JPH1010589A - Optical demultiplex/multiplex element - Google Patents

Optical demultiplex/multiplex element

Info

Publication number
JPH1010589A
JPH1010589A JP17852496A JP17852496A JPH1010589A JP H1010589 A JPH1010589 A JP H1010589A JP 17852496 A JP17852496 A JP 17852496A JP 17852496 A JP17852496 A JP 17852496A JP H1010589 A JPH1010589 A JP H1010589A
Authority
JP
Japan
Prior art keywords
wavelength
layer
refractive index
waveguide
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17852496A
Other languages
Japanese (ja)
Inventor
Shinzo Suzaki
慎三 須崎
Takuya Aizawa
卓也 相沢
Toshisada Sekiguchi
利貞 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP17852496A priority Critical patent/JPH1010589A/en
Publication of JPH1010589A publication Critical patent/JPH1010589A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate type ADM(add and drop wavelength multiplexer) element with high wavelength resolution with a wavelength control function. SOLUTION: Upper part/lower part waveguides 12, 14 are superposed into a two-storied structure holding a separation layer 13 therebetween in a central part, and a diffraction grating 21 by a periodical change in a refractive index is formed between the separation layer 13 and the upper part waveguide 14 in the central part, and the upper part/lower part waveguides 12, 14 are made an MQW(multiple quanta well) structure in the part of the diffraction grating 21, and by applying a voltage to an electrode 24 provided on the surface, the refractive index of the part of the MQW structure of the waveguides 12, 14 is changed, and an ADD&DROping wavelength is controlled optionally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光導波路から特
定波長の光を取り出したり逆に付加したりする光分波合
波素子に関し、とくに、ADM(Add and Drop wavelen
gth Multiplexer)と呼ばれる光分波合波素子の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical demultiplexing / multiplexing device for extracting light of a specific wavelength from an optical waveguide and adding the light in reverse order, and in particular, to an ADM (Add and Drop Wavelength).
gth Multiplexer).

【0002】[0002]

【従来の技術】近年、長距離大容量光ファイバ伝送シス
テム構築のための大容量化の技術としてWDM(波長多
重技術)が盛んに用いられている。これは、概略的に説
明すれば、1本の光ファイバに少しずつ波長を変えた伝
送光に信号を乗せて情報を送るもので、波長数に応じて
伝送容量を増やすというものである。ところが、限られ
た波長帯、たとえば1.55μm帯の中で8波、16波
あるいは64波と多重化しようとすると、必然的に隣接
する波長間隔が狭くなり、発光波長源、特定波長を分波
あるいは合波する(取り出したり付加したりする)デバ
イス、カップラーなどの仕様もかなり厳しいものとな
る。
2. Description of the Related Art In recent years, WDM (wavelength multiplexing technology) has been actively used as a technology for increasing the capacity for constructing a long-distance, large-capacity optical fiber transmission system. In brief, this is to transmit information by transmitting a signal to transmission light whose wavelength is gradually changed in one optical fiber, and to increase the transmission capacity according to the number of wavelengths. However, when trying to multiplex 8 waves, 16 waves or 64 waves within a limited wavelength band, for example, 1.55 μm band, the interval between adjacent wavelengths is inevitably narrowed, and the emission wavelength source and the specific wavelength are separated. The specifications of the devices that are waved or multiplexed (taken out or added), couplers, etc. will also be quite strict.

【0003】特定波長を分波あるいは合波する素子とし
ては、従来、誘電体多層膜によるフィルター方式のデバ
イスが用いられてきており、隣接する波長ピーク間隔が
20nm程度と広い場合には十分使用できるが、実際の
WDMでは間隔が2nm程度とほぼ10分の1であるか
ら、WDMにはフィルター方式はもはや適さない。
[0003] As a device for demultiplexing or multiplexing a specific wavelength, a filter-type device using a dielectric multilayer film has been conventionally used, and can be used sufficiently when the interval between adjacent wavelength peaks is as large as about 20 nm. However, in an actual WDM, the interval is about 2 nm, which is almost one tenth, so that the filter method is no longer suitable for WDM.

