, there is provided means for detecting a voltage between both ends of the first capacitor according to the first aspect of the present invention.
The control circuit described above controls input power based on information from the voltage detection means using the means of claim 1 and claim 2, so that the control circuit according to claim 1 and claim 2 as in claim 3. The effect that the input power can be controlled with higher accuracy than the invention described in 2 is obtained.

【0104】請求項20に記載の発明は、請求項1記載
の第二コンデンサの両端電圧検知手段を備え、請求項1
記載の制御回路は、前記両端電圧検知手段からの情報を
基に入力電力の制御を請求項1、請求項2の手段を用い
て行うため、請求項3と同様に、請求項1、請求項2に
記載の発明に比べ精度良く入力電力の制御が可能となる
効果が得られる。
According to a twentieth aspect of the present invention, there is provided means for detecting a voltage between both ends of the second capacitor according to the first aspect of the present invention.
The control circuit described above controls input power based on information from the voltage detection means using the means of claim 1 and claim 2, so that the control circuit according to claim 1 and claim 2 as in claim 3. The effect that the input power can be controlled with higher accuracy than the invention described in 2 is obtained.

【0105】請求項21に記載の発明は、請求項3記載
の第一スイッチング素子の両端電圧検知手段を備え、請
求項3記載の制御回路は、直流電源からの出力電流を検
知しながら、両端電圧が所定値以下となるように制御を
行うため、第一スイッチング素子の耐圧破壊を防ぎなが
ら入力電力の制御が可能となる効果が得られる。
According to a twenty-first aspect of the present invention, a voltage detecting means for both ends of the first switching element according to the third aspect is provided, and the control circuit according to the third aspect detects the output current from the DC power supply while detecting the output current from the DC power supply. Since the control is performed so that the voltage is equal to or lower than the predetermined value, an effect that the input power can be controlled while preventing breakdown of the first switching element is obtained.

【0106】請求項22に記載の発明は、請求項3記載
の第二スイッチング素子の両端電圧検知手段を備え、請
求項3記載の制御回路は、直流電源からの出力電流を検
知しながら、両端電圧が所定値以下となるように制御を
行うため、第二スイッチング素子の耐圧破壊を防ぎなが
ら入力電力の制御が可能となる効果が得られる。
According to a twenty-second aspect of the present invention, a voltage detecting means for both ends of the second switching element according to the third aspect is provided, and the control circuit according to the third aspect detects the output current from the DC power supply while detecting both ends. Since the control is performed so that the voltage is equal to or lower than the predetermined value, an effect is obtained that the input power can be controlled while preventing the breakdown voltage of the second switching element.

【0107】請求項23に記載の発明は、請求項3記載
の第一コンデンサの両端電圧検知手段を備え、請求項3
記載の制御回路は、直流電源からの出力電流を検知しな
がら、両端電圧が所定値以下となるように制御を行うた
め、第一コンデンサの耐圧破壊を防ぎながら入力電力の
制御が可能となる効果が得られる。
According to a twenty-third aspect of the present invention, there is provided a means for detecting a voltage between both ends of the first capacitor according to the third aspect.
The control circuit described above controls the input voltage while detecting the output current from the DC power supply so that the voltage at both ends is equal to or lower than a predetermined value, thereby preventing the breakdown voltage of the first capacitor and controlling the input power. Is obtained.

【0108】請求項24に記載の発明は、請求項3記載
の第二コンデンサの両端電圧検知手段を備え、請求項3
記載の制御回路は、直流電源からの出力電流を検知しな
がら、両端電圧が所定値以下となるように制御を行うた
め、第二コンデンサの耐圧破壊を防ぎながら入力電力の
制御が可能となる効果が得られる。
According to a twenty-fourth aspect of the present invention, there is provided a means for detecting the voltage between both ends of the second capacitor according to the third aspect.
The control circuit described above controls the input voltage while preventing the breakdown voltage of the second capacitor because the control circuit controls the voltage between both ends to be equal to or less than a predetermined value while detecting the output current from the DC power supply. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の誘導加熱装置の回路図FIG. 1 is a circuit diagram of an induction heating apparatus according to a first embodiment of the present invention.

【図2】同誘導加熱装置の各スイッチング素子の動作波
形図
FIG. 2 is an operation waveform diagram of each switching element of the induction heating device.

