JPH10102821A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JPH10102821A
JPH10102821A JP27751796A JP27751796A JPH10102821A JP H10102821 A JPH10102821 A JP H10102821A JP 27751796 A JP27751796 A JP 27751796A JP 27751796 A JP27751796 A JP 27751796A JP H10102821 A JPH10102821 A JP H10102821A
Authority
JP
Japan
Prior art keywords
laminated rubber
isolation device
seismic isolation
laminated
hollow cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27751796A
Other languages
Japanese (ja)
Inventor
Kazuhiro Omori
一紘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Corp
Original Assignee
Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Corp filed Critical Ando Corp
Priority to JP27751796A priority Critical patent/JPH10102821A/en
Publication of JPH10102821A publication Critical patent/JPH10102821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a base isolation device such that the device is efficiently suitable for a small housing. SOLUTION: This base isolation device is formed such that flange sheets 15 and 16 are fixed on the upper and under surfaces of a lamination rubber part wherein a plurality of rubber sheets 12 and intermediate steel sheets 13 are alternately laminated. In this case, the lamination rubber part is formed in an annular shape in which a hollow cylinder part 20 extending through the upper and under surfaces thereof is formed. Further, an outside diameter ϕis set such that a perpendicular passing through a perpendicular load resultant force operation point during maximum shearing deformation is situated within the outer shape of the bottom of the lamination rubber part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は免震装置に係り、特
に戸建て木造住宅のように規模の小さな建築物に適用す
るのに好適な免震装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation device, and more particularly to a seismic isolation device suitable for application to a small-scale building such as a detached wooden house.

【0002】[0002]

【従来の技術】建物等の免震構造において、積層ゴムア
イソレータは必須の免震装置である。一般的な積層ゴム
アイソレータはゴム板と中間鋼板とを交互に積層させた
円筒形状からなる。このため、積層ゴムアイソレータは
ゴム板の横方向変形が中間鋼板によって拘束され、鉛直
方向荷重に対してほとんど変形せずに建築物の鉛直方向
荷重を負担する。また、ゴム板のせん断剛性が小さいた
め水平方向荷重を受けると大きくせん断変形する。これ
により、地震時の水平方向変位が建物へ直接入力される
のが緩和される。ところで、従来、免震構造は固有周期
の小さい比較的剛な中層建物に適用することを主目的と
して開発されてきた。対象となる建物の平面レイアウト
に応じて鉛直方向荷重をバランスよく負担し、地震時に
はほぼ均等な水平方向荷重を受けてせん断変形するよう
に積層ゴムアイソレータの配置や大きさを設定すること
が重要である。中層建物の場合、1個の積層ゴムアイソ
レータが負担する鉛直方向荷重は一般に100t/個以
上であり、水平荷重を受けせん断変形しても構造の安定
が保持できるように各部の形状寸法が決定されている。
2. Description of the Related Art In a seismic isolation structure such as a building, a laminated rubber isolator is an essential seismic isolation device. A general laminated rubber isolator has a cylindrical shape in which rubber plates and intermediate steel plates are alternately laminated. For this reason, in the laminated rubber isolator, the lateral deformation of the rubber plate is restrained by the intermediate steel plate, and bears the vertical load of the building without being substantially deformed by the vertical load. In addition, since the rubber plate has a low shear rigidity, it undergoes large shear deformation when subjected to a horizontal load. This alleviates the fact that the horizontal displacement during an earthquake is directly input to the building. By the way, conventionally, the seismic isolation structure has been developed mainly for application to a relatively rigid middle-rise building having a small natural period. It is important to set the layout and size of the laminated rubber isolators so that they can load the vertical load in a well-balanced manner according to the plan layout of the target building, and receive an almost uniform horizontal load and undergo shear deformation during an earthquake. is there. In the case of a middle-rise building, the vertical load borne by one laminated rubber isolator is generally 100 t / piece or more, and the shape and dimensions of each part are determined so that the structural stability can be maintained even when subjected to a horizontal load and shear deformation. ing.

【0003】[0003]

【発明が解決しようとする課題】積層ゴムアイソレータ
は、積層ゴムの性質上、常時設計面圧を50〜100kg
/cm2の範囲にすることで適正な圧縮変形、せん断変形を
生じることができる。このため、戸建ての木造住宅のよ
うに常時の鉛直荷重が小さい構造物では図6(a)、
(b)に示したように、1個の積層ゴムアイソレータ5
0が負担する鉛直荷重PはP=20t程度とすれば、そ
の直径φはφ=230mmとなる。このとき積層ゴムア
イソレータ50を設置するのに必要な高さHはH=25
0mm程度である。このような寸法に製作された積層ゴ
ムアイソレータ50に地震時水平力Qが作用すると、せ
ん断変形δが生じる。大地震の場合にはこの最大せん断
変形量δmaxがδmax=200mm程度にもなる。このた
め図6(c)に示したように、鉛直荷重Pの作用位置が
偏心してその作用点を通る鉛直線が積層ゴムアイソレー
タ50の底面外形からはずれ、積層ゴムアイソレータは
不安定構造になる。その結果、免震装置が損壊して建物
に重大な被害が生じるおそれもある。
The laminated rubber isolator always has a design surface pressure of 50 to 100 kg due to the properties of the laminated rubber.
In the range of / cm2, appropriate compression deformation and shear deformation can be generated. For this reason, in a structure having a small vertical load at all times, such as a detached wooden house, FIG.
As shown in (b), one laminated rubber isolator 5
If the vertical load P borne by 0 is about P = 20t, the diameter φ becomes φ = 230 mm. At this time, the height H required for installing the laminated rubber isolator 50 is H = 25.
It is about 0 mm. When a horizontal force Q during an earthquake acts on the laminated rubber isolator 50 manufactured to such dimensions, a shear deformation δ occurs. In the case of a large earthquake, the maximum shear deformation amount δmax is as large as δmax = 200 mm. For this reason, as shown in FIG. 6C, the position of application of the vertical load P is eccentric, and the vertical line passing through the point of application deviates from the bottom outer shape of the laminated rubber isolator 50, and the laminated rubber isolator has an unstable structure. As a result, the seismic isolation device may be damaged, causing serious damage to the building.

【0004】そこで、本発明の目的は上述した従来の技
術が有する問題点を解消し、小さな鉛直荷重を負担し、
水平方向荷重に対しても適正なせん断変形を示し、地震
時に構造物の安定を図るようにした免震装置を提供する
ことにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to bear a small vertical load,
It is an object of the present invention to provide a seismic isolation device that exhibits appropriate shear deformation even in a horizontal direction load and stabilizes a structure during an earthquake.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は複数枚のゴム板と中間鋼板とを交互に積層
した積層ゴム部の上下面にフランジ板を固着した免震装
置において、前記積層ゴム部は、前記上下面を貫通する
中空部が形成された円環形状をなし、その外径は、最大
せん断変形時の鉛直荷重合力作用点を通る鉛直線が前記
積層ゴム部の底面外形内にあるように設定されたことを
特徴とするものである。
In order to achieve the above object, the present invention relates to a seismic isolation device in which a flange plate is fixed to upper and lower surfaces of a laminated rubber portion in which a plurality of rubber plates and intermediate steel plates are alternately laminated. The laminated rubber portion has an annular shape in which a hollow portion penetrating the upper and lower surfaces is formed, and an outer diameter of the laminated rubber portion is a vertical line passing through a vertical load resultant point of action during maximum shear deformation. It is characterized in that it is set to be within the outer shape of the bottom surface.

【0006】前記積層ゴム部は、前記中空円筒部内に粘
性体あるいは粒状体を充填することが好ましい。
It is preferable that the laminated rubber portion is filled with a viscous material or a granular material in the hollow cylindrical portion.

【0007】前記フランジ板から前記中空円筒部内に向
けてせん断突起を突設させ、前記粘性体あるいは粒状体
による抵抗によりせん断エネルギーを減衰させるように
することが好ましい。
[0007] It is preferable that a shear projection is protruded from the flange plate toward the inside of the hollow cylindrical portion so that shear energy is attenuated by resistance of the viscous or granular material.

【0008】さらに、前記積層ゴム部は、前記中空円筒
部内にせん断変形に追従して塑性変形する弾塑性部材を
設けるようにすることが好ましい。
Further, it is preferable that the laminated rubber portion is provided with an elasto-plastic member which plastically deforms following the shear deformation in the hollow cylindrical portion.

【0009】[0009]

【発明の実施の形態】以下、本発明の免震装置の一実施
の形態について、添付図面を参照して説明する。図1
(a)は、本発明の免震装置の平断面図である。本免震
装置10は、構造面から分類すると積層ゴムアイソレー
タに区分される。以下の説明において積層ゴムアイソレ
ータ10と呼んで説明する。積層ゴム部分11は所定厚
さのゴム板12と中間鋼板とが交互に積層されている。
ゴム板12は原料の天然ゴムにカーボンブラック等の補
強剤と、石油オイル等の可塑剤を添加し、機械的特性等
を調整して製造され、所定の板状に加工されたものであ
る。中間鋼板13には本実施の形態では、JIS規格の
一般構造用鋼板(機械的性質:SS400)が使用され
ている。また、耐久性維持のために被覆ゴム板14で積
層ゴム部分11の内外面が被覆されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the seismic isolation device of the present invention will be described below with reference to the accompanying drawings. FIG.
(A) is a plane sectional view of the seismic isolation device of the present invention. The seismic isolation device 10 is classified as a laminated rubber isolator when classified according to the structure. In the following description, the laminated rubber isolator 10 will be described. In the laminated rubber portion 11, rubber plates 12 and intermediate steel plates having a predetermined thickness are alternately laminated.
The rubber plate 12 is manufactured by adding a reinforcing agent such as carbon black and a plasticizer such as petroleum oil to natural rubber as a raw material, adjusting mechanical properties and the like, and processing the plate into a predetermined plate shape. In the present embodiment, a JIS standard steel plate for general structure (mechanical property: SS400) is used as the intermediate steel plate 13. Further, the inner and outer surfaces of the laminated rubber portion 11 are covered with a covering rubber plate 14 for maintaining durability.

【0010】積層ゴム部分11は図1(a)に示したよ
うに、中空円環状の形状をなし、さらに同図(b)に示
したように、中空円環状部分の上下面を円板状フランジ
で挟むように支持して積層ゴムアイソレータ10が構成
されている。なお、上下面に取り付けられるフランジ
は、梁の交点位置の寸法に合わせた四角形状ととしても
よい。
The laminated rubber portion 11 has a hollow annular shape as shown in FIG. 1A, and the upper and lower surfaces of the hollow annular portion are disc-shaped as shown in FIG. The laminated rubber isolator 10 is supported so as to be sandwiched between the flanges. Note that the flanges attached to the upper and lower surfaces may be formed in a square shape corresponding to the size of the intersection point of the beams.

【0011】図1各図に示した積層ゴムアイソレータ1
0において、図6に示した積層ゴムアイソレータ50と
同等の鉛直荷重を受け、等しい面圧が作用した状態で安
定したせん断変形を生じさせるように受圧ゴム面の断面
積を設定すると、積層ゴムの外径φ1はφ1=400m
m、内径φ2はφ2=330mmとなる。このとき積層ゴ
ム部分11の高さHをH=250mmに揃えた場合、最
大せん断変形時にも鉛直荷重合力作用点を通る鉛直線が
積層ゴム部11の底面外形内にあるため、構造の安定を
確保することができる。この場合、円環状部分の幅t
は、鉛直荷重が偏荷重として作用した場合にも座屈が生
じたりしない程度に確保する必要がある。また、水平荷
重作用時に積層ゴム全体が均一なせん断変形角をなすよ
うにせん断変形し、最大せん断変時に、鉛直荷重の合力
の作用点を通る鉛直線が積層ゴムの外径φ1内、すなわ
ち底面外形内に位置する程度にせん断剛性を設定するこ
とが必要である。
FIG. 1 shows a laminated rubber isolator 1 shown in each figure.
At 0, a vertical load equivalent to that of the laminated rubber isolator 50 shown in FIG. 6 is applied, and the cross-sectional area of the pressure-receiving rubber surface is set so as to generate stable shear deformation in a state where the same surface pressure is applied. Outer diameter φ1 is φ1 = 400m
m, the inner diameter φ2 is φ2 = 330 mm. At this time, when the height H of the laminated rubber portion 11 is set to H = 250 mm, the vertical line passing through the vertical load resultant force application point is within the outer shape of the bottom surface of the laminated rubber portion 11 even at the time of the maximum shear deformation. Can be secured. In this case, the width t of the annular portion
It is necessary to ensure that buckling does not occur even when a vertical load acts as an eccentric load. In addition, when the horizontal load acts, the entire laminated rubber undergoes shear deformation so as to form a uniform shear deformation angle, and at the time of maximum shear variation, a vertical line passing through the point of application of the resultant force of the vertical load is within the outer diameter φ1 of the laminated rubber, that is, the bottom surface It is necessary to set the shear stiffness to the extent that it is located within the outer shape.

【0012】図2は、図1に示した受圧面積と等価な面
積を有するように、4個の中空円筒形状のくり抜き部2
1を設けた実施の態様である。図2(a)に示したよう
に、積層ゴム部11の中央位置に略十字形をなす隔壁状
部22が形成される。これにより、水平荷重が作用した
際に曲げを生じないでせん断が卓越した変形が可能とな
る。なお、図2では4個の中空円筒形状としたが、加工
性との兼ね合いによりさらに多数の中空円筒部21を形
成するようにしてもよいことはいうまでもない。
FIG. 2 shows four hollow cylindrical hollow portions 2 having an area equivalent to the pressure receiving area shown in FIG.
1 is an embodiment in which the number 1 is provided. As shown in FIG. 2A, a substantially cross-shaped partition wall portion 22 is formed at the center of the laminated rubber portion 11. This allows for excellent shear deformation without bending when a horizontal load is applied. Although four hollow cylinders are shown in FIG. 2, it goes without saying that more hollow cylinders 21 may be formed in consideration of workability.

【0013】図3は、積層する中間鋼板13A、13B
を同心円状に内外に2重に配置し、内外の中間鋼板13
A、13B間にゴム層のみからなる環状ゴム部17を形
成するようにした変形例を示したものである。鉛直荷重
はゴム板12と中間鋼板13A、13Bとの積層部分で
負担する。このとき環状ゴム部17も作用した鉛直荷重
により変形するが、環状ゴム部17の内外に位置する中
間鋼板13により側方への変形が阻止され、鉛直方向変
位は図1に示した積層ゴムアイソレータ10と同等とな
る。またこの環状ゴム部17は、水平荷重が作用すると
中間鋼板13を有する部分とともにせん断抵抗するの
で、せん断変形に対する有効面積を大きくとることがで
きる。このため曲げ変形等を確実に抑えることができ
る。
FIG. 3 shows intermediate steel plates 13A and 13B to be laminated.
Are concentrically arranged inside and outside of the inner and outer intermediate steel plates 13.
This shows a modification in which an annular rubber portion 17 consisting of only a rubber layer is formed between A and 13B. The vertical load is borne by the laminated portion of the rubber plate 12 and the intermediate steel plates 13A and 13B. At this time, the annular rubber portion 17 is also deformed by the applied vertical load, but the lateral deformation is prevented by the intermediate steel plate 13 located inside and outside the annular rubber portion 17, and the vertical displacement is reduced by the laminated rubber isolator shown in FIG. It is equivalent to 10. Further, when a horizontal load is applied, the annular rubber portion 17 resists shearing together with the portion having the intermediate steel plate 13, so that an effective area against shear deformation can be increased. Therefore, bending deformation and the like can be reliably suppressed.

【0014】図4は、上述した天然ゴム系積層ゴムを用
いた免震装置10にダンパー30を組み込んで減衰性能
を付与し、地震時に生じる建物と地盤との過大な相対変
位を抑制するようにした免震装置10を示したものであ
る。図4(a)は積層ゴムアイソレータ10内の中空部
に弾塑性ダンパー31を収容した例を示したものであ
る。この弾塑性ダンパー31は、同図(a)に示したよ
うに、積層ゴムの高さにほぼ等しい弾塑性変形材であ
る。この弾塑性変形材は支持プレート32を介して下部
フランジ上面の中空部内に起立状態で収容され、上端3
1aは上部フランジ15の下面に取り付けられた球座プ
レート33で支持されている。本実施の形態では、弾塑
性変形材として鋼棒が使用されている。積層ゴムアイソ
レータ10がせん断変形するとこの鋼棒に曲げが作用し
て曲げ変形するが、この曲げ弾塑性変形によって振動エ
ネルギーが吸収される。鋼棒としてはステンレススチー
ルが好適である。その強度、寸法は建物の設計固有周
期、周囲に設けられている積層ゴムアイソレータ10の
履歴性状、許容変位等の条件から算出される降伏せん断
力、限界変形量を満たすように設定することが好まし
い。弾塑性変形材としては鋼棒の他、鉛棒、炭素繊維を
加工した棒材等を使用することができる。また、複数本
の細径鋼棒を収容できる構造としてその収容本数を調整
することでダンパー性能を調整するようにしてもよい。
FIG. 4 shows that the damper 30 is incorporated into the seismic isolation device 10 using the above-described natural rubber-based laminated rubber to provide a damping performance so as to suppress an excessive relative displacement between the building and the ground caused during an earthquake. FIG. FIG. 4A shows an example in which an elastic-plastic damper 31 is accommodated in a hollow portion in the laminated rubber isolator 10. The elasto-plastic damper 31 is an elasto-plastic deformation material substantially equal to the height of the laminated rubber, as shown in FIG. The elasto-plastically deformable material is accommodated in a hollow state on the upper surface of the lower flange via the support plate 32 in an upright state.
1a is supported by a ball seat plate 33 attached to the lower surface of the upper flange 15. In the present embodiment, a steel rod is used as the elastic-plastic deformation material. When the laminated rubber isolator 10 is subjected to shear deformation, bending is applied to the steel bar to cause bending deformation. Vibration energy is absorbed by the bending elastic-plastic deformation. Stainless steel is preferred as the steel rod. The strength and dimensions are preferably set so as to satisfy the yield shear force and the critical deformation calculated from conditions such as the design natural period of the building, the hysteresis of the laminated rubber isolator 10 provided around the building, and the allowable displacement. . As the elasto-plastically deformable material, a steel rod, a lead rod, a rod processed from carbon fiber, or the like can be used. Further, a structure capable of accommodating a plurality of small-diameter steel rods may be employed to adjust the number of accommodations so as to adjust the damper performance.

【0015】図4(b)は積層ゴムアイソレータ10内
の中空部に粘性体ダンパーを封入した例を示したもので
ある。この粘性体ダンパーは、同図(b)に示したよう
に、密閉された空間内に粘性性状を有する内容物を封入
したものである。粘性体としては高分子系粘性体、油
脂、無機系充填材等がある。なお、流動性があるので、
液漏れが発生しないようにすることが必要である。この
ため、上述の密閉された空間を形成するには、積層ゴム
アイソレータ10のせん断変形に追従可能な弾性体容
器、袋体等を利用することが好ましい。
FIG. 4B shows an example in which a viscous damper is sealed in a hollow portion in the laminated rubber isolator 10. As shown in FIG. 1B, this viscous material damper is one in which a viscous material is sealed in a closed space. Examples of the viscous material include a polymer-based viscous material, oil and fat, and an inorganic filler. Since there is liquidity,
It is necessary to prevent liquid leakage from occurring. Therefore, in order to form the above-mentioned closed space, it is preferable to use an elastic container, a bag, or the like that can follow the shear deformation of the laminated rubber isolator 10.

【0016】図4(c)は積層ゴムアイソレータ10内
の中空部に摩擦ダンパーを収容した例を示したものであ
る。この摩擦ダンパーは、同図(c)に示したように、
バラ状態の粒状体35を密に収容した構成からなる。こ
れらの粒状体35は互いに接触して空間内に収容されて
いるため、積層ゴムアイソレータ10、すなわち中空円
筒部がせん断変形すると、内部の粒状体35が噛み合い
ながら僅かずつズレるように移動する。この移動によっ
て粒状体35同士が接触してエネルギーが吸収される。
粒状体35の形状は球状でも、角ばったランダムな形状
でもよい。たとえば接触圧で破壊しないような強度を有
する材質であれば、所定の直径に加工された鋼球、その
他の金属球、合成樹脂球、セラミックス球等種々の加工
品が適用できる。また、個々の形状と寸法は異なるが、
所定の粒径範囲に区分された天然骨材や人工骨材を使用
することもできる。使用する粒状体35の直径、粒径は
あらかじめせん断変形実験等により適正値を採用するこ
とが好ましい。密閉性が確保される場合には粒状体35
以外の空間に粘性体34を充填することも可能である。
この場合にも実験によりダンパー性能を把握することが
好ましい。図4(d)は粒状体35が充填された中空円
筒部内に上下のフランジ15、16から略円筒形状のせ
ん断突起36を突設させた変形例を示したものである。
せん断突起36は中空円筒部のせん断変形時に粒状体3
5が充填された内部をフランジ15のスライドに伴って
移動しようとする。このときせん断突起36の周囲の粒
状体35が抵抗となり、せん断エネルギーは急速に減衰
する。これによりきわめて効率のよいダンパ効果が発揮
される。なお、この場合も積層ゴムアイソレータ10の
せん断剛性は内部のせん断突起36が積層ゴムの内面に
ぶつからない程度に設定することが必要である。
FIG. 4C shows an example in which a friction damper is accommodated in a hollow portion in the laminated rubber isolator 10. This friction damper is, as shown in FIG.
It has a configuration in which loose granular materials 35 are densely accommodated. Since these granular materials 35 are housed in the space in contact with each other, when the laminated rubber isolator 10, that is, the hollow cylindrical portion is sheared, the internal granular materials 35 move so as to be displaced little by little while meshing. Due to this movement, the granular materials 35 come into contact with each other to absorb energy.
The shape of the granular material 35 may be a spherical shape or an angular random shape. For example, various materials such as steel balls processed to a predetermined diameter, other metal balls, synthetic resin balls, ceramic balls, and the like can be used as long as the material has a strength not to be broken by contact pressure. In addition, although individual shapes and dimensions are different,
Natural aggregates and artificial aggregates classified into a predetermined particle size range can also be used. As the diameter and the particle diameter of the granular material 35 to be used, it is preferable to adopt appropriate values in advance by a shear deformation experiment or the like. When airtightness is ensured, the granular material 35
It is also possible to fill the viscous body 34 in a space other than the above.
Also in this case, it is preferable to grasp the damper performance by an experiment. FIG. 4D shows a modification in which a substantially cylindrical shearing projection 36 is protruded from upper and lower flanges 15 and 16 in a hollow cylindrical portion filled with granular material 35.
The shearing projection 36 is used when the hollow cylindrical portion is deformed by shearing.
5 moves in the interior filled with 5 as the flange 15 slides. At this time, the granular material 35 around the shear protrusion 36 becomes a resistance, and the shear energy is rapidly attenuated. Thereby, a very efficient damper effect is exhibited. Also in this case, the shear rigidity of the laminated rubber isolator 10 needs to be set to such an extent that the internal shear protrusion 36 does not hit the inner surface of the laminated rubber.

【0017】図5は、図4(a)に示した弾塑性ダンパ
ー31を、積層ゴムアイソレータ10に形成された4個
の中空円筒形状のくり抜き部21内に設置した実施の形
態を示した図である。本発明では積層ゴム部分11に形
成される中空部の容積が大きいため、従来のように中空
部に等しい大きさの鉛プラグを収容し、鉛プラグのせん
断変形を期待するのは不経済である。中空部の空間内で
大きく曲げ変形する鋼棒等の弾塑性ダンパー31を用い
るのが経済的である。
FIG. 5 shows an embodiment in which the elastic-plastic damper 31 shown in FIG. 4A is installed in four hollow cylindrical hollow portions 21 formed in the laminated rubber isolator 10. It is. In the present invention, since the volume of the hollow portion formed in the laminated rubber portion 11 is large, it is uneconomical to accommodate a lead plug of the same size as the hollow portion and to expect the lead plug to undergo shear deformation as in the related art. . It is economical to use an elasto-plastic damper 31 such as a steel rod which is largely bent and deformed in the space of the hollow portion.

【0018】以上の説明では天然ゴムを例に免震装置と
しての積層ゴムアイソレータ10について説明したが、
積層ゴムに高減衰積層ゴムを使用してもよい。また、ク
ロロプレンゴム等の合成ゴムも適正なせん断変形特性を
示すので、天然ゴムと同様に使用することができる。
In the above description, the laminated rubber isolator 10 as a seismic isolation device has been described using natural rubber as an example.
A high attenuation laminated rubber may be used for the laminated rubber. Synthetic rubber such as chloroprene rubber can also be used in the same manner as natural rubber because it also exhibits appropriate shear deformation characteristics.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によれば、戸建て住宅のような小さな規模の住宅におい
ても適正な仕様の免震効果の得られる免震装置を提供す
ることができるという効果を奏する。
As is apparent from the above description, according to the present invention, it is possible to provide a seismic isolation device that can obtain a seismic isolation effect with appropriate specifications even in a small-scale house such as a detached house. This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による免震装置の一実施の態様を示した
平断面図、側断面図。
FIG. 1 is a plan sectional view and a side sectional view showing an embodiment of a seismic isolation device according to the present invention.

【図2】本発明による免震装置の他の実施の態様を示し
た平断面図、側断面図。
FIG. 2 is a plan sectional view and a side sectional view showing another embodiment of the seismic isolation device according to the present invention.

【図3】本発明による免震装置の他の実施の態様を示し
た平断面図、側断面図。
FIG. 3 is a plan sectional view and a side sectional view showing another embodiment of the seismic isolation device according to the present invention.

【図4】本発明による免震装置の他の実施の態様を示し
た側断面図。
FIG. 4 is a side sectional view showing another embodiment of the seismic isolation device according to the present invention.

【図5】本発明による免震装置の他の実施の態様を示し
た平断面図、側断面図。
FIG. 5 is a plan sectional view and a side sectional view showing another embodiment of the seismic isolation device according to the present invention.

【図6】従来の免震装置の一例を示した平断面図、側断
面図。
FIG. 6 is a plan sectional view and a side sectional view showing an example of a conventional seismic isolation device.

【符号の説明】[Explanation of symbols]

10 免震装置(積層ゴムアイソレータ) 11 積層ゴム部分 12 ゴム板 13 中間鋼板 20,21 中空部 30 ダンパー DESCRIPTION OF SYMBOLS 10 Seismic isolation device (laminated rubber isolator) 11 Laminated rubber part 12 Rubber plate 13 Intermediate steel plate 20, 21 Hollow part 30 Damper

