JPH10102478A - Deep mixing method with method for judging arrival on sea bottom - Google Patents

Deep mixing method with method for judging arrival on sea bottom

Info

Publication number
JPH10102478A
JPH10102478A JP25434496A JP25434496A JPH10102478A JP H10102478 A JPH10102478 A JP H10102478A JP 25434496 A JP25434496 A JP 25434496A JP 25434496 A JP25434496 A JP 25434496A JP H10102478 A JPH10102478 A JP H10102478A
Authority
JP
Japan
Prior art keywords
construction
depth
landing
penetration
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25434496A
Other languages
Japanese (ja)
Other versions
JP3718784B2 (en
Inventor
Yasuhiro Ota
泰博 太田
Akira Masuda
彰 増田
Noriyoshi Nakamura
紀吉 中村
Yoshio Suzuki
善雄 鈴木
吉夫 鈴木
Yasushi Kanzaki
靖 神崎
Ryosuke Okumura
良介 奥村
Akio Shiina
昭雄 椎名
Katsumi Higuchi
克己 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP25434496A priority Critical patent/JP3718784B2/en
Publication of JPH10102478A publication Critical patent/JPH10102478A/en
Application granted granted Critical
Publication of JP3718784B2 publication Critical patent/JP3718784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deep mixing method which is carried out by adding a bottom arrival item to construction control items. SOLUTION: Penetrating speed of an excavation agitator axis, the time it takes for the axis to penetrate, and the depth of the tip of the axis are measured at an interval of unit time at the first construction of an improved column until the lowermost agitator impeller 4 of the agitator reaches the supporting ground to form a graph, whereby a reference diagram for judging the arrival of axis on the sea bottom. And thereafter, the improved column is constructed with reference to the reference diagram and measured values during the construction are taken up on real time to form a reference diagram of the arrival of the column on the sea bottom so that the construction is performed by judging the arrival on the bottom according to the reference diagram of the arrival of the column.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、陸上又は海上で
施工される深層混合処理工法であって、施工管理項目に
着底項目を加えて実施される着底判定方法を伴った深層
混合処理工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep mixing method for construction on land or sea, and a method for deep mixing processing with a method for judging a bottom by adding a landing item to a construction management item. About.

【0002】[0002]

【従来の技術】従来、深層混合処理工法は、陸上又は海
上で施工され実績を上げている。これまでの深層混合処
理工法は主に盛土のすべり止めなどの仮設物の構築に実
施されてきたので、支持地盤への着底の当否はさして問
題視されなかった。しかし、近年は例えば図4に示した
ように、改良柱を平面的に連続させた改良地盤10を構
造物12の本設基礎として使用することが現実的な検討
課題となり、個々の改良柱が地下の支持地盤11へ確か
に到達していることを確認する着底項目が施工管理上重
要になった。
2. Description of the Related Art Conventionally, the deep mixing treatment method has been performed on land or at sea, and has achieved good results. Until now, the deep mixing method was mainly used to construct temporary structures such as non-slip of embankment, so it was not a problem whether landing on the supporting ground was appropriate. However, in recent years, as shown in FIG. 4, for example, it is a realistic study subject to use the improved ground 10 in which the improved columns are continuous in a plane as a permanent foundation of the structure 12. The landing item for confirming that the vehicle has reached the underground supporting ground 11 has become important in construction management.

【0003】しかし、従来は、着底項目の管理は行われ
ていないに等しい。せいぜい処理機の回転モータ(油圧
モータ又は電気モータ)の油圧計又は電流計の読みと、
処理機の昇降速度計の読みとに基いて簡便に着底を管理
しているにすぎない。即ち、地質調査(ボーリング調
査)によって支持地盤の深さが判明している場所で試験
的に1本の改良柱施工を行い、改良深さ毎の各施工デー
タ(貫入速度、処理機回転モータの油圧計又は電流計の
測定値)を読み取る。特に、着底するときの貫入速度、
及び処理機回転モータの油圧計又は電流計の測定値を読
み取り、着底状態と想定されるまでの各測定値を求め、
着底するまでに前記の測定値が示している所要時間を求
める。そして、実際の施工では、前記の貫入速度及び処
理機回転モータの油圧計、電流計の「特定の測定値」が
「ある時間(秒)」継続した時に着底と定義している。
前記の「特定の測定値」及び「ある時間」は、先に1本
試験的に施工した改良柱の施工結果を参考に、例えばN
値30での貫入速度は0.1m/min以下であると特
定し、その特定貫入速度が90秒あるいは400秒継続
した場合を着底と一義的に決めている。
[0003] However, conventionally, the management of the landing item is not performed. At best, the reading of the oil pressure gauge or ammeter of the rotation motor (hydraulic motor or electric motor) of the processing machine,
The sole is simply controlled based on the reading of the elevating speedometer of the processor. In other words, one improved pillar was experimentally constructed in a place where the depth of the supporting ground was found by a geological survey (boring survey), and the construction data (penetration speed, (Measurement value of oil pressure meter or ammeter). In particular, the penetration speed when landing,
And read the measured value of the oil pressure meter or ammeter of the processing machine rotation motor, to obtain each measured value until it is assumed that the landing state,
The required time indicated by the above-mentioned measured value until the landing is determined. In actual construction, when the above-mentioned penetration speed and the “specific measurement value” of the oil pressure gauge and the ammeter of the processing machine rotation motor continue for “a certain time (second)”, the landing is defined.
The above “specific measurement value” and “certain time” are, for example, N
The penetration speed at the value 30 is specified to be 0.1 m / min or less, and the case where the specific penetration speed continues for 90 seconds or 400 seconds is uniquely determined as the landing.