【図3】同誘導加熱装置の入力電力特性図FIG. 3 is a graph showing input power characteristics of the induction heating device.

【図4】同誘導加熱装置の別な回路図FIG. 4 is another circuit diagram of the induction heating device.

【図5】同誘導加熱装置の更に別な回路図FIG. 5 is another circuit diagram of the induction heating device.

【図6】同誘導加熱装置の別な入力電力特性図FIG. 6 is another input power characteristic diagram of the induction heating device.

【図7】本発明の第2の実施例の誘導加熱装置の回路図FIG. 7 is a circuit diagram of an induction heating apparatus according to a second embodiment of the present invention.

【図8】同誘導加熱装置の出力電流と入力電力の特性図FIG. 8 is a characteristic diagram of output current and input power of the induction heating device.

【図9】本発明の第3の実施例の誘導加熱装置の回路図FIG. 9 is a circuit diagram of an induction heating apparatus according to a third embodiment of the present invention.

【図10】同誘導加熱装置の動作周波数と入力電力の特
性図
FIG. 10 is a characteristic diagram of operating frequency and input power of the induction heating device.

【図11】同誘導加熱装置の動作周波数と入力電力の特
性図
FIG. 11 is a characteristic diagram of operating frequency and input power of the induction heating device.

【図12】同誘導加熱装置の別の動作周波数と入力電力
の特性図
FIG. 12 is a characteristic diagram of another operating frequency and input power of the induction heating device.

【図13】本発明の第4の実施例の誘導加熱装置の回路
FIG. 13 is a circuit diagram of an induction heating apparatus according to a fourth embodiment of the present invention.

【図14】同誘導加熱装置のピーク電流値と入力電力の
特性図
FIG. 14 is a characteristic diagram of a peak current value and an input power of the induction heating device.

【図15】本発明の第5の実施例の誘導加熱装置の回路
FIG. 15 is a circuit diagram of an induction heating apparatus according to a fifth embodiment of the present invention.

【図16】同誘導加熱装置のピーク電流値と入力電力の
特性図
FIG. 16 is a characteristic diagram of a peak current value and an input power of the induction heating device.

【図17】本発明の第6の実施例の誘導加熱装置の回路
FIG. 17 is a circuit diagram of an induction heating apparatus according to a sixth embodiment of the present invention.

【図18】同誘導加熱装置の実効値電流と入力電力の特
性図
FIG. 18 is a characteristic diagram of an effective value current and an input power of the induction heating device.

【図19】本発明の第7の実施例の誘導加熱装置の回路
FIG. 19 is a circuit diagram of an induction heating apparatus according to a seventh embodiment of the present invention.

【図20】同誘導加熱装置のピーク電流値と入力電力の
特性図
FIG. 20 is a characteristic diagram of a peak current value and an input power of the induction heating device.

【図21】本発明の第8の実施例の誘導加熱装置の回路
FIG. 21 is a circuit diagram of an induction heating apparatus according to an eighth embodiment of the present invention.

【図22】同誘導加熱装置の実効値電流と入力電力の特
性図
FIG. 22 is a characteristic diagram of an effective value current and an input power of the induction heating device.

【図23】同誘導加熱装置の別の実効値電流と入力電力
の特性図
FIG. 23 is a characteristic diagram of another effective value current and input power of the induction heating device.

【図24】同誘導加熱装置の更に別の実効値電流と入力
電力の特性図
FIG. 24 is a characteristic diagram of yet another effective value current and input power of the induction heating device.

【図25】本発明の第9の実施例の誘導加熱装置の回路
FIG. 25 is a circuit diagram of an induction heating apparatus according to a ninth embodiment of the present invention.

【図26】同誘導加熱装置のピーク電流値と入力電力の
特性図
FIG. 26 is a characteristic diagram of a peak current value and an input power of the induction heating device.

【図27】本発明の第10の実施例の誘導加熱装置の回
路図
FIG. 27 is a circuit diagram of an induction heating apparatus according to a tenth embodiment of the present invention.

【図28】同誘導加熱装置の実効値電流と入力電力の特
性図
FIG. 28 is a characteristic diagram of an effective value current and input power of the induction heating device.