【0004】そこで、現在は、ファイバグレーティング
(FG)と呼ばれる回折格子による波長選択性を利用し
たファイバ型のデバイスが研究開発されている。これ
は、コアにGeを高めにドープした光ファイバに位相シ
フトマスクをした上で、エキシマレーザのように紫外光
で且つ高出力な光を照射することにより周期的な屈折率
変化を有する構造を作り込んだものである。また、同様
な屈折率の周期構造を有する基板型の導波路も提案され
ている(M
Therefore, at present, research and development of a fiber-type device utilizing wavelength selectivity by a diffraction grating called a fiber grating (FG) is being conducted. This is a structure having a periodic refractive index change by irradiating a high-output light such as an excimer laser with a high-power light, such as an excimer laser, after applying a phase shift mask to an optical fiber in which the core is highly doped with Ge. It is a built-in one. Further, a substrate type waveguide having a periodic structure having a similar refractive index has also been proposed (M

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
屈折率の周期構造によるFGや基板型導波路では、特定
の波長しかADD&DROPできないという問題があ
る。これらでは、周期構造(の周期)とコア・クラッド
間の屈折率差で決まるブラッグ反射によってADD&D
ROPする波長が決まるのであるが、周期構造自体はい
ったん作り込んでしまえばその周期を変えることなどは
できないので、ADD&DROPする波長が固定化され
てしまう。そのため、いくつかの波長に対応するような
周期構造を有するデバイスをその都度作ったり、あらか
じめ用意しておく必要があるし、任意の波長をADD&
DROPするようにチューニングすることなどは到底で
きない。
However, in the FG or the substrate type waveguide having the periodic structure of the refractive index, there is a problem that only a specific wavelength can be added and dropped. In these, ADD & D is performed by Bragg reflection determined by the refractive index difference between (the period of) the periodic structure and the core / clad.
The wavelength for ROP is determined. However, once the periodic structure itself is created, the period cannot be changed, and the wavelength for ADD & DROP is fixed. Therefore, it is necessary to make a device having a periodic structure corresponding to several wavelengths each time, or to prepare a device in advance.
Tuning to DROP is impossible.

【0006】この発明は、上記に鑑み、1個の素子でA
DD&DROPする波長を任意にチューニングできるよ
うに改善した、光分波合波素子を提供することを目的と
する。
[0006] In view of the above, the present invention provides an A
It is an object of the present invention to provide an optical demultiplexing / multiplexing device improved so that the wavelength for DD & DROP can be arbitrarily tuned.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明による光分波合波素子においては、半導体
基板上に低屈折率の分離層を挟んで上下に形成された多
重量子井戸構造の導波路層と、該導波路層の光伝搬方向
に沿って形成された1次の回折格子と、電界印加用電極
とを有することが特徴となっている。
In order to achieve the above object, in an optical demultiplexing / multiplexing device according to the present invention, a multiple quantum well formed above and below a semiconductor substrate with a low-refractive-index separation layer interposed therebetween. It is characterized by having a waveguide layer having a structure, a primary diffraction grating formed along the light propagation direction of the waveguide layer, and an electric field application electrode.

【0008】ADD&DROPする波長は回折格子の周
期と導波路の等価屈折率により決まるが、導波路層を電
界印加により大きく等価屈折率が変化する多重量子井戸
構造としたため、電極に加える電圧によりADD&DR
OPする波長をチューニングすることが可能となる。
The wavelength for ADD & DROP is determined by the period of the diffraction grating and the equivalent refractive index of the waveguide. However, since the waveguide layer has a multiple quantum well structure in which the equivalent refractive index changes greatly when an electric field is applied, ADD & DR is applied by the voltage applied to the electrode.
It is possible to tune the wavelength for OP.

【0009】[0009]

【発明の実施の形態】つぎに、この発明の実施の形態に
ついて図面を参照しながら詳細に説明する。図1におい
て、n−InP基板11上に溝を作った上で、高屈折率
のInGaAsP層12、低屈折率のInP層13、高
屈折率のInGaAsP層14が順次形成され、さらに
InGaAsP層14上に低屈折率のInP層15と高
屈折率のInGaAsP層16とを重ねたリッジ部が作
られている。下部InGaAsP層12は上記の溝によ
りリブ型導波路となっており、上部InGaAsP層1
4はその上のリッジ部によってリッジ型導波路となって
いる。
Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, after forming a groove on an n-InP substrate 11, a high-refractive-index InGaAsP layer 12, a low-refractive-index InP layer 13, and a high-refractive-index InGaAsP layer 14 are sequentially formed. A ridge portion is formed on which an InP layer 15 having a low refractive index and an InGaAsP layer 16 having a high refractive index are stacked. The lower InGaAsP layer 12 is formed as a rib-type waveguide by the groove, and the upper InGaAsP layer 1 is formed.
Reference numeral 4 designates a ridge-type waveguide by the ridge portion thereon.