【0004】[0004]

【本発明が解決しようとする課題】一般論として、着底
とは、改良柱の所定大きさの横断面積(例えば一軸当た
りの攪拌翼の直径が1mで、ラップ長さが20cmの2
軸方式の場合で、面積1.5m2が支持地盤に接した状
態を言い、これを着底判定基準に基づいて判定すること
になる。
As a general rule, the bottom is defined as a cross-sectional area of a predetermined size of the improved column (for example, a diameter of the stirring blade per axis is 1 m and a wrap length of 20 cm is 2 cm).
In the case of the axial method, a state in which an area of 1.5 m 2 is in contact with the supporting ground is determined based on a landing determination criterion.

【0005】深層混合処理機には様々な機械があるが、
図1には深層混合処理機の2軸方式の掘削攪拌軸先端の
掘削羽根及び攪拌翼の先端形状の一例を示し、図2に前
記の掘削攪拌軸を使用した場合の改良柱の着底の概念図
を示している。一般に、2軸方式の攪拌掘削軸1、1で
造成される2本の改良柱a,aの一部がラップして横断
面が瓢箪判定方法を伴った形状となる場合の2軸の先端
部形状は、攪拌翼相互の干渉を防ぐために次のような構
造とされる。例えば軸間距離を800mmとして平行に
並べられた2軸のうち、図1中左側の掘削攪拌軸先端の
掘削羽根2は最大外径が1000mmの掘削羽根と攪拌
翼の機能を兼ねた羽根とし、他方、右側の掘削羽根3は
最大外径を580mmと小さい形状とされている。とこ
ろが同右側の掘削攪拌軸の最下段攪拌翼4は最大外径を
1000mmの大きさで、前記掘削羽根3の先端から上
方への高低差hが550mmの高さに位置し、左側の掘
削兼攪拌翼2の上端からも約200mm程度上方の位置に
段違い状に設けられている。また、下段の連結板5より
上方の攪拌翼6も、隣接する攪拌翼同士の位置を上下に
ずらして段違い状に設置されている。
There are various types of deep mixing machines,
FIG. 1 shows an example of the shape of a tip of a drilling blade and a stirring blade at the tip of a two-shaft type drilling and stirring shaft of a deep mixing machine. FIG. 2 shows a bottom of an improved column when the above-mentioned drilling and stirring shaft is used. FIG. Generally, a tip of a biaxial shaft when a part of two improved columns a, a formed by the biaxial agitating and excavating shafts 1, 1 is wrapped and the cross section has a shape accompanied by a gourd determination method. The shape is as follows in order to prevent interference between the stirring blades. For example, of the two axes arranged in parallel with an inter-axis distance of 800 mm, the excavating blade 2 at the tip of the excavating and stirring shaft on the left side in FIG. 1 is a blade that also functions as an excavating blade with a maximum outer diameter of 1000 mm and a stirring blade, On the other hand, the right excavation blade 3 has a small maximum outer diameter of 580 mm. However, the lowermost stirring blade 4 of the right excavation stirring shaft has a maximum outer diameter of 1000 mm, a height difference h upward from the tip of the excavation blade 3 at a height of 550 mm, and the left excavation stirring shaft 4 has a maximum height h of 550 mm. The stirring blade 2 is provided in a stepped manner at a position about 200 mm above the upper end. In addition, the stirring blades 6 above the lower connecting plate 5 are also installed in a stepped manner with the positions of adjacent stirring blades shifted vertically.

【0006】このため2軸の掘削攪拌軸1、1で形成さ
れる2本の改良柱の先端部形状は、掘削羽根形状の上述
した相違に起因して、図1、図2中に点線a,a´で例
示したように垂直な断面形状に段差を生ずる。そこで本
発明は、前記垂直な断面形状の段差が正に解消する位
置、即ち図1中右側の最下段攪拌翼4が図2中の支持地
盤11へ到達した状態(図2中の楕円ハッチングの位
置)を着底と定義する。
For this reason, the tip shapes of the two improved columns formed by the two excavating and stirring shafts 1, 1 are indicated by dotted lines a in FIG. 1 and FIG. , A ', the vertical cross section has a step. Therefore, the present invention provides a position where the step in the vertical cross-sectional shape is positively eliminated, that is, a state where the lowermost stirring blade 4 on the right side in FIG. 1 reaches the support ground 11 in FIG. 2 (the elliptical hatching in FIG. 2). Position) is defined as the bottom.

【0007】ところが、従来の上述した着底管理方法で
は、最下段攪拌翼4が支持地盤11へ到達したか否かの
確認は全くできず、推測に頼るのみである。のみなら
ず、支持地盤へ到達し着底したか否かの確認は「特定の
測定値」が「ある時間」継続した現象を測定することに
よって一義的に判断するため、現実性に乏しく、安全率
として「ある時間」の継続を必要以上に長く設定するの
で、結局は1本の改良柱を施工する時間(ロスタイム)
が長くなり、合理的ではない。
However, in the above-mentioned conventional landing management method, it cannot be confirmed at all whether or not the lowermost stirring blade 4 has reached the support ground 11, but only depends on the guess. Not only is it difficult to determine whether the vehicle has reached the support ground and has landed, because it is determined unambiguously by measuring a phenomenon in which "specific measurement values" continue for "a certain period of time". Since the continuation of “a certain time” is set longer than necessary as a rate, the time to construct one improved pillar (loss time) is eventually
Is lengthy and unreasonable.

【0008】従って、本発明の目的は、改良柱の施工中
に、その場所における支持地盤の深さをより正確に予知
確認し、改良柱施工の段階で作成される自らの着底判定
基準図に基いて着底をリアルタイムに正確に判定するこ
とを可能ならしめ、もって深層混合処理工法の施工を迅
速、且つ高精度に合理的に行えるようにすることであ
る。
[0008] Accordingly, an object of the present invention is to provide a more accurate prediction and confirmation of the depth of the supporting ground at the site during the construction of an improved pillar, and to provide a self-adherence judgment reference diagram prepared at the stage of the improved pillar construction. Therefore, it is possible to accurately judge the landing in real time on the basis of the method, and thereby to be able to perform the deep mixing processing method quickly, accurately and rationally.

【0009】[0009]

【課題を解決するための手段】上記した従来技術の課題
を解決するための手段として、請求項1記載の発明に係
る着底判定方法を伴った深層混合処理工法は、先端に掘
削羽根と攪拌翼を備えた掘削攪拌軸を地中の所定深度ま
で貫入するとともに掘削した原位置土と安定剤とを攪拌
混合して改良柱を造成する深層混合処理工法において、
最初の改良柱施工(又は試験掘り)における掘削攪拌軸
の貫入速度と貫入所要時間及び貫入先端深度の各測定値
を、掘削攪拌軸の最下段攪拌翼が支持地盤に到達した状
態まで単位時間毎に採取してグラフ化した着底判定基準
図を作成し、以後の改良柱の施工は前記の着底判定基準
図を参考にした上で、施工中の各測定値をリアルタイム
に採取して自らの着底基準図を作成し、同図に基いて着
底を判定しつつ施工することを特徴とする。
As a means for solving the above-mentioned problems in the prior art, a deep-layer mixing method with a landing determination method according to the present invention according to the first aspect of the present invention includes a method of mixing a drilling blade at the tip with a stirring blade. In the deep mixing process method of creating an improved pillar by penetrating the excavation and stirring shaft with wings to a predetermined depth in the ground and stirring and mixing the excavated in-situ soil and the stabilizer,
The measured values of the penetration speed, penetration time and penetration depth of the drilling and stirring shaft in the construction of the first improved column (or test digging) were measured every unit time until the lowermost stirring blade of the drilling and stirring shaft reached the supporting ground. Create a graph of the bottoming judgment criteria that was collected and graphed, and for the subsequent construction of the improved pillars, referring to the aforementioned bottoming judgment criteria map, collect each measured value during construction in real time and The method is characterized in that a bottoming reference map is created, and the construction is performed while determining the bottoming based on the drawing.

【0010】また、請求項2記載の発明に係る着底判定
方法を伴った深層混合処理工法は、先端に掘削羽根と攪
拌翼を備えた掘削攪拌軸を地中の所定深度まで貫入する
とともに掘削した原位置土と安定剤とを攪拌混合して改
良柱を造成する深層混合処理工法において、事前に行っ
た調査ボーリング等の施工基準点(以下、基準点とい
う。)における地下の支持地盤の深さを予め土層断面図
に基づき確認しておき、前記確認の結果を予備知識とし
て基準点近傍の最初の改良柱施工における掘削攪拌軸の
貫入速度と貫入所要時間及び貫入先端深度の各測定値
を、掘削攪拌軸の最下段攪拌翼が支持地盤に到達した着
底状態まで単位時間毎に計測採取してグラフ化した着底
判定基準図を作成し、以後の改良柱の施工は前記の着底
判定基準図を参考にした上で、施工中の各測定値をリア
ルタイムに採取して自らの着底判定基準図を作成し、同
図に基いて着底を判定しつつ施工することを特徴とす
る。
[0010] In the deep mixing method with the landing judgment method according to the second aspect of the present invention, the excavation and stirring shaft provided with excavating blades and stirring blades at the tip penetrates to a predetermined depth in the ground and excavates. In the deep-mixing method in which the improved in-situ soil and stabilizing agent are agitated and mixed to form an improved pillar, the depth of the underground supporting ground at the construction reference point (hereinafter referred to as the reference point) for survey boring conducted in advance. Is confirmed in advance based on the soil section, and the results of the above confirmation are used as preliminary knowledge, and the measured values of the penetration speed, penetration time, and penetration tip depth of the excavation stirring shaft in the construction of the first improved column near the reference point The bottom stirrer of the excavation stirrer shaft was measured and sampled every unit time until the bottom stirrer blade reached the support ground, and a graph was created to create a bottoming judgment reference chart. Refer to the bottom judgment standard diagram Above, to create their own wearing bottom criterion view were taken each measurement in the construction in real time, characterized by construction while determining the wear bottom based on FIG.

【0011】前記請求項2記載の発明における地下の支
持地盤の深さの確認は、施工前に基準点に実施した地質
調査(ボーリング調査)の土層断面図に基いて改良柱を
着底させる支持地盤の深さを予め決める(予備知識とす
る)ことを特徴とする。請求項1又は2記載の発明にお
ける着底基準の設定は、改良柱施工によって作成された
自らの着底判定基準図における掘削攪拌軸の貫入速度と
その継続時間とで設定することを特徴とする。
According to the second aspect of the present invention, the depth of the underground supporting ground is confirmed by arranging the improved pillar on the basis of a soil layer cross-sectional view of a geological survey (boring survey) conducted at a reference point before construction. It is characterized in that the depth of the supporting ground is determined in advance (preliminary knowledge). The setting of the landing standard in the invention according to claim 1 or 2 is characterized in that it is set based on the penetration speed of the excavation stirring shaft and the duration thereof in the own landing determination reference diagram created by the improved column construction. .

【0012】請求項1又は2記載の発明における着底基
準の設定は、改良柱施工によって作成された自らの着底
判定基準図における掘削攪拌軸の貫入速度の変化点から
の貫入深さで設定することを特徴とする。
According to the first or second aspect of the present invention, the landing standard is set by a penetration depth from a change point of the penetration speed of the excavating agitating shaft in the own landing determination standard diagram created by the improved column construction. It is characterized by doing.

【0013】[0013]

【発明の実施の形態及び実施例】請求項1及び2記載の
発明に係る着底判定方法を伴った深層混合処理工法は、
図1に示したように先端に掘削羽根2、3と攪拌翼4、
6を備えた掘削攪拌軸1を地中の所定深度まで貫入する
とともに、掘削した原位置土と安定剤とを攪拌混合して
改良柱を造成する深層混合処理工法として実施される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The deep-layer mixing method with the landing determination method according to the first and second aspects of the present invention,
As shown in FIG. 1, the excavating blades 2, 3 and the stirring blade 4,
The drilling and stirring shaft 1 provided with the drill 6 is penetrated to a predetermined depth in the ground, and the excavated in-situ soil and the stabilizing agent are stirred and mixed to form an improved column.

【0014】その際の着底の定義としては、上述したよ
うに、改良柱の垂直な断面形状の段差が解消する、図2
中右側の最下段攪拌翼4が支持地盤11へ到達した状態
とする。本発明の着底の管理方式を大別すると、請求項
1記載の発明のように試験掘り施工(これも最初の改良
柱施工である。)を行い、この試験掘り施工によって得
られた掘削攪拌軸の貫入速度V,貫入所要時間n,貫入
先端深度dの各測定値を、掘削攪拌軸の最下段攪拌翼4
が支持地盤に到達した着底条件まで、例えば1秒毎に採
取してグラフ化した(プロットした)着底判定基準図を
作成する方法と、請求項2記載の発明のように、通例設
計者から提供される地質調査(ボーリング調査)の基準
点に判明している地盤の縦断面図に基いて地下の支持地
盤の深さを予め確認しておき、前記の確認結果を予備知
識として、基準点近傍の位置に施工される最初の改良柱
施工における掘削攪拌軸の貫入速度V,貫入所要時間
n,貫入先端深度dの各測定値を、掘削攪拌軸の最下段
攪拌翼4が支持地盤に到達した着底条件まで、例えば1
秒毎に採取してグラフ化した(プロットした)着底判定
基準図を作成する方法とがある。後者の方法によれば、
予め着底管理深度を予定して(予見して)改良柱の施工
を進められる手順の確実さと信頼性がある。前記二つの
方法は、共に以後の改良柱の施工の基礎データとなる着
底判定基準図を提供することでは共通する。従って、着
底判定のデータとしては極めて実際的で正しいものが得
られる。
In this case, the bottom is defined as described above, as shown in FIG.
It is assumed that the lowermost stirring blade 4 on the middle right has reached the support ground 11. The method of managing the landing according to the present invention is broadly classified into test digging (also the first improved column digging) as in the invention of claim 1 and digging and stirring obtained by this test digging. The measured values of the penetration speed V of the shaft, the required time for penetration n, and the depth d of the penetration tip are measured by the lowermost stirring blade 4 of the excavation stirring shaft.
3. A method of creating a bottoming determination reference diagram which is collected and plotted (plotted) every second, for example, up to the bottoming condition at which the vehicle reaches the supporting ground, and a designer as in the invention according to claim 2. The depth of the underground supporting ground is confirmed in advance based on the longitudinal section of the ground that is known as the reference point of the geological survey (boring survey) provided by The measured values of the penetration speed V of the excavation agitating shaft, the required penetration time n, and the penetration tip depth d in the construction of the first improved column constructed near the point are measured by the lowermost stirring blade 4 of the excavating agitating shaft on the supporting ground. Until the landing condition reached, for example, 1
There is a method of creating a bottoming determination criterion diagram that is collected and plotted (plotted) every second. According to the latter method,
There is a certain and reliable procedure to advance the construction of the improved pillar by planning (foreseeing) the landing depth in advance. Both of the above two methods are common in providing a bottoming determination reference map which serves as basic data for the subsequent construction of the improved pillar. Therefore, very practical and correct data can be obtained as the data of the landing determination.

【0015】次に、上述のようにして作成された着底判
定基準図を参考にして施工を進め着底を判定する方法に
は、掘削攪拌軸の貫入速度とその継続時間とで着底を
設定する方法、掘削攪拌軸の貫入速度の変化点からの
貫入深さで着底を設定する方法、の2種類の方法があ
り、いずれかの方法が地盤性状に応じて選択的に実施さ
れる。前記の方法は、支持地盤(層)が明瞭に存在す
る地盤構成のみならず、N値が徐々に変化する地盤にも
広く適用可能であり、適用可能な地盤が多い。一方、前
記の方法は、前記の方法を簡略化した方法であり、
支持地盤が明瞭に存在しN値が急激に増加する地盤構成
に適用可能である。通例、地盤の構成としては支持地盤
が明瞭に存在し、掘削攪拌軸の貫入速度の変化点が明瞭
に現れる地盤が大半を占めるから、後者の方法で殆どの
地盤改良の着底管理を行うことが可能である。
Next, the method for determining the landing by proceeding with reference to the landing determination reference diagram prepared as described above includes a method of determining the landing based on the penetration speed of the excavation stirring shaft and the duration thereof. There are two types of methods, a setting method and a method of setting the landing point based on the penetration depth from the point of change in the penetration speed of the excavation stirring shaft. Either method is selectively performed according to the ground properties. . The above method is widely applicable not only to the ground configuration where the supporting ground (layer) is clearly present but also to the ground where the N value changes gradually, and there are many applicable grounds. On the other hand, the method is a simplified version of the method,
The present invention is applicable to a ground configuration in which the supporting ground is clearly present and the N value increases rapidly. Usually, as the ground structure, the supporting ground is clearly present, and the ground where the change point of the penetration speed of the excavating and stirring axis clearly appears is occupied most, so the grounding management of most ground improvement by the latter method should be performed. Is possible.

【0016】そこで、着底判定基準の方法としては、
の方法を標準とし、地盤の構成状態によってはの方法
の実施を検討するのが良い。次に、上記2種類の着底判
定基準の方法、について以下に説明する。 処理機の(掘削攪拌軸)の貫入速度とその継続時間
で判定する方法 図3に示したような着底判定基準図を用いて着底したこ
とを判定する。図3に示す着底判定基準図の作図方法
は、まず支持地盤の表面を着底判定開始深度を0にと
り、縦軸に貫入速度V及び先端深度d(支持地盤以下の
深度)をとる。また、横軸に着底判定開始深度からの時
間及び累積度数(時間)nをとる。図中のAエリア及び
Dエリアには、改良柱施工時に1秒毎に測定した実測値
をプロットする。Bエリアには、Aエリアの累積時間
を、そして、CエリアにはDエリアの累積時間をそれぞ
れプロットしている。
Therefore, as a method of the landing judgment criterion,
It is advisable to consider the above method as a standard and to implement the method according to the configuration of the ground. Next, the above-mentioned two types of landing determination methods will be described below. Method of Determining Based on Penetration Speed of Processing Machine (Excavation Stirring Shaft) and Its Duration Time It is determined that a landing has been made using the landing determination reference diagram as shown in FIG. In the drawing method of the landing determination reference diagram shown in FIG. 3, first, the surface of the support ground is set to the landing determination start depth of 0, and the vertical axis is set to the penetration velocity V and the tip depth d (the depth below the support ground). The horizontal axis represents the time from the landing determination start depth and the cumulative frequency (time) n. In the area A and the area D in the figure, measured values measured every second during the construction of the improved pillar are plotted. The accumulated time of area A is plotted in area B, and the accumulated time of area D is plotted in area C.

【0017】図3の着底判定基準図に基いて着底を判定
する手順は、次の通りである。 I) 図3中のCエリアの曲線から得られる支持地盤の
深度に対応する累積時間を求める。ここで云う「深度に
対応する累積時間」は、測定結果のばらつきを平準化す
るため、1深度毎に測定回数を数え、これを着底判定開
始深度(図3の例では地下10m)から加算する。測定
間隔は1秒毎であるので、これを加算した結果が累積時
間となる。測定結果と累積時間の関係の一例を表−1に
示した。しかし、測定結果のばらつきを平準化する方法
には、数個の測定値の平均値をプロットする方法や中央
値をプロットする方法もある。Aエリアに示す貫入速度
についても、深度と同様に累積時間を算出する。因み
に、図3の例では、着底管理対象の深度(地下10m)
から開始して、貫入速度が急変するP2点までの累積時
間が200秒余、P1点までの累積時間は340秒、着
底と定義される深度d0に該当するP0点までの累積時
間は460秒と認められ、前記P1点からP0までの継
続時間は120秒と認められる。 II) Bエリアにおいて、貫入速度が大きく変わる点P
2の時の累積時間n2を求める。 III) Cエリアのグラフを用いて、前記P2点の累積
時間n2の時の深度d2を求める。この深度d2は、図
3に付記した状況説明図aに示したように、処理機の掘
削攪拌軸先端の掘削羽根2,3が支持地盤11に到達し
たときの深度である。図3の例では、前記深度d2(支
持地盤の深さ)は11.45mである。 IV) Bエリアにおいて、貫入速度が再度大きく変化す
る点P1の時の累積時間n1及び貫入速度V1を求め
る。前記P1点における掘削攪拌軸先端の状況は、図3
中に付記した状況説明図bに示したように、左右の掘削
羽根2、3が完全に支持地盤11の中へ進入した深度で
ある。 V) Cエリアにおいて、貫入速度が3度目に大きく変
化する点P0の時の累積時間n0及び貫入速度V1を求
める。前記P0点における掘削攪拌軸先端の状況は、図
3中に付記した状況説明図cに示したように、右側の最
下段攪拌翼4が支持地盤11へ到達した(接した)、着
底と定義された深度d0である。換言すると、図3の状
況説明図a,b,cの対比から明らかな通り、左右の掘
削羽根2、3が支持地盤11に到達した説明図aの深度
d2から、着底の定義に合致する説明図cの深度d0ま
での間が、最下段攪拌翼4との高低差h=550mmだけ
貫入されている。また、左右の掘削羽根2、3が支持地
盤11へ貫入した説明図bの深度d1から前記着底の深
度d0までは貫入速度がv1=0.13m/min〜
0.1m/minで120秒間継続して貫入が行われて
いる。 VI) 以上の結果を総合すると、の方法による着底判
定は次のようになる。
The procedure for determining a landing based on the landing determination reference diagram of FIG. 3 is as follows. I) The accumulated time corresponding to the depth of the supporting ground obtained from the curve of the area C in FIG. 3 is obtained. The “accumulated time corresponding to the depth” referred to here is counted from the number of measurements for each depth in order to level out the variation in the measurement result, and this is added from the landing determination start depth (10 m underground in the example of FIG. 3). I do. Since the measurement interval is every second, the result of adding this is the accumulated time. Table 1 shows an example of the relationship between the measurement result and the cumulative time. However, as a method of leveling the dispersion of the measurement results, there is a method of plotting an average value of several measurement values or a method of plotting a median value. For the penetration speed shown in the area A, the accumulated time is calculated similarly to the depth. By the way, in the example of FIG. 3, the depth of the landing management target (10 m underground)
Starting from, the cumulative time to the point P2 where the penetration speed changes suddenly is more than 200 seconds, the cumulative time to the point P1 is 340 seconds, and the cumulative time to the point P0 corresponding to the depth d0 defined as the landing is 460. Seconds and the duration from the point P1 to P0 is 120 seconds. II) Point P where the penetration speed changes greatly in Area B
The accumulated time n2 at 2 is obtained. III) The depth d2 of the point P2 at the accumulated time n2 is obtained using the graph of the area C. This depth d2 is the depth when the excavating blades 2 and 3 at the tip of the excavating and stirring shaft of the processing machine reach the support ground 11, as shown in the situation explanatory diagram a appended to FIG. In the example of FIG. 3, the depth d2 (the depth of the supporting ground) is 11.45 m. IV) In the area B, the accumulated time n1 and the penetration speed V1 at the point P1 at which the penetration speed greatly changes again are obtained. FIG. 3 shows the situation of the tip of the excavation stirring shaft at the point P1
As shown in the situation explanatory diagram b attached therein, the depth is the depth at which the left and right excavating blades 2 and 3 have completely entered the supporting ground 11. V) In the area C, the accumulated time n0 and the penetration speed V1 at the point P0 where the penetration speed greatly changes for the third time are obtained. The situation of the tip of the excavation stirring shaft at the point P0 is, as shown in the situation explanatory diagram c appended in FIG. This is the defined depth d0. In other words, as is clear from the comparison of the situation explanatory diagrams a, b, and c in FIG. 3, the definition of the landing is matched from the depth d2 in the explanatory diagram a in which the left and right excavating blades 2 and 3 reach the support ground 11. The portion up to the depth d0 in the explanatory diagram c is penetrated by the height difference h = 550 mm from the lowermost stirring blade 4. In addition, the penetration speed is v1 = 0.13 m / min from the depth d1 in FIG.
Penetration is performed continuously at 0.1 m / min for 120 seconds. VI) Summing up the above results, the landing judgment by the above method is as follows.

【0018】着底判定開始貫入速度はV1(0.13m
/min)以下。 貫入速度の継続時間t=(n0−n1)×β(秒)。 但し、βは割増係数であり、1.0を標準とする。着底
判定開始貫入速度V1がt秒間継続したときが着底であ
る。 VII) 検討例 実際の施工結果のうち、ある改良柱の地表面から着底す
るまでの測定結果を示した図3の着底判定基準図におい
て、着底判定開始深度(GL−10m)から着底するま
での測定結果は、次のとおりである。
The penetration speed at the start of landing judgment is V1 (0.13 m
/ Min) or less. Duration of penetration speed t = (n0−n1) × β (sec). Here, β is a premium coefficient, and 1.0 is standard. The landing is when the landing determination start penetration speed V1 has continued for t seconds. VII) Investigation example In the bottoming judgment reference diagram in Fig. 3 showing the measurement results from the actual construction results until the bottom of a certain improved column hits the ground, the grounding judgment starting depth (GL-10m) The measurement results up to the bottom are as follows.

【0019】1 着底深度はGL−12.0mであり、
地質は均一な砂層で、着底部のN値は30、改良対象部
(地表面から着底部まで)のN値は10〜20である。
2着底判定開始深度はGL−10.0mである。 3 測定間隔は、1秒間である。 4 処理機の掘削攪拌軸先端の形状は、図1に示すもの
を使用した。その掘削羽根先端と最下段攪拌翼との高低
差(クリアランス)は550mmである。 処理機の掘削攪拌軸の貫入速度の変化点からの貫入
深さで設定する方法 この方法は、既に述べた上記の方法を簡略化した方法
である。この方法は、図3の着底判定基準図における
BエリアのP1,P2点と、各々について付記した状況
説明図a,bから明らかなように、掘削羽根2、3の先
端がN値の大きい支持層11に接すると貫入速度が急激
に低下する現象(事実)を利用して支持地盤の地中深さ
d2を推定するものである。即ち、一般に支持地盤のN
値は、改良対象地盤のN値に比べて大きいので、貫入速
度が極端に変化した時の掘削羽根の深度d2を把握し、
この深度を支持地盤の深さと推定する。したがって、こ
の方法は、改良対象地盤のN値と支持地盤11のN値の
差が大きい場合に有効な方法である。
1 The landing depth is GL-12.0m,
The geology is a uniform sand layer, and the N value at the bottom is 30 and the N value at the portion to be improved (from the ground surface to the bottom) is 10-20.
2 The landing depth for determining the bottom is GL-10.0 m. 3 The measurement interval is 1 second. 4 The shape of the tip of the excavation stirring shaft of the processing machine used was as shown in FIG. The height difference (clearance) between the tip of the excavating blade and the lowermost stirring blade is 550 mm. Method of setting the penetration depth from the point of change in the penetration speed of the excavating and stirring shaft of the processing machine This method is a simplified method of the above-described method. In this method, as is clear from the P1 and P2 points in the B area in the landing determination reference diagram in FIG. 3 and the situation explanatory diagrams a and b added thereto, the tips of the excavating blades 2 and 3 have large N values. The underground depth d2 of the supporting ground is estimated by using a phenomenon (fact) in which the penetration speed sharply decreases when it comes into contact with the support layer 11. That is, generally, the N
Since the value is larger than the N value of the ground to be improved, the depth d2 of the excavating blade when the penetration speed changes extremely is grasped.
This depth is estimated as the depth of the supporting ground. Therefore, this method is effective when the difference between the N value of the ground to be improved and the N value of the supporting ground 11 is large.

【0020】この方法による着底判定の基準は、処理
機の掘削攪拌軸の最下段攪拌翼4が図3の着底判定基準
図から得られるd2の深度よりも既述の高低差hの深さ
だけ貫入した時を着底と判定するのである。即ち、貫入
速度の変化点P2における深度d2からh=550mm以
上貫入した場合を着底とする。
The criterion for the landing determination according to this method is that the lowermost stirring blade 4 of the excavation stirring shaft of the processing machine has a depth h of the height difference h described above than the depth d2 obtained from the landing determination criterion diagram of FIG. When it just penetrates, it is determined that it has landed. In other words, the case where the penetration depth is equal to or greater than 550 mm from the depth d2 at the penetration speed change point P2 is determined as the landing.

【0021】[0021]

【本発明が奏する効果】本発明の着底判定方法を伴った
深層混合工法によれば、各改良柱施工の段階でリアルタ
イムに支持地盤へ着底したことを正確に判定することが
できるので、施工を迅速、且つ高精度に行うことができ
ると共に、支持力の大きい改良柱又は改良地盤を造成出
来るのである。
[Effects of the present invention] According to the deep mixing method with the landing determination method of the present invention, it is possible to accurately determine that the ground has landed on the supporting ground in real time at the stage of each improved column construction. The construction can be performed quickly and with high precision, and an improved pillar or improved ground having a large supporting force can be created.

【図面の簡単な説明】[Brief description of the drawings]

【図1】掘削攪拌軸の下部の立面図である。FIG. 1 is an elevational view of a lower portion of an excavation stirring shaft.

【図2】着底を定義する概念図である。FIG. 2 is a conceptual diagram for defining a landing.

【図3】着底判定基準図の作成、判定の例である。FIG. 3 is an example of creation and determination of a landing determination reference diagram.

【図4】改良地盤を本設基礎に利用する例の断面図であ
る。
FIG. 4 is a sectional view of an example in which the improved ground is used for a permanent foundation.

【符号の説明】[Explanation of symbols]

1 掘削攪拌軸 2 掘削羽根 3 掘削羽根 4 最下段攪拌翼 DESCRIPTION OF SYMBOLS 1 Drilling stirring shaft 2 Drilling blade 3 Drilling blade 4 Lowermost stirring blade

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 彰 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 中村 紀吉 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 鈴木 善雄 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 鈴木 吉夫 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 神崎 靖 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 奥村 良介 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 椎名 昭雄 東京都中央区銀座八丁目21番1号 株式会 社竹中土木東京本店内 (72)発明者 樋口 克己 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Masuda 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Within the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Kiyoshi Nakamura 4 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa No. 1 Tokyo Electric Power Company Electric Power Research Laboratory (72) Yoshio Suzuki Inventor Yoshinaka Suzuki Otsuka, Inzai, Chiba Pref. 1-5-1, Takenaka Corporation Technical Research Institute (72) Inventor Yasushi Yazaki 8-21-1, Ginza, Chuo-ku, Tokyo Tokyo, Japan 8-21-1, Takenaka Civil Engineering Co., Ltd. (72) Inventor Akio Shiina 8-21-1, Ginza, Chuo-ku, Tokyo Co., Ltd. The inner (72) inventor Katsumi Higuchi Ginza, Chuo-ku, Tokyo eight-chome No. 21 No. 1 stock company in Takenakadoboku

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 先端に掘削羽根と攪拌翼を備えた掘削攪
拌軸を地中の所定深度まで貫入するとともに掘削した原
位置土と安定剤とを攪拌混合して改良柱を造成する深層
混合処理工法において、 最初の改良柱施工における掘削攪拌軸の貫入速度と貫入
所要時間及び貫入先端深度の各測定値を、掘削攪拌軸の
最下段攪拌翼が支持地盤に到達した状態まで単位時間毎
に採取してグラフ化した着底判定基準図を作成し、以後
の改良柱の施工は前記の着底判定基準図を参考にした上
で、施工中の各測定値をリアルタイムに採取して自らの
着底判定基準図を作成し、同図に基いて着底を判定しつ
つ施工することを特徴とする、着底判定方法を伴った深
層混合処理工法。
1. A deep mixing process for forming an improved column by penetrating a drilling and stirring shaft having a drilling blade and a stirring blade at a tip thereof to a predetermined depth in the ground, and stirring and mixing the excavated in situ soil with a stabilizer. In the construction method, the measured values of the penetration speed of the excavation and stirring shaft, the required time for penetration and the depth of the penetration tip in the construction of the first improved column are collected every unit time until the bottom stage of the excavation and stirring shaft reaches the supporting ground. After that, a graph of the bottoming-out judgment was made, and the construction of the improved pillars thereafter was performed by referring to the above-mentioned bottoming-out judgment, drawing the measured values during construction in real time, and A deep mixing processing method with a bottom determination method, wherein a bottom determination standard diagram is created, and construction is performed while determining the bottom based on the drawing.
【請求項2】 先端に掘削羽根と攪拌翼を備えた掘削攪
拌軸を地中の所定深度まで貫入するとともに掘削した原
位置土と安定剤とを攪拌混合して改良柱を造成する深層
混合処理工法において、 事前に行った調査ボーリング等の施工基準点における地
下の支持地盤の深さを予め土層断面図に基づき確認して
おき、前記確認の結果を予備知識として基準点近傍の最
初の改良柱施工における掘削攪拌軸の貫入速度と貫入所
要時間及び貫入先端深度の各測定値を、掘削攪拌軸の最
下段攪拌翼が支持地盤に到達した着底状態まで単位時間
毎に計測採取してグラフ化した着底判定基準図を作成
し、以後の改良柱の施工は前記の着底判定基準図を参考
にした上で、施工中の各測定値をリアルタイムに採取し
て自らの着底基準図を作成し、同図に基いて着底を判定
しつつ施工することを特徴とする、着底判定方法を伴っ
た深層混合処理工法。
2. A deep mixing process in which an excavating agitating shaft provided with excavating blades and agitating blades at its tip penetrates to a predetermined depth in the ground, and stirs and mixes the excavated in situ soil with a stabilizer to form an improved column. In the construction method, the depth of the underground supporting ground at the construction reference point such as survey boring conducted in advance is confirmed in advance based on the soil layer sectional view, and the result of the confirmation is used as preliminary knowledge and the first improvement near the reference point The measured values of the penetration speed of the excavation stirring shaft, the required penetration time, and the depth of the penetration tip in the column construction are measured and collected every unit time until the bottom stirring blade of the excavation stirring shaft reaches the support ground, and the graph is collected. Create a standardized bottoming judgment diagram, and for the subsequent construction of improved columns, refer to the aforementioned bottoming judgment standard diagram, collect each measurement value during construction in real time, and And set the bottom based on the figure. It characterized by construction with a constant, deep Mixing Method accompanied by bottom landing determination method.
【請求項3】 地下の支持地盤の深さの確認は、施工前
に実施した地質調査の土層断面図に基いて改良柱を着底
させる支持地盤の深さを予め決めることにより行うこと
を特徴とする、請求項2に記載した着底判定方法を伴っ
た深層混合処理工法。
3. Confirmation of the depth of the underground supporting ground is performed by previously determining the depth of the supporting ground on which the improved column is to be landed based on the geological survey cross section taken before construction. A deep layer mixing method with the landing determination method according to claim 2.
【請求項4】 着底基準の設定は、改良柱施工によって
作成された自らの着底判定基準図における掘削攪拌軸の
貫入速度とその継続時間とで設定することを特徴とす
る、請求項1又は2に記載した着底判定方法を伴った深
層混合処理工法。
4. The method according to claim 1, wherein the setting of the landing standard is performed based on the penetration speed of the excavation stirring shaft and the duration thereof in the own landing determination standard diagram created by the improved column construction. Or a deep-layer mixing method with the landing determination method described in 2.
【請求項5】 着底基準の設定は、改良柱施工によって
作成された自らの着底判定基準図における掘削攪拌軸の
貫入速度の変化点からの貫入深さで設定することを特徴
とする、請求項1又は2に記載した着底判定方法を伴っ
た深層混合処理工法。
5. The method of setting a landing standard, wherein the setting is based on a penetration depth from a change point of a penetration speed of an excavating agitating shaft in a self-determining landing standard diagram created by improved column construction. A deep mixing method with the landing determination method according to claim 1.
JP25434496A 1996-09-26 1996-09-26 Deep mixing method with bottoming judgment method Expired - Fee Related JP3718784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25434496A JP3718784B2 (en) 1996-09-26 1996-09-26 Deep mixing method with bottoming judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25434496A JP3718784B2 (en) 1996-09-26 1996-09-26 Deep mixing method with bottoming judgment method

Publications (2)

Publication Number Publication Date
JPH10102478A true JPH10102478A (en) 1998-04-21
JP3718784B2 JP3718784B2 (en) 2005-11-24

Family

ID=17263697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25434496A Expired - Fee Related JP3718784B2 (en) 1996-09-26 1996-09-26 Deep mixing method with bottoming judgment method

Country Status (1)

Country Link
JP (1) JP3718784B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096776A (en) * 2001-09-25 2003-04-03 Asahi Kasei Corp Execution control method of steel pipe pile
JP6048860B1 (en) * 2016-05-12 2016-12-21 ジャパンパイル株式会社 Pile hole excavation management method
JP2018096146A (en) * 2016-12-15 2018-06-21 前田建設工業株式会社 Support layer confirmation method and foundation improvement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096776A (en) * 2001-09-25 2003-04-03 Asahi Kasei Corp Execution control method of steel pipe pile
JP6048