【図29】本発明の第11の実施例の誘導加熱装置の回
路図
FIG. 29 is a circuit diagram of an induction heating apparatus according to an eleventh embodiment of the present invention.

【図30】同誘導加熱装置のピーク電流値と入力電力の
特性図
FIG. 30 is a characteristic diagram of a peak current value and an input power of the induction heating device.

【図31】本発明の第12の実施例の誘導加熱装置の回
路図
FIG. 31 is a circuit diagram of an induction heating apparatus according to a twelfth embodiment of the present invention.

【図32】同誘導加熱装置の実効値電流と入力電力の特
性図
FIG. 32 is a characteristic diagram of an effective value current and input power of the induction heating device.

【図33】同誘導加熱装置の別の実効値電流と入力電力
の特性図
FIG. 33 is a characteristic diagram of another effective value current and input power of the induction heating device.

【図34】同誘導加熱装置の更に別の実効値電流と入力
電力の特性図
FIG. 34 is a characteristic diagram of yet another effective value current and input power of the induction heating device.

【図35】本発明の第13の実施例の誘導加熱装置の回
路図
FIG. 35 is a circuit diagram of an induction heating apparatus according to a thirteenth embodiment of the present invention.

【図36】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 36 is a characteristic diagram of voltage between both ends and input power of the induction heating apparatus.

【図37】同誘導加熱装置の別の両端電圧と入力電力の
特性図
FIG. 37 is a characteristic diagram of another terminal voltage and input power of the induction heating device.

【図38】本発明の第14の実施例の誘導加熱装置の回
路図
FIG. 38 is a circuit diagram of an induction heating apparatus according to a fourteenth embodiment of the present invention.

【図39】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 39 is a characteristic diagram of the voltage between both ends and the input power of the induction heating device.

【図40】本発明の第15の実施例の誘導加熱装置の回
路図
FIG. 40 is a circuit diagram of an induction heating apparatus according to a fifteenth embodiment of the present invention.

【図41】同誘導加熱装置の各両端電圧の差と入力電力
の特性図
FIG. 41 is a characteristic diagram of a difference between voltages at both ends of the induction heating device and an input power.

【図42】本発明の第16の実施例の誘導加熱装置の回
路図
FIG. 42 is a circuit diagram of an induction heating apparatus according to a sixteenth embodiment of the present invention.

【図43】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 43 is a characteristic diagram of the voltage between both ends and the input power of the induction heating device.

【図44】本発明の第17の実施例の誘導加熱装置の回
路図
FIG. 44 is a circuit diagram of an induction heating apparatus according to a seventeenth embodiment of the present invention.

【図45】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 45 is a characteristic diagram of voltage between both ends and input power of the induction heating apparatus.

【図46】本発明の第18の実施例の誘導加熱装置の回
路図
FIG. 46 is a circuit diagram of an induction heating apparatus according to an eighteenth embodiment of the present invention.

【図47】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 47 is a characteristic diagram of voltage between both ends and input power of the induction heating device.

【図48】本発明の第19の実施例の誘導加熱装置の回
路図
FIG. 48 is a circuit diagram of an induction heating apparatus according to a nineteenth embodiment of the present invention.

【図49】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 49 is a characteristic diagram of voltage between both ends and input power of the induction heating apparatus.

【図50】本発明の第20の実施例の誘導加熱装置の回
路図
FIG. 50 is a circuit diagram of an induction heating apparatus according to a twentieth embodiment of the present invention.

【図51】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 51 is a characteristic diagram of voltage between both ends and input power of the induction heating device.

【図52】本発明の第21の実施例の誘導加熱装置の回
路図
FIG. 52 is a circuit diagram of an induction heating apparatus according to a twenty-first embodiment of the present invention.

【図53】同誘導加熱装置の両端電圧と入力電力の特性
FIG. 53 is a characteristic diagram of voltage between both ends and input power of the induction heating apparatus.

【図54】従来例の誘導加熱調理装置の回路図FIG. 54 is a circuit diagram of a conventional induction heating cooking device.

【図55】同誘導加熱装置のスイッチング素子の動作波
形図
FIG. 55 is an operation waveform diagram of a switching element of the induction heating device.