【0010】これら導波路は中央部において相互に重な
るよう曲げられており、この重なり部では図2に示すよ
うに分離層(InP層)13を挟んだ2階建構造のフィ
ルタ領域となっている。フィルタ領域に連続する導波路
は、入出力ポート31と32の間、入出力ポート33と
34の間を空間的に隔てるために曲げられている。この
ように、導波路は、端から端へ、順に曲がり部、フィル
タ部、曲がり部となって連続している。
[0010] These waveguides are bent so as to overlap each other at the center, and at the overlap, as shown in FIG. 2, a filter region having a two-story structure sandwiching a separation layer (InP layer) 13. . The waveguide continuing to the filter region is bent to spatially separate the input / output ports 31 and 32 and the input / output ports 33 and 34. In this manner, the waveguide is continuous from end to end as a bent portion, a filter portion, and a bent portion in this order.

【0011】このフィルタ部において、分離層13と上
部導波路層14との間に、光波の伝搬方向に沿って屈折
率変化の周期構造による1次の回折格子21が形成され
ている。なお、この1次の回折格子21は、上部または
下部導波路層12、14と結合し、これらの層12、1
4における光波の伝搬方向に沿っていればよいので、分
離層13と下部導波路層12との間、あるいは、下部導
波路層12と基板11との間、上部導波路層14と低屈
折率層15との間に形成することも可能である。ただ、
導波路層12、14を伝搬する光波の回折格子21との
結合効率の点で、分離層13と上部導波路層14との間
か、分離層13と下部導波路層12との間が望ましい。
そして、この回折格子21の部分では、上部、下部導波
路とも図3に示すように多重量子井戸(MQW)層2
2、23となっている。さらにこの回折格子21の部分
においてリッジ部を覆うように電極24が設けられてい
る。この電極24はワイヤボンディング用パッド25と
一体に連続している。n−InP基板11の裏面全面に
は上記の電極24と対をなす電極26が設けられてい
る。
In this filter portion, a first-order diffraction grating 21 having a periodic structure of a change in refractive index is formed between the separation layer 13 and the upper waveguide layer 14 along the light wave propagation direction. The primary diffraction grating 21 is coupled to the upper or lower waveguide layers 12 and 14, and these layers 12, 1
4, it is only necessary to follow the propagation direction of the light wave, so that the distance between the separation layer 13 and the lower waveguide layer 12, or between the lower waveguide layer 12 and the substrate 11, or between the upper waveguide layer 14 and the low refractive index It is also possible to form between the layer 15. However,
From the viewpoint of the coupling efficiency of the light wave propagating through the waveguide layers 12 and 14 with the diffraction grating 21, it is desirable that the distance between the separation layer 13 and the upper waveguide layer 14 or that the separation layer 13 and the lower waveguide layer 12 be between. .
Then, in the part of the diffraction grating 21, both the upper and lower waveguides have a multiple quantum well (MQW) layer 2 as shown in FIG.
2, 23. Further, an electrode 24 is provided so as to cover the ridge in the portion of the diffraction grating 21. The electrode 24 is continuous with the wire bonding pad 25 integrally. An electrode 26 paired with the electrode 24 is provided on the entire back surface of the n-InP substrate 11.

【0012】このフィルタ部の多重量子井戸層22、2
3は、たとえば厚さ8〜10nmのInP障壁層(組成
波長0.91μm)と井戸層(組成波長1.3μm;
1.3μm帯用、1.65μm;1.55μm帯用)と
を10周期程重ねた多層膜からなる。これを作るには、
溝の設けられたn−InP基板11の全面に有機金属気
相成長(MOCVD)法により障壁層と井戸層とを交互
に成長させて多層膜22を形成した後、フィルタ部以外
の曲がり部の多層膜22を除去してその除去した部分に
InGaAsP層12を形成して埋め込むという、いわ
ゆるバットジョイント法などを採用できる。この多層膜
とInGaAsP層12とが並んでいる表面を平坦にし
た後、その上の全面にInP層(分離層)13を設け、
さらにそのInP層13の全面に、上記と同様にバット
ジョイント法などにより上部の多重量子井戸層23とI
nGaAsP層14とを設ける。すなわち、InP層1
3の全面に、障壁層と井戸層とを交互に成長させて多層
膜23を作り、この多層膜23をフィルタ部のみ残して
除去し、除去した部分をInGaAsP層14で埋め
る。
The multiple quantum well layers 22, 2 of this filter section
3 is an InP barrier layer (composition wavelength 0.91 μm) and a well layer (composition wavelength 1.3 μm;
(1.3 μm band, 1.65 μm; 1.55 μm band) for about 10 cycles. To make this,
After the barrier layer and the well layer are alternately grown by metal organic chemical vapor deposition (MOCVD) on the entire surface of the n-InP substrate 11 provided with the groove to form the multilayer film 22, the bent portions other than the filter portion are formed. A so-called butt joint method or the like in which the multilayer film 22 is removed and the InGaAsP layer 12 is formed and embedded in the removed portion can be employed. After flattening the surface on which the multilayer film and the InGaAsP layer 12 are arranged, an InP layer (separation layer) 13 is provided on the entire surface thereof,
Further, on the entire surface of the InP layer 13, the upper multiple quantum well layer 23 and the I
An nGaAsP layer 14 is provided. That is, the InP layer 1
A barrier layer and a well layer are alternately grown on the entire surface of 3 to form a multilayer film 23. The multilayer film 23 is removed while leaving only the filter portion, and the removed portion is filled with the InGaAsP layer 14.