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数枚のゴム板と中間鋼板とを交互に積層
した積層ゴム部の上下面にフランジ板を固着した免震装
置において、前記積層ゴム部は、前記上下面を貫通する
中空円筒部が形成された円環形状をなし、その外径は、
最大せん断変形時の鉛直荷重合力作用点を通る鉛直線が
前記積層ゴム部の底面外形内にあるように設定されたこ
とを特徴とする免震装置。
1. A seismic isolation device in which a flange plate is fixed to upper and lower surfaces of a laminated rubber portion in which a plurality of rubber plates and intermediate steel plates are alternately laminated, wherein the laminated rubber portion is a hollow cylinder penetrating the upper and lower surfaces. It has an annular shape with a part formed, and its outer diameter is
A seismic isolation device characterized in that a vertical line passing through a vertical load resultant force point at the time of maximum shear deformation is set within the outer shape of the bottom surface of the laminated rubber portion.
【請求項2】前記積層ゴム部は、前記中空円筒部内に粘
性体を充填したことを特徴とする請求項1記載の免震装
置。
2. The seismic isolation device according to claim 1, wherein said laminated rubber portion has said hollow cylindrical portion filled with a viscous material.
【請求項3】前記積層ゴム部は、前記中空円筒部内に粒
状体を充填したことを特徴とする請求項1記載の免震装
置。
3. The seismic isolation device according to claim 1, wherein said laminated rubber portion has a granular material filled in said hollow cylindrical portion.
【請求項4】前記フランジ板から前記中空円筒部内に向
けてせん断突起を突設させたことを特徴とする請求項2
または請求項3記載の免震装置。
4. A shear projection projecting from said flange plate toward said hollow cylindrical portion.
Or the seismic isolation device according to claim 3.
【請求項5】前記積層ゴム部は、前記中空円筒部内にせ
ん断変形に追従して塑性変形する弾塑性部材を設けたこ
とを特徴とする請求項1記載の免震装置。
5. The seismic isolation device according to claim 1, wherein the laminated rubber portion is provided with an elasto-plastic member which plastically deforms following the shear deformation in the hollow cylindrical portion.
JP27751796A 1996-09-27 1996-09-27 Base isolation device Pending JPH10102821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751796A JPH10102821A (en) 1996-09-27 1996-09-27 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27751796A JPH10102821A (en) 1996-09-27 1996-09-27 Base isolation device

Publications (1)

Publication Number Publication Date
JPH10102821A true JPH10102821A (en) 1998-04-21

Family

ID=17584706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751796A Pending JPH10102821A (en) 1996-09-27 1996-09-27 Base isolation device

Country Status (1)

Country Link
JP (1) JPH10102821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242212A (en) * 2005-02-28 2006-09-14 Meiji Univ Layered base isolation device
CN109056515A (en) * 2018-09-13 2018-12-21 北京城建十六建筑工程有限责任公司 A kind of shock mount

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242212A (en) * 2005-02-28 2006-09-14 Meiji Univ Layered base isolation device
CN109056515A (en) * 2018-09-13 2018-12-21 北京城建十六建筑工程有限责任公司 A kind of shock mount
CN109056515B (en) * 2018-09-13 2024-01-02 北京城建十六建筑工程有限责任公司 Damping support

Similar Documents

Publication Publication Date Title
US5797228A (en) Seismic isolation bearing
JP2010007859A (en) Isolation platform
JP6420012B1 (en) Passive vibration control device for buildings
JPH10102821A (en) Base isolation device
JP2010173860A (en) Device for horizontally supporting mast of tower crane
JP3692417B2 (en) Damping wall structure and damping wall unit
JP2005187185A (en) Device for horizontally supporting mast of tower crane
JP7455682B2 (en) Buffer structure and buffer material
JP5305756B2 (en) Damping wall using corrugated steel
JP2002130370A (en) Seismic isolator
JP2937912B2 (en) Seismic isolation device
JP2001073469A (en) Column structure and earthquake resistant building
JP3671317B2 (en) Seismic isolation mechanism
JPH02285176A (en) Response control device of building
JP2003155838A (en) Vibration-isolated structure of building
JP2000328810A (en) Vibration control frame
JP3138457U (en) Seismic reduction device for small buildings
JPH033723Y2 (en)
JP2000045561A (en) Brace damper
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JPH09151622A (en) Base isolation device for building
JPS62220734A (en) Vibrational energy absorbing device
JPH0520808Y2 (en)
JP2000291286A (en) Earthquake resistant building
JP3073638B2 (en) Vibration-isolating support that can isolate vibrations in six directions

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050805

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A131 Notification of reasons for refusal

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060415

A02 Decision of refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A02