【符号の説明】[Explanation of symbols]

11、551 直流電源 12、552 加熱コイル 13、553 第一コンデンサ 14、554 第一スイッチング素子 15、555 第一逆導通ダイオード 16 第二コンデンサ 17 第二スイッチング素子 18 第二逆導通ダイオード 19、559 制御回路 20 電流検知手段 21 周波数検知手段 22 ピーク電流値検知手段 23 実効値電流検知手段 24、558 両端電圧検知手段 25 両端電圧検知手段 26 減算手段 11, 551 DC power supply 12, 552 Heating coil 13, 553 First capacitor 14, 554 First switching element 15, 555 First reverse conducting diode 16 Second capacitor 17 Second switching element 18 Second reverse conducting diode 19, 559 Control Circuit 20 Current detecting means 21 Frequency detecting means 22 Peak current value detecting means 23 Effective value current detecting means 24,558 Both ends voltage detecting means 25 Both ends voltage detecting means 26 Subtracting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 秀和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hidekazu Yamashita 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 直流電源にその一端を接続されたコイル
と、前記直流電源に対して前記コイルと直列接続される
第一スイッチング素子と第一逆導通ダイオードとの並列
回路と、前記コイルと共振回路を形成する第一コンデン
サと、前記コイルもしくは第一スイッチング素子に対し
て並列接続される第二スイッチング素子と第二逆導通ダ
イオードの並列回路と直列接続される第二コンデンサと
でなる直列回路と、前記第一スイッチング素子と前記第
二スイッチング素子を導通制御する制御回路とを備え、
前記制御回路は、前記各スイッチング素子を交互に導通
制御するとともに、入力電力を制御すべく第一スイッチ
ング素子の導通時間を固定し、第二スイッチング素子の
導通時間を変更してなる誘導加熱装置。
1. A coil having one end connected to a DC power supply, a parallel circuit of a first switching element and a first reverse conducting diode connected in series with the coil to the DC power supply, and a resonance with the coil. A first capacitor forming a circuit, and a series circuit including a second capacitor connected in series with a parallel circuit of a second switching element and a second reverse conducting diode connected in parallel to the coil or the first switching element. A control circuit for controlling conduction of the first switching element and the second switching element,
An induction heating device wherein the control circuit alternately controls conduction of the switching elements, fixes a conduction time of a first switching element to control input power, and changes a conduction time of a second switching element.
【請求項2】 直流電源にその一端を接続されたコイル
と、前記直流電源に対して前記コイルと直列接続される
第一スイッチング素子と第一逆導通ダイオードとの並列
回路と、前記コイルと共振回路を形成する第一コンデン
サと、前記コイルもしくは第一スイッチング素子に対し
て並列接続される第二スイッチング素子と第二逆導通ダ
イオードの並列回路と直列接続される第二コンデンサと
でなる直列回路と、前記第一スイッチング素子と前記第
二スイッチング素子を導通制御する制御回路とを備え、
前記制御回路は、前記各スイッチング素子を交互に導通
制御するとともに、入力電力を制御すべく第一スイッチ
ング素子の導通時間を変更し、第二スイッチング素子の
導通時間を固定してなる誘導加熱装置。
2. A coil having one end connected to a DC power supply, a parallel circuit of a first switching element and a first reverse conducting diode connected in series with the coil to the DC power supply, and a resonance with the coil. A first capacitor forming a circuit, and a series circuit including a second capacitor connected in series with a parallel circuit of a second switching element and a second reverse conducting diode connected in parallel to the coil or the first switching element. A control circuit for controlling conduction of the first switching element and the second switching element,
An induction heating apparatus, wherein the control circuit alternately controls conduction of the switching elements, changes a conduction time of a first switching element to control input power, and fixes a conduction time of a second switching element.
【請求項3】 直流電源の出力電流を検知する電流検知
手段を備え、制御回路は、前記電流検知手段の出力に応
じて入力電力を制御してなる請求項1または2記載の誘
導加熱装置。
3. The induction heating apparatus according to claim 1, further comprising current detection means for detecting an output current of the DC power supply, wherein the control circuit controls input power in accordance with an output of the current detection means.
【請求項4】 回路の動作周波数検知手段を備え、制御
回路は、前記動作周波数検知手段の出力に応じて入力電
力を制御してなる請求項1または2記載の誘導加熱装
置。
4. The induction heating apparatus according to claim 1, further comprising an operating frequency detecting means for the circuit, wherein the control circuit controls the input power in accordance with an output of the operating frequency detecting means.
【請求項5】 コイルに流れる電流の周波数検知手段を
備え、制御回路は、前記周波数検知手段の出力に応じて
所定の周波数範囲内で入力電力を制御してなる請求項1
または2記載の誘導加熱装置。
5. The apparatus according to claim 1, further comprising means for detecting a frequency of the current flowing through the coil, wherein the control circuit controls the input power within a predetermined frequency range according to the output of the frequency detecting means.