【0013】ポート31から波長λ1、λ2、…、λ
k、…、λnを入射すると、ポート32より波長λkを
取り出す(DROP)ことができ、またポート34から
入射した波長λk’を付加(ADD)してポート33か
ら波長λ1、λ2、…、λk’、…、λnをすることが
できる。このADD&DROPする波長λkは、λk=
2・Λ・neffで定まる。ここで、Λは1次の回折格
子のピッチ(屈折率変化の周期)であり、neffは導
波路(MQW層22、23)の等価屈折率である。
The wavelengths λ1, λ2,...
, .lambda.n, the wavelength .lambda.k can be extracted from the port 32 (DROP), and the wavelength .lambda.k 'incident from the port 34 is added (ADD), and the wavelengths .lambda.1, .lambda.2,. ', ..., λn. The wavelength λk for this ADD & DROP is λk =
It is determined by 2 · Λ · neff. Here, Λ is the pitch of the primary diffraction grating (period of refractive index change), and neff is the equivalent refractive index of the waveguide (MQW layers 22, 23).

【0014】電極24・26間に電圧を印加して電界を
形成すると、MQW層22、23に大きな屈折率変化を
起こすことができる。たとえばMQW層22、23の等
価屈折率が3.25〜3.30とすると、±5V〜±1
0V程度の印加電圧変化により、±5nm〜±10nm
程ADD&DROPする波長を変化させることができ
る。すなわち、印加電圧を変化させることにより、5波
〜10波の中から任意の波長を取り出し、あるいは付加
することができる。
When a voltage is applied between the electrodes 24 and 26 to form an electric field, a large change in the refractive index of the MQW layers 22 and 23 can be caused. For example, if the equivalent refractive index of the MQW layers 22 and 23 is 3.25 to 3.30, ± 5 V to ± 1
± 5 nm to ± 10 nm due to applied voltage change of about 0V
The wavelength for ADD & DROP can be changed as the distance increases. That is, by changing the applied voltage, an arbitrary wavelength can be extracted or added from 5 to 10 waves.

【0015】なお、上記では、バットジョイント法によ
りMQW層22、23を形成したが、中央のフィルタ部
以外の曲がり部では、等価的組成波長が導波波長よりも
十分に短くて低損失な導波路となっていればよいので、
選択成長法などの種々の作製方法を採用することができ
る。選択成長法によると作製が容易であり、その場合、
全面にMQW構造の多層膜を設け、中央のフィルタ部で
等価的組成波長が長く、それ以外の曲がり部では等価的
組成波長が短くなるようにする。これには、MOCVD
法において成長を阻害するマスク(たとえば二酸化珪素
膜など)を設けておくと、そのマスクの周辺(マスクに
覆われていない部分)に成長が阻害された成分が集中的
に成長するという特性を利用する。すなわち、適当なパ
ターンのマスクを使用することにより中央のフィルタ部
のみMOCVD法の成長阻害領域としてその等価的組成
波長が長波長になるようにするのである。
In the above description, the MQW layers 22 and 23 are formed by the butt joint method. However, in the bent portions other than the central filter portion, the equivalent composition wavelength is sufficiently shorter than the guided wavelength, and a low-loss conductive material is used. As long as it is a wave path,
Various manufacturing methods such as a selective growth method can be employed. According to the selective growth method, fabrication is easy, in which case,
A multilayer film having an MQW structure is provided on the entire surface so that the equivalent composition wavelength is long in the center filter portion and the equivalent composition wavelength is short in other bent portions. This includes MOCVD
If a mask (for example, a silicon dioxide film) that inhibits the growth is provided in the method, the characteristic that the inhibited component grows intensively around the mask (portion not covered by the mask) is used. I do. That is, by using a mask having an appropriate pattern, only the central filter portion is set as a growth inhibition region of the MOCVD method so that its equivalent composition wavelength becomes longer.

【0016】[0016]

【発明の効果】以上説明したように、この発明のADM
素子によれば、電界印加で大きな屈折率変化を起こすM
QW構造を採用したことにより、ブラッグ波長を電圧コ
ントロールで任意に制御できる。このような波長制御機
能付きの光分波合波素子が得られることから、WDM光
通信システムにおいて任意の波長の光信号の付加あるい
は取り出しを行なうことができるようになり、非常に効
果が大きい。
As described above, the ADM of the present invention is
According to the element, M which causes a large change in the refractive index when an electric field is applied
By employing the QW structure, the Bragg wavelength can be arbitrarily controlled by voltage control. Since such an optical demultiplexing / multiplexing device having a wavelength control function can be obtained, an optical signal of an arbitrary wavelength can be added or extracted in a WDM optical communication system, which is very effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す概略斜視図。FIG. 1 is a schematic perspective view showing an embodiment of the present invention.

【図2】図1のA−A’線断面図。FIG. 2 is a sectional view taken along line A-A ′ of FIG. 1;

【図3】図1のB−B’線断面図。FIG. 3 is a sectional view taken along line B-B ′ of FIG. 1;

【符号の説明】[Explanation of symbols]

11 基板 12、14 高屈折率層 13 低屈折率層 15、16 リッジ部 21 回折格子 22、23 多重量子井戸層 24、26 電極 25 パッド 31〜34 ポート DESCRIPTION OF SYMBOLS 11 Substrate 12, 14 High refractive index layer 13 Low refractive index layer 15, 16 Ridge part 21 Diffraction grating 22, 23 Multiple quantum well layer 24, 26 Electrode 25 Pad 31-34 Port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に低屈折率の分離層を挟ん
で上下に形成された多重量子井戸構造の導波路層と、該
導波路層の光伝搬方向に沿って形成された1次の回折格
子と、電界印加用電極とを有することを特徴とする光分
波合波素子。
1. A waveguide layer having a multiple quantum well structure formed above and below a semiconductor substrate with a low refractive index separating layer interposed therebetween, and a primary layer formed along a light propagation direction of the waveguide layer. An optical demultiplexing / multiplexing device comprising a diffraction grating and an electric field application electrode.
JP17852496A 1996-06-19 1996-06-19 Optical demultiplex/multiplex element Pending JPH1010589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17852496A JPH1010589A (en) 1996-06-19 1996-06-19 Optical demultiplex/multiplex element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17852496A JPH1010589A (en) 1996-06-19 1996-06-19 Optical demultiplex/multiplex element

Publications (1)

Publication Number Publication Date
JPH1010589A true JPH1010589A (en) 1998-01-16

Family

ID=16049987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17852496A Pending JPH1010589A (en) 1996-06-19 1996-06-19 Optical demultiplex/multiplex element

Country Status (1)

Country Link
JP (1) JPH1010589A (en)

Similar Documents

Publication Publication Date Title
JP3654383B2 (en) Optical add / drop multiplexer
JP4633151B2 (en) Two-dimensional photonic crystal device
JP4361030B2 (en) Mode splitter and optical circuit
US5940555A (en) Optical multiplexer/demultiplexer
US20230224040A1 (en) Wavelength division multiplexer/demultiplexer, photonic integrated chip, and optical module
JP3311722B2 (en) Optical waveguide type wavelength filter with ring resonator and 1 × N optical waveguide type wavelength filter
JP2012048049A (en) Optical wavelength filter
KR100289042B1 (en) Vertically coupled wavelength variable optical fiber having double lattice structure
JP3651876B2 (en) Wavelength multiplexed optical signal multiplexing / demultiplexing method
JP5713378B2 (en) Waveguide type optical filter and semiconductor laser
JPH0567929B2 (en)
JP4505313B2 (en) Optical device and optical control method
JP2001051140A (en) Optical multiplexer/demultiplexser having three waveguides
JP4183640B2 (en) Two-dimensional photonic crystal device
JPH1010589A (en) Optical demultiplex/multiplex element
JPH1010590A (en) Optical demultiplex/multiplex element
JPS62159105A (en) Optical module for bi-directional transmission
JPS6344604A (en) Waveguide type optical filter and its manufacture
KR100489809B1 (en) Tunable Semiconductor Laser And Method Thereof
JP4153613B2 (en) Wavelength selective filter element and optical integrated circuit
JPH10307224A (en) Optical multiplexer
JPH05127029A (en) Optical branching waveguide device
JP2003107260A (en) Array waveguide grid element
JP4408083B2 (en) Optical multiplexing / demultiplexing device and optical circuit using the same
AU2450200A (en) Optical components

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050323

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050406

A131 Notification of reasons for refusal

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A02