JPH1010430A - Double image-formation optical system - Google Patents
Double image-formation optical systemInfo
- Publication number
- JPH1010430A JPH1010430A JP8179882A JP17988296A JPH1010430A JP H1010430 A JPH1010430 A JP H1010430A JP 8179882 A JP8179882 A JP 8179882A JP 17988296 A JP17988296 A JP 17988296A JP H1010430 A JPH1010430 A JP H1010430A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- image
- imaging optical
- intermediate image
- image forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70225—Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は主として半導体の製
造に用いられるステッパーなどの縮小露光装置の光学系
に関し、特に光学系に反射屈折光学系を用いることによ
り、紫外線波長域でのサブミクロン単位の分解能を有す
る1/4×〜1/5×の走査型反射屈折縮小光学系に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system of a reduction exposure apparatus such as a stepper mainly used for manufacturing a semiconductor, and more particularly, to a submicron unit in an ultraviolet wavelength region by using a catadioptric optical system for the optical system. The present invention relates to a 1 / 4x to 1 / 5x scanning catadioptric reduction optical system having resolution.
【0002】[0002]
【従来の技術】近年、半導体の回路パターンはますます
微細化しており、このパターンを焼き付ける露光装置に
はより解像力の高いものが要求されてきている。この要
求を満足するためには、光源の波長を短波長化しかつN
A(光学系の開口数)を大きくしなければならない。し
かしながら、波長が短くなると光の吸収のため実用に耐
える光学ガラスが限られてくる。波長が300nm以下
となると、実用上使える硝材は合成石英と蛍石だけとな
る。しかるに合成石英と蛍石のアッベ数は、色収差を補
正するのに十分なほどは離れていない。したがって波長
が300nm以下の場合には、屈折光学系だけで投影光
学系を構成したのでは色収差補正が極めて困難となる。
また蛍石は温度変化による屈折率の変化、いわゆる温度
特性が悪く、またレンズ研磨の加工上多くの問題を持っ
ているので、多くの部分に使用することはできない。し
たがって必要な解像力を有する投影光学系を屈折系のみ
で構成することは非常に難しいものとなる。2. Description of the Related Art In recent years, semiconductor circuit patterns have become increasingly finer, and an exposure apparatus for printing such patterns has been required to have a higher resolution. In order to satisfy this requirement, the wavelength of the light source is shortened and N
A (numerical aperture of the optical system) must be increased. However, as the wavelength becomes shorter, optical glass that can withstand practical use is limited due to light absorption. When the wavelength is less than 300 nm, the only practically usable glass materials are synthetic quartz and fluorite. However, the Abbe numbers of synthetic quartz and fluorite are not far enough apart to correct for chromatic aberration. Therefore, when the wavelength is 300 nm or less, it is extremely difficult to correct the chromatic aberration if the projection optical system is constituted only by the refractive optical system.
Fluorite cannot be used in many parts because fluorite has poor refractive index change due to temperature change, so-called temperature characteristic, and has many problems in lens polishing. Therefore, it is very difficult to configure a projection optical system having a required resolution only by a refraction system.
【0003】これに対して、反射系のみで投影光学系を
構成することも試みられているが、この場合、投影光学
系が大型化し、かつ反射面の非球面化が必要となる。し
かるに高精度の非球面は製作の面で極めて困難である。
そこで反射系と使用波長に使える光学ガラスからなる屈
折系とを組み合わせたいわゆる反射屈折光学系によっ
て、縮小投影光学系を構成する技術が色々提案されてい
る。その中で、光学系の途中で1回以上の中間結像を行
うタイプは、これまで種々のものが提案されているが、
中間像を1回だけ結像するものに限定すると、特公平5
−25170、特開昭63−163319、特開平4−
234722、USP−4,779,966に開示され
た技術が挙げられる。On the other hand, attempts have been made to construct a projection optical system using only a reflection system. However, in this case, the projection optical system must be large and the reflection surface must be aspheric. However, high-precision aspherical surfaces are extremely difficult to manufacture.
Therefore, various techniques have been proposed for forming a reduction projection optical system by a so-called catadioptric system combining a reflection system and a refraction system made of optical glass that can be used for a used wavelength. Among them, various types that perform one or more intermediate image formations in the middle of the optical system have been proposed.
If the intermediate image is limited to one that forms only once,
-25170, JP-A-63-163319, JP-A-4-
234722, USP-4,779,966.
【0004】上記従来技術の中で、凹面ミラーを1枚だ
け使用しているものは、特開平4−234722とUS
P−4,779,966に開示された光学系である。こ
れらの光学系は、凹面ミラーで構成される往復兼用光学
系において、凹レンズのみが採用されており、凸のパワ
ーの光学系が使われていない。そのため、光束が広がっ
て凹面ミラーに入射するため、凹面ミラーの径が大きく
なりがちであった。また特に特開平4−234722に
開示された往復兼用光学系は完全対称型であり、この光
学系での収差発生を極力抑えて後続の屈折光学系の収差
補正負担を軽くしているが、対称光学系を採用している
ため、第1面付近でのワーキングディスタンスがとりに
くく、またハーフプリズムを使用しなければならなかっ
た。またUSP−4,779,966に開示された光学
系では、中間像よりも後方の2次結像光学系にミラーを
使用している。したがって光学系の必要な明るさを確保
するためには、光束が広がって凹面ミラーに入射するこ
とになり、ミラーの小型化が困難なものであった。Among the above prior arts, those using only one concave mirror are disclosed in Japanese Patent Application Laid-Open No. 4-234722 and US Pat.
P-4, 779, 966. In these optical systems, a reciprocating optical system constituted by a concave mirror employs only a concave lens, and does not use an optical system having a convex power. As a result, the light beam spreads and enters the concave mirror, so that the diameter of the concave mirror tends to increase. In particular, the reciprocating optical system disclosed in Japanese Patent Application Laid-Open No. Hei 4-234722 is a completely symmetrical type. Since an optical system is employed, a working distance in the vicinity of the first surface is difficult to be obtained, and a half prism must be used. In the optical system disclosed in US Pat. No. 4,779,966, a mirror is used in a secondary imaging optical system behind the intermediate image. Therefore, in order to ensure the required brightness of the optical system, the light beam spreads and enters the concave mirror, making it difficult to reduce the size of the mirror.
【0005】また複数のミラーを使用するものでは、屈
折光学系のレンズ枚数を削減できる可能性があるが、こ
れらのタイプでは以下の問題があった。すなわち、最
近、焦点深度を稼ぎながら解像力を上げるため、マスク
の選択部分の位相をずらす位相シフト法が考え出されて
いるが、さらに、効果を上げるために、照明光学系のN
Aと結像光学系のNAの比σを可変にすることが行われ
る。このとき照明光学系には開口絞りを設置することが
できるが、前記に挙げた反射屈折光学系を対物レンズと
する場合は、有効な絞り設置部分がどこにも採れないこ
とになる。In the case of using a plurality of mirrors, there is a possibility that the number of lenses in the refractive optical system can be reduced. However, these types have the following problems. That is, recently, a phase shift method for shifting the phase of a selected portion of a mask has been devised in order to increase the resolution while increasing the depth of focus.
The ratio σ between A and the NA of the imaging optical system is made variable. At this time, an aperture stop can be installed in the illumination optical system. However, when the above-described catadioptric optical system is used as an objective lens, an effective stop installation portion cannot be taken anywhere.
【0006】さらにこのような配置の往復光学系を縮小
側の第2面側に採用するタイプの反射屈折光学系では、
縮小倍率の関係から反射ミラーで反射した後ウエハまで
の距離が長く採れないため、この光路中に挿入される対
物レンズのレンズ枚数がそう多く採れず、そのため得ら
れる光学系の明るさは限られたものとならざるを得なか
った。たとえ高NAの光学系が実現できても、限られた
長さに多くの光学部材が挿入されるため、ウエハと対物
レンズの端面との距離、いわゆるワーキングディスタン
スWDが長く採れない光学系となっていた。またこのよ
うな従来の反射屈折光学系においては、光路の光軸を必
ず途中で偏心させる必要があり、そのいわゆる偏心光学
系の偏心部分の調整作業が困難で、なかなか高精度の系
を実現することができなかった。Further, in a catadioptric optical system of the type employing the reciprocating optical system having such an arrangement on the second surface side on the reduction side,
Since the distance to the wafer after reflection by the reflection mirror cannot be taken long due to the reduction magnification, the number of objective lenses inserted into this optical path cannot be so large, and the brightness of the obtained optical system is limited. It had to be something. Even if an optical system with a high NA can be realized, since many optical members are inserted into a limited length, the optical system cannot take a long distance between the wafer and the end surface of the objective lens, that is, a so-called working distance WD. I was Further, in such a conventional catadioptric optical system, it is necessary to decenter the optical axis of the optical path in the middle, and it is difficult to adjust the eccentric part of the so-called eccentric optical system, thereby realizing a highly accurate system. I couldn't do that.
【0007】そこで本出願人は、第1結像光学系によっ
て第1面の中間像を形成し、第2結像光学系によって中
間像の再結像を第2面上に形成し、第1結像光学系から
の光束を第2結像光学系へ導くように反射面を設け、第
1結像光学系を、凹面鏡と該凹面鏡への入射光と反射光
との双方が透過するレンズ群とからなる往復光学系を有
するように形成した2回結像光学系を提案した。この2
回結像光学系によれば、凹面鏡の径を縮小させることが
でき、位相シフト法のための照明光学系のNAと結像光
学系のNAの比σを可変にすることができるように、有
効な絞り設置部分を採ることができ、さらに光学系の明
るさを十分とりながら、なおウエハと対物レンズの端面
との距離、いわゆるワーキングディスタンスWDを長く
採ることができる光学系を実現することができる。また
いわゆる偏心光学系の偏心部分の調整作業が容易で、高
精度の光学系を実現するものである。Therefore, the present applicant forms an intermediate image on the first surface by the first image forming optical system, forms a re-image of the intermediate image on the second surface by the second image forming optical system, A reflecting surface for guiding a light beam from the imaging optical system to the second imaging optical system, and a lens group through which the first imaging optical system transmits a concave mirror and both incident light and reflected light to the concave mirror A two-time imaging optical system formed to have a reciprocating optical system consisting of This 2
According to the rotational imaging optical system, the diameter of the concave mirror can be reduced, and the ratio σ of the NA of the illumination optical system and the NA of the imaging optical system for the phase shift method can be made variable. It is possible to realize an optical system that can take an effective diaphragm installation part and can take a long working distance WD, that is, the distance between the wafer and the end surface of the objective lens, while sufficiently maintaining the brightness of the optical system. it can. Further, the adjustment work of the eccentric part of the so-called eccentric optical system is easy, and a highly accurate optical system is realized.
【0008】[0008]
【発明が解決しようとする課題】以上に述べたようにこ
の2回結像光学系は優れた点が多いが、結像性能を維持
しながら光学系の小型化を実現しようとすると、どうし
ても歪曲収差が発生してくる。すなわち光学系の配置が
対称形から外れているので、他の収差がよく補正されて
いても、歪曲収差のみ残ることがある。特に高次数の歪
曲収差は、屈折レンズの曲率や面間隔のみでは補正が不
可能であり、系を大型化せざるを得ないことになりかね
ない。また歪曲収差の補正に伴い、その見返りとして非
点収差が発生し、両者の収差を同時に補正することは、
至難の技であることが通常である。このような場合、他
のよく補正された収差はそのままにして、歪曲収差や非
点収差、特に高次の歪曲収差を補正したい場合が生じる
のである。As described above, the two-time imaging optical system has many excellent points. However, if it is attempted to reduce the size of the optical system while maintaining the imaging performance, distortion is inevitable. Aberrations occur. That is, since the arrangement of the optical system is out of symmetry, even if other aberrations are well corrected, only distortion may remain. In particular, high-order distortion cannot be corrected only by the curvature or the surface spacing of the refractive lens, and the system may have to be enlarged. In addition, with the correction of distortion, astigmatism occurs in return, and correcting both aberrations simultaneously is
It is usually the most difficult technique. In such a case, there is a case where it is desired to correct distortion and astigmatism, particularly high-order distortion, while leaving other well-corrected aberrations as they are.
【0009】以上のような純粋な収差補正のほかに、こ
のような高精度の光学系を製造する場合、どうしても製
造誤差による製品のバラツキが生じる。このバラツキは
製品ごとに異なる収差を持っており、通常は光学系の部
分調整で補正することが行われている。しかし、製造誤
差により像面のいたるところで収差量の異なる非対称な
収差が発生したり、発生量そのものが多すぎると、光学
部品で調整するだけでは、補正しきれないことが多い。
このような場合に、結像付近に非球面でできた収差補正
板を挿入して補正することがある。しかしこのような補
正板は、結像面にできるだけ近い方が、画角に関する収
差の補正には有効であるが、現実には、像面近傍にある
さまざまな調整機構や測定装置などから、像面からずっ
と物体よりに置かなければならないのが通常である。そ
うなると本来画角に関する収差だけを補正したい場合で
も、他の口径に関する収差まで影響を受け、複雑な補正
を行わなければならなくなるのである。したがって本発
明は、結像性能を維持しながら光学系の小型化を実現す
ることができ、特に歪曲収差を良好に補正することがで
き、しかも製造誤差を容易に吸収することができる2回
結像光学系を提供することを課題とする。In addition to the above-described pure aberration correction, when manufacturing such a high-precision optical system, there will inevitably occur product variations due to manufacturing errors. This variation has different aberrations for each product, and is usually corrected by partial adjustment of the optical system. However, if asymmetrical aberrations with different amounts of aberration occur throughout the image plane due to manufacturing errors, or if the amount of occurrence itself is too large, it is often not possible to correct it only by adjusting with optical components.
In such a case, correction may be performed by inserting an aberration correction plate made of an aspherical surface near the image. However, such a correction plate is effective for correcting aberrations related to the angle of view when it is as close as possible to the image plane. However, in reality, various correction mechanisms and measurement devices near the image plane are required to correct the image. It must usually be placed farther from the surface than the object. In that case, even if it is originally desired to correct only the aberration related to the angle of view, the aberration related to other apertures is affected, and complicated correction must be performed. Therefore, according to the present invention, it is possible to reduce the size of the optical system while maintaining the imaging performance. In particular, the present invention can favorably correct distortion and can easily absorb manufacturing errors. It is an object to provide an image optical system.
【0010】[0010]
【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、すなわち、第1結像光
学系によって第1面の中間像を形成し、第2結像光学系
によって中間像の再結像を第2面上に形成し、第1結像
光学系からの光束を第2結像光学系へ導くように反射面
を設けた2回結像光学系において、反射面を、非平面且
つ非球面に形成したことを特徴とする2回結像光学系で
ある。その際、反射面を中間像の近傍に配置することが
好ましい。また非球面レンズ面の形状は、回転対称非球
面、トーリック非球面、又は完全非対称非球面とするこ
とができる。この構成により、少なくとも歪曲収差を補
正することができ、また少なくとも瞳の球面収差を補正
することができ、また少なくとも光学系の製造誤差を補
正することができる。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem. That is, an intermediate image on a first surface is formed by a first image forming optical system, and a second image forming optical system is formed. In the two-time imaging optical system in which a re-imaging of the intermediate image is formed on the second surface and a reflecting surface is provided so as to guide the light beam from the first imaging optical system to the second imaging optical system, A double imaging optical system characterized in that the surface is formed as a non-planar and aspherical surface. In that case, it is preferable to arrange the reflection surface near the intermediate image. The shape of the aspheric lens surface can be a rotationally symmetric aspheric surface, a toric aspheric surface, or a completely asymmetric aspheric surface. With this configuration, at least distortion can be corrected, at least spherical aberration of the pupil can be corrected, and at least a manufacturing error of the optical system can be corrected.
【0011】歪曲収差や非点収差を補正し、製造誤差を
補正し、しかも他の収差に影響を与えないようにするた
めには、中間結像付近に補正光学系を置けばよい。特に
高次の歪曲収差や非点収差のみを補正するには、非球面
化した補正光学系を置くことが有効な手段である。他
方、中間結像付近には反射面が配置されているので、こ
の反射面を非球面化して補正光学系とすることが、有効
な手段である。この反射面は中間結像付近にかなり近づ
けて置くことができるために、この反射面を非球面化す
ることは、そのまま望む値の歪曲収差や非点収差にする
ことができ、しかも他の収差の及ぼす影響は少ない。In order to correct distortion and astigmatism, correct manufacturing errors, and not affect other aberrations, a correction optical system may be provided near the intermediate image. In particular, in order to correct only high-order distortion and astigmatism, it is effective means to provide an aspherical correction optical system. On the other hand, since a reflecting surface is arranged near the intermediate image, it is effective means to make the reflecting surface aspherical to form a correction optical system. Since this reflecting surface can be placed very close to the vicinity of the intermediate image, making the reflecting surface aspherical can directly bring distortion and astigmatism to desired values, and furthermore, other aberrations Has little effect.
【0012】この非球面は、中心対称なものが普通であ
るが、場合によっては矩形状の反射面に合わせて、反射
面の長手方向にのみ変化する形状のものであっても良
く、または同様の効果からは、トーリック面であっても
良い。つまり非球面の形状の、歪曲収差に及ぼす効果
は、非球面の長手方向の傾きの変化が大勢を占め、短手
方向の傾きの変化は、像高の変化が大きくないため、そ
れほどの影響を与えないためである。但し、非球面の加
工上からは、作りやすい方が良く、その点からは、中心
対称のものか、長手方向に変化するものが良い。もし前
者の中心対称のものであれば、円形の反射面として、光
軸対称に非球面加工が行われ、後に矩形状に切断するこ
とができる。また、後者であれば、一方向の非球面加工
機が使われる。The aspherical surface is usually symmetrical about the center, but may have a shape that changes only in the longitudinal direction of the reflecting surface in accordance with a rectangular reflecting surface, or may be similar. From the effect of the above, a toric surface may be used. In other words, the effect of the shape of the aspherical surface on the distortion is largely influenced by the change in the inclination of the aspherical surface in the longitudinal direction, and the change in the inclination in the lateral direction is not so large because the change in the image height is not large. It is because it does not give. However, from the viewpoint of the processing of the aspherical surface, it is better that the surface is easy to produce, and from that point, it is preferable that the surface is symmetrical with respect to the center or that the surface changes in the longitudinal direction. If the former is centrally symmetrical, the aspherical surface processing is carried out symmetrically with respect to the optical axis as a circular reflecting surface, and it can later be cut into a rectangular shape. In the latter case, a unidirectional aspherical surface processing machine is used.
【0013】また像面の至る所で異なる製造誤差による
収差が発生した場合では、その発生収差量に応じて、完
全非対称な収差補正非球面とすることもできるのであ
る。もちろんこの時、中間像の近傍に置けるので、場合
によっては画角に関する補正のみを優先して行うことも
できるのである。以上のような手段をとることにより、
光学系を小型化すればするほど、大きく発生し、補正困
難な高次の収差も発生しがちとなる歪曲収差や、製造誤
差等により発生する収差などを、他の収差、特に球面収
差やコマ収差、サインコンディション、軸上色収差等に
及ぼす影響を極力避けながら、自由自在に、発生する高
次の歪曲収差等の形状曲線に従い、ほぼ完全に補正する
ことが出来るのである。If aberrations due to different manufacturing errors occur everywhere on the image surface, a completely asymmetric aberration-correcting aspheric surface can be obtained according to the amount of the aberrations. Of course, at this time, since it can be placed near the intermediate image, depending on the case, only the correction related to the angle of view can be performed with priority. By taking the above measures,
As the size of the optical system is reduced, distortion that tends to occur and tends to cause higher-order aberrations that are difficult to correct and aberrations that occur due to manufacturing errors, etc. The correction can be made almost completely according to the shape curve of the generated high-order distortion while freely avoiding the influence on the aberration, the sine condition, the axial chromatic aberration and the like as much as possible.
【0014】[0014]
【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図1は本発明の第1実施例を示し、この実
施例はレチクルR上の回路パターンを半導体ウエハWに
縮小転写する投影光学系に本発明を適用したものであ
る。この投影光学系は、レチクルRに描いたパターンの
中間像を形成する第1結像光学系Aと、中間像の近傍に
配置した反射面M2と、中間像の再結像をウエハW上に
形成する第2結像光学系Bとを有する。第1結像光学系
Aは、屈折レンズ4枚と1枚の凹面鏡M1とからなり、
レチクルRからの光が往復通過する。反射面M2は、第
1結像光学系Aを復路で通過した光を第2結像光学系B
に導くように配置されており、この反射面M2は非球面
に形成されている。第2結像光学系Bは屈折レンズ17
枚からなり、第2結像光学系Bの中に開口絞りSが配置
されている。この投影光学系は、倍率が1/4倍、像側
の開口数NAが0.6、最大物体高が72であり、縦が
16から40までの長さ24、横が長さ120の長方形
の開口aのレンズシステムである。屈折レンズは溶融石
英(SiO2)および蛍石(CaF2)を使用し、紫外線
エキシマレーザーの193nmの波長における、±0.
1nm波長幅に対して軸上及び倍率の色収差が補正され
ている。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. In this embodiment, the present invention is applied to a projection optical system for reducing and transferring a circuit pattern on a reticle R onto a semiconductor wafer W. The projection optical system includes a first imaging optical system A for forming an intermediate image of the pattern drawn on the reticle R, a reflecting surface M 2 which is disposed near the intermediate image, the re-imaging the intermediate image on the wafer W And a second imaging optical system B formed at the same time. The first imaging optical system A, composed refractive lens four and one concave mirror M 1 Tokyo,
Light from the reticle R reciprocates. The reflecting surface M 2 transmits the light passing through the first imaging optical system A on the return path to the second imaging optical system B.
Are arranged to direct, this reflective surface M 2 is formed aspherical. The second imaging optical system B is a refracting lens 17
An aperture stop S is disposed in the second imaging optical system B. This projection optical system has a magnification of 1/4, a numerical aperture NA on the image side of 0.6, a maximum object height of 72, a length of 16 to 40 in length 24, and a width of 120 in length. Is a lens system having an opening a. The refractive lens uses fused silica (SiO 2 ) and fluorite (CaF 2 ), and is ± 0.2 at a wavelength of 193 nm of an ultraviolet excimer laser.
On-axis and lateral chromatic aberrations are corrected for a 1 nm wavelength width.
【0015】次に図2は第2実施例の概略構成図を示
す。また図3は同実施例の展開光路図を示し、すなわち
図面上での反射光の繁雑さを避けるために、凹面鏡M1
及び反射面M2の直後に仮想的な平面反射ミラーをおく
ことにより、光線が常に同一の方向に向かうように表示
したものである。この第2実施例は、第2結像光学系B
の中に反射面M3を配置して、レチクルRを照明する光
の進行方向とウエハWを露光する光の進行方向とを一致
させたものである。その他の構成は上記第1実施例と同
じであり、したがって第1実施例と同じ結像性能を有す
る。FIG. 2 is a schematic structural view of a second embodiment. FIG. 3 shows a developed optical path diagram of the embodiment, that is, in order to avoid the complexity of reflected light on the drawing, the concave mirror M 1 is used.
And by placing a virtual plane reflecting mirror immediately after the reflecting surface M 2, in which light is always displayed toward the same direction. In the second embodiment, the second imaging optical system B
By placing a reflective surface M 3 in, it is a traveling direction of light for exposing the traveling direction and the wafer W of the light that illuminates the reticle R that is matched. Other configurations are the same as those of the first embodiment, and therefore have the same imaging performance as the first embodiment.
【0016】以下の表1に図3に示す数値実施例の諸元
を示す。ここでは図2に示す光路配置をとっている。同
表中、第1カラムはレチクルRからのレンズ面の番号、
第2カラムrは各レンズ面の曲率半径、第3カラムdは
各レンズ面の間隔、第4カラムは各レンズの材質、第5
カラムは各光学部材の群番号を示す。第1カラム中*印
を付した面は非球面形状の反射面M2を示す。非球面の
形状は、 y:光軸に垂直な方向の高さ S(y):高さyにおける光軸方向の変位量 r:光軸上での曲率半径 κ:円錐係数 Cn:n次の非球面係数 によって表わしており、[非球面データ]に円錐係数κ
と非球面係数Cnとを示した。また第5カラム中、*印
は復路を示す。なお溶融石英(SiO2)と蛍石(Ca
F2)の使用基準波長(193nm)に対する屈折率n
と、基準波長の±0.1nmでのアッベ数νは次の通り
である。 SiO2: n=1.56019 ν=1780 CaF2: n=1.50138 ν=2550 図4に本実施例の横収差を示す。図中Yは像高を示す。
この収差図より明らかなように、横収差がほぼ無収差に
近い状態まで良好に補正された優れた性能の光学系であ
ることが分かる。また図5に歪曲収差を示す。この収差
曲線からも明らかなように、非常によく歪曲収差が補正
されていることがわかる。Table 1 below shows data of the numerical embodiment shown in FIG. Here, the optical path arrangement shown in FIG. 2 is adopted. In the table, the first column is the number of the lens surface from the reticle R,
The second column r is the radius of curvature of each lens surface, the third column d is the distance between each lens surface, the fourth column is the material of each lens, the fifth column
The column indicates the group number of each optical member. Surface marked with first column in asterisk indicates the reflection surfaces M 2 aspherical. The shape of the aspheric surface is y: height in the direction perpendicular to the optical axis S (y): displacement amount in the optical axis direction at height y r: radius of curvature on the optical axis κ: conical coefficient C n : n-th aspherical coefficient And the cone coefficient κ in [Aspherical data]
And the aspheric coefficient C n are shown. In the fifth column, an asterisk indicates a return route. In addition, fused quartz (SiO 2 ) and fluorite (Ca
F 2 ) Refractive index n with respect to reference wavelength for use (193 nm)
And the Abbe number ν at ± 0.1 nm of the reference wavelength is as follows. SiO 2 : n = 1.56019 ν = 1780 CaF 2 : n = 1.50138 ν = 2550 FIG. 4 shows the lateral aberration of this embodiment. In the figure, Y indicates the image height.
As is clear from this aberration diagram, it is understood that the optical system has excellent performance in which the lateral aberration is satisfactorily corrected to a state close to almost no aberration. FIG. 5 shows distortion. As is clear from this aberration curve, it is understood that the distortion is corrected very well.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【発明の効果】以上のように本発明では、中間結像付近
に非球面反射光学系を配したものであるから、光学系で
発生する歪曲収差や、コマ収差、非点収差などに影響を
与えることなく、歪曲収差を補正することができる。し
たがって光学系の結像性能の向上と小型化とを同時に実
現することができる2回結像光学系である。As described above, according to the present invention, since the aspherical reflecting optical system is arranged near the intermediate image, the distortion, coma, astigmatism, etc. generated in the optical system are affected. Without giving, distortion can be corrected. Therefore, this is a two-time imaging optical system that can simultaneously improve the imaging performance of the optical system and reduce the size.
【図1】第1実施例を示す概略図である。FIG. 1 is a schematic view showing a first embodiment.
【図2】第2実施例を示す概略図である。FIG. 2 is a schematic view showing a second embodiment.
【図3】数値実施例の展開光路図である。FIG. 3 is a developed optical path diagram of a numerical example.
【図4】数値実施例の横収差図である。FIG. 4 is a lateral aberration diagram of a numerical example.
【図5】数値実施例の歪曲収差図である。FIG. 5 is a distortion diagram of a numerical example.
A…第1結像光学系 M1…凹面鏡 M2、M3…反射面 B…第2結像光学
系 S…開口絞り a…開口A: first imaging optical system M 1 : concave mirror M 2 , M 3 : reflecting surface B: second imaging optical system S: aperture stop a: aperture
Claims (5)
間像を形成し、第2結像光学系(B)によって前記中間
像の再結像を第2面上に形成し、前記第1結像光学系
(A)からの光束を第2結像光学系(B)へ導くように
反射面(M2)を設けた2回結像光学系において、 前記反射面(M2)を、非平面且つ非球面に形成したこ
とを特徴とする2回結像光学系。An image formed on a first surface is formed by a first image forming optical system, and a re-image of the intermediate image is formed on a second surface by a second image forming optical system. A double imaging optical system provided with a reflecting surface (M 2 ) so as to guide a light beam from the first imaging optical system (A) to the second imaging optical system (B); 2 ) A two-time imaging optical system characterized in that ( 2 ) is formed as a non-planar and aspherical surface.
1)と該凹面鏡(M1)への入射光と反射光との双方が透
過するレンズ群とからなる往復光学系を有する、請求項
1記載の2回結像光学系。2. The optical system according to claim 1, wherein said first imaging optical system (A) is a concave mirror (M).
1) and having a reciprocating optical system which both consist of a lens group that transmits the incident light and the reflected light to the concave mirror (M 1), according to claim 1 2 Kaiyuizo optical system according.
配置した、請求項1又は2記載の2回結像光学系。3. The double imaging optical system according to claim 1, wherein said reflection surface (M 2 ) is arranged near said intermediate image.
トーリック非球面、又は完全非対称非球面である、請求
項1、2又は3記載の2回結像光学系。4. The reflecting surface (M 2 ) is a rotationally symmetric aspherical surface,
4. The double imaging optical system according to claim 1, wherein the optical system is a toric aspherical surface or a completely asymmetrical aspherical surface.
系(B)との結像倍率のうち、少なくともいずれか一方
は縮小倍率である、請求項1、2、3又は4記載の反射
屈折光学系。5. An image forming apparatus according to claim 1, wherein at least one of the image forming magnifications of said first image forming optical system (A) and said second image forming optical system (B) is a reduction magnification. Or a catadioptric optical system according to 4.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8179882A JPH1010430A (en) | 1996-06-19 | 1996-06-19 | Double image-formation optical system |
US08/877,920 US6157498A (en) | 1996-06-19 | 1997-06-18 | Dual-imaging optical system |
US09/679,267 US6392822B1 (en) | 1996-06-19 | 2000-10-04 | Dual-imaging optical system |
US10/086,472 US6867931B2 (en) | 1996-06-19 | 2002-02-28 | Dual-imaging optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8179882A JPH1010430A (en) | 1996-06-19 | 1996-06-19 | Double image-formation optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1010430A true JPH1010430A (en) | 1998-01-16 |
Family
ID=16073556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8179882A Pending JPH1010430A (en) | 1996-06-19 | 1996-06-19 | Double image-formation optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1010430A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6195213B1 (en) | 1998-06-08 | 2001-02-27 | Nikon Corporation | Projection exposure apparatus and method |
WO2002035273A1 (en) * | 2000-10-23 | 2002-05-02 | Nikon Corporation | Catadioptric system and exposure device having this system |
JP2003504687A (en) * | 1999-07-07 | 2003-02-04 | ケーエルエー−テンカー テクノロジィース コーポレイション | Broadband UV catadioptric imaging system |
US6707616B1 (en) | 1998-04-07 | 2004-03-16 | Nikon Corporation | Projection exposure apparatus, projection exposure method and catadioptric optical system |
JP2008177575A (en) * | 2007-01-17 | 2008-07-31 | Carl Zeiss Smt Ag | Projection optical system for micro lithography |
KR100932319B1 (en) * | 2000-07-10 | 2009-12-16 | 가부시키가이샤 니콘 | An imaging optical system, an exposure apparatus provided with the imaging optical system, the microdevice manufacturing method using this exposure apparatus, and the exposure method using the imaging optical system |
-
1996
- 1996-06-19 JP JP8179882A patent/JPH1010430A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6707616B1 (en) | 1998-04-07 | 2004-03-16 | Nikon Corporation | Projection exposure apparatus, projection exposure method and catadioptric optical system |
US6195213B1 (en) | 1998-06-08 | 2001-02-27 | Nikon Corporation | Projection exposure apparatus and method |
US6512641B2 (en) | 1998-06-08 | 2003-01-28 | Nikon Corporation | Projection exposure apparatus and method |
US6639732B2 (en) | 1998-06-08 | 2003-10-28 | Nikon Corporation | Projection exposure apparatus and method |
JP2003504687A (en) * | 1999-07-07 | 2003-02-04 | ケーエルエー−テンカー テクノロジィース コーポレイション | Broadband UV catadioptric imaging system |
JP4761684B2 (en) * | 1999-07-07 | 2011-08-31 | ケーエルエー−テンカー コーポレイション | Broadband ultraviolet catadioptric imaging system |
KR100932319B1 (en) * | 2000-07-10 | 2009-12-16 | 가부시키가이샤 니콘 | An imaging optical system, an exposure apparatus provided with the imaging optical system, the microdevice manufacturing method using this exposure apparatus, and the exposure method using the imaging optical system |
WO2002035273A1 (en) * | 2000-10-23 | 2002-05-02 | Nikon Corporation | Catadioptric system and exposure device having this system |
JP2008177575A (en) * | 2007-01-17 | 2008-07-31 | Carl Zeiss Smt Ag | Projection optical system for micro lithography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3747958B2 (en) | Catadioptric optics | |
USRE38421E1 (en) | Exposure apparatus having catadioptric projection optical system | |
JP3747951B2 (en) | Catadioptric optics | |
US6995918B2 (en) | Projection optical system and projection exposure apparatus | |
KR100876153B1 (en) | Projection exposure lens system with aspherical elements | |
KR20020089204A (en) | Catadioptric reduction lens | |
JPH09311278A (en) | Reflection type dioptric system | |
US6097537A (en) | Catadioptric optical system | |
KR20070012460A (en) | Catadioptric projection objective | |
EP0869383A2 (en) | Catadioptric optical system | |
US6538821B2 (en) | Projection optical system | |
JP2001343589A (en) | Projection optical system, projection exposure device by the same, manufacturing method of devices | |
JPH0533368B2 (en) | ||
JPH1184248A (en) | Catadioptric reduction optical system | |
US20040075894A1 (en) | Catadioptric reduction objective | |
JP3812051B2 (en) | Catadioptric projection optical system | |
JPH1010430A (en) | Double image-formation optical system | |
JPH1010429A (en) | Double image-formation optical system | |
JPH11109244A (en) | Cata-dioptric system | |
JP2005512151A (en) | Catadioptric reduction objective lens | |
KR20040005677A (en) | Relay lens used in an illumination system of a lithography system | |
JP4375826B2 (en) | Straight cylindrical catadioptric optical system, scanning exposure apparatus, and scanning exposure method | |
JPH10284365A (en) | Cata-dioptric system | |
JPH09311277A (en) | Cata-dioptric system | |
JP2004235666A (en) | Catadioptric optical system and exposure apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050223 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051005 |