Or the induction heating device according to 2.
【請求項6】 第一スイッチング素子および/または第
一逆導通ダイオードのピーク電流値検知手段を備え、制
御回路は、前記ピーク電流値検知手段の出力に応じて入
力電力を制御してなる請求項1または2記載の誘導加熱
装置。
6. A control circuit comprising: a peak current value detecting means for the first switching element and / or the first reverse conducting diode; and the control circuit controls input power according to an output of the peak current value detecting means. 3. The induction heating device according to 1 or 2.
【請求項7】 第一スイッチング素子および/または第
一逆導通ダイオードの実効値電流検知手段を備え、制御
回路は、前記実効値電流検知手段の出力に応じて入力電
力を制御してなる請求項1または2記載の誘導加熱装
置。
7. An effective value current detecting means for the first switching element and / or the first reverse conducting diode, wherein the control circuit controls input power according to an output of the effective value current detecting means. 3. The induction heating device according to 1 or 2.
【請求項8】 第二スイッチング素子および/または第
二逆導通ダイオードのピーク電流値検知手段を備え、制
御回路は、前記ピーク電流値検知手段の出力に応じて入
力電力を制御してなる請求項1または2記載の誘導加熱
装置。
8. A control device comprising: a peak current value detecting means for the second switching element and / or the second reverse conducting diode; and the control circuit controls input power according to an output of the peak current value detecting means. 3. The induction heating device according to 1 or 2.
【請求項9】 第二スイッチング素子および/または第
二逆導通ダイオードの実効値電流検知手段を備え、制御
回路は、前記実効値電流検知手段の出力に応じて入力電
力を制御してなる請求項1または2記載の誘導加熱装
置。
9. An effective value current detecting means for the second switching element and / or the second reverse conducting diode, wherein the control circuit controls the input power in accordance with an output of the effective value current detecting means. 3. The induction heating device according to 1 or 2.
【請求項10】 第二スイッチング素子と第二逆導通ダ
イオードの実効値電流検知手段を備え、制御回路は、前
記実効値電流検知手段の出力に応じて所定値以上の実効
値電流が流れないように入力電力を制御してなる請求項
1または2記載の誘導加熱装置。
10. An effective value current detecting means for a second switching element and a second reverse conducting diode, wherein the control circuit prevents an effective value current of a predetermined value or more from flowing according to an output of the effective value current detecting means. 3. The induction heating device according to claim 1, wherein the input power is controlled.
【請求項11】 コイルのピーク電流値検知手段を備
え、制御回路は、前記ピーク電流値検知手段の出力に応
じて入力電力を制御してなる請求項1または2記載の誘
導加熱装置。
11. The induction heating apparatus according to claim 1, further comprising a coil peak current value detecting means, wherein the control circuit controls the input power according to an output of the peak current value detecting means.
【請求項12】 コイルの実効値電流検知手段を備え、
制御回路は、前記実効値電流検知手段の出力に応じて入
力電力を制御してなる請求項1または2記載の誘導加熱
装置。
12. An apparatus for detecting an effective value current of a coil,
3. The induction heating apparatus according to claim 1, wherein the control circuit controls the input power in accordance with an output of the effective value current detection means.
【請求項13】 第一コンデンサのピーク電流値検知手
段を備え、制御回路は、前記ピーク電流値検知手段の出
力に応じて入力電力を制御してなる請求項1または2記
載の誘導加熱装置。
13. The induction heating apparatus according to claim 1, further comprising a peak current value detecting means for the first capacitor, wherein the control circuit controls the input power according to an output of the peak current value detecting means.
【請求項14】 第一コンデンサの実効値電流検知手段
を備え、制御回路は、前記実効値電流検知手段の出力に
応じて入力電力を制御してなる請求項1または2記載の
誘導加熱装置。
14. The induction heating apparatus according to claim 1, further comprising an effective value current detecting means for the first capacitor, wherein the control circuit controls the input power in accordance with an output of the effective value current detecting means.
【請求項15】 第一コンデンサの実効値電流検知手段
を備え、制御回路は、前記実効値電流検知手段の出力に
応じて所定値以上の実効値電流が流れないように入力電
力を制御してなる請求項1または2記載の誘導加熱装
置。
15. An effective value current detecting means for the first capacitor, wherein the control circuit controls input power so that an effective value current of a predetermined value or more does not flow according to an output of the effective value current detecting means. The induction heating device according to claim 1 or 2, wherein:
【請求項16】 第一スイッチング素子の両端電圧検知
手段を備え、制御回路は、前記両端電圧検知手段の出力
に応じて所定値以上の実効値電流が流れないように入力
電力を制御してなる請求項1または2記載の誘導加熱装
置。
16. A control circuit comprising a voltage detecting means at both ends of the first switching element, wherein the control circuit controls an input power so that an effective current not less than a predetermined value does not flow according to an output of the voltage detecting means at both ends. The induction heating device according to claim 1.
【請求項17】 第二スイッチング素子の両端電圧検知
手段を備え、制御回路は、前記両端電圧検知手段の出力
に応じて所定値以上の実効値電流が流れないように入力
電力を制御してなる請求項1または2記載の誘導加熱装
置。
17. A control circuit comprising a voltage detecting means at both ends of the second switching element, wherein the control circuit controls the input power so that an effective current of a predetermined value or more does not flow according to the output of the voltage detecting means at both ends. The induction heating device according to claim 1.
【請求項18】 第一スイッチング素子の両端電圧検知
手段、第二スイッチング素子の両端電圧検知手段、及び
前記各両端電圧の差を求める減算手段を備え、制御回路
は、前記減算手段手段の出力に応じて入力電力を制御し
てなる請求項1または2記載の誘導加熱装置。
18. A control circuit comprising: a voltage detecting means for both ends of the first switching element, a voltage detecting means for both ends of the second switching element, and a subtraction means for calculating a difference between the voltages at both ends. 3. The induction heating apparatus according to claim 1, wherein the input power is controlled in accordance with the input power.
【請求項19】 第一コンデンサの両端電圧検知手段を
備え、制御回路は、前記両端電圧検知手段の出力に応じ
て入力電力を制御してなる請求項1または2記載の誘導
加熱装置。
19. The induction heating apparatus according to claim 1, further comprising a voltage detecting means for both ends of the first capacitor, wherein the control circuit controls the input power in accordance with an output of the voltage detecting means for both ends.
【請求項20】 第二コンデンサの両端電圧検知手段を
備え、制御回路は、前記両端電圧検知手段の出力に応じ
て入力電力を制御してなる請求項1または2記載の誘導
加熱装置。
20. The induction heating apparatus according to claim 1, further comprising a voltage detecting means for both ends of the second capacitor, wherein the control circuit controls input power according to an output of the voltage detecting means for both ends.
【請求項21】 第一スイッチング素子の両端電圧検知
手段を備え、制御回路は、前記第一スイッチング素子の
両端電圧を所定電圧以下に保持しつつ入力電力を制御し
てなる請求項1または2記載の誘導加熱装置。
21. The apparatus according to claim 1, further comprising a voltage detecting means for detecting a voltage between both ends of the first switching element, wherein the control circuit controls the input power while maintaining a voltage between both ends of the first switching element at a predetermined voltage or less. Induction heating equipment.
【請求項22】 第二スイッチング素子の両端電圧検知
手段を備え、制御回路は、前記第二スイッチング素子の
両端電圧を所定電圧以下に保持しつつ入力電力を制御し
てなる請求項1または2記載の誘導加熱装置。
22. The apparatus according to claim 1, further comprising a voltage detecting means for detecting the voltage between both ends of the second switching element, wherein the control circuit controls the input power while maintaining the voltage between both ends of the second switching element at a predetermined voltage or less. Induction heating equipment.
【請求項23】 第一コンデンサの両端電圧検知手段を
備え、制御回路は、前記第一コンデンサの両端電圧を所
定電圧以下に保持しつつ入力電力を制御してなる請求項
1または2記載の誘導加熱装置。
23. The induction system according to claim 1, further comprising a voltage detecting means for detecting the voltage between both ends of the first capacitor, wherein the control circuit controls the input power while maintaining the voltage between both ends of the first capacitor at a predetermined voltage or less. Heating equipment.
【請求項24】 第二コンデンサの両端電圧検知手段を
備え、制御回路は、前記第二コンデンサの両端電圧を所
定電圧以下に保持しつつ入力電力を制御してなる請求項
1または2記載の誘導加熱装置。
24. The induction according to claim 1, further comprising a voltage detecting means for detecting a voltage between both ends of the second capacitor, wherein the control circuit controls the input power while maintaining the voltage between both ends of the second capacitor at a predetermined voltage or less. Heating equipment.
JP26266696A 1996-10-03 1996-10-03 Induction heating device Expired - Fee Related JP3666140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26266696A JP3666140B2 (en) 1996-10-03 1996-10-03 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26266696A JP3666140B2 (en) 1996-10-03 1996-10-03 Induction heating device

Publications (2)

Publication Number Publication Date
JPH10106738A true JPH10106738A (en) 1998-04-24
JP3666140B2 JP3666140B2 (en) 2005-06-29

Family

ID=17378930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26266696A Expired - Fee Related JP3666140B2 (en) 1996-10-03 1996-10-03 Induction heating device

Country Status (1)

Country Link
JP (1) JP3666140B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334772A (en) * 2001-05-09 2002-11-22 Matsushita Electric Ind Co Ltd Inverter for induction heating
WO2004052056A1 (en) * 2002-12-02 2004-06-17 Kabushiki Kaisha Toshiba Induction heating cooking appliance
JP2005347132A (en) * 2004-06-03 2005-12-15 Canon Inc Heating device, temperature control method in heating device, and image formation device
JP2008258180A (en) * 2008-07-30 2008-10-23 Matsushita Electric Ind Co Ltd Induction heating cooking oven
JP2011243405A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Induction heating cooking device
JP2015506544A (en) * 2011-12-29 2015-03-02 アルチュリク・アノニム・シルケチ Wireless kitchen utensils operated on induction cooker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334772A (en) * 2001-05-09 2002-11-22 Matsushita Electric Ind Co Ltd Inverter for induction heating
WO2004052056A1 (en) * 2002-12-02 2004-06-17 Kabushiki Kaisha Toshiba Induction heating cooking appliance
JP2005347132A (en) * 2004-06-03 2005-12-15 Canon Inc Heating device, temperature control method in heating device, and image formation device
JP2008258180A (en) * 2008-07-30 2008-10-23 Matsushita Electric Ind Co Ltd Induction heating cooking oven
JP2011243405A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Induction heating cooking device
JP2015506544A (en) * 2011-12-29 2015-03-02 アルチュリク・アノニム・シルケチ Wireless kitchen utensils operated on induction cooker

Also Published As

Publication number Publication date
JP3666140B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
EP0673181A2 (en) Induction heating cooker
JPH10106738A (en) Induction heater apparatus
JP3843528B2 (en) Induction heating device
JP2003115369A (en) Induction heating cooker
JPS5836473B2 (en) induction heating device
JP2001267052A (en) Induction heating cooker
JPS62290091A (en) Induction heating cooker
KR100692634B1 (en) Driving circuit for induction heating device and the driving method thereof
US4430542A (en) Electromagnetic cooking apparatus
JP2005116385A (en) Induction heating device
JP3592458B2 (en) Electromagnetic cooker
JPH07231666A (en) Pwm control voltage inverter
JPH10116683A (en) Induction heating device
JP2850401B2 (en) Induction heating cooker
WO2022179228A1 (en) Heating detection circuit
CN111246611B (en) Electromagnetic heating cooking utensil
US20230007740A1 (en) Method and system to control a qr-inverter in a induction cooking appliance
JP4103081B2 (en) Induction heating cooker
JP3175576B2 (en) Induction heating cooker
JP3446507B2 (en) Induction heating cooker
JPH09223577A (en) Induction heating cooking appliance
JP4117568B2 (en) Induction heating cooker
JP3196433B2 (en) microwave
JP3265975B2 (en) Induction heating cooker
KR100284435B1 (en) The power control device for induction heating rice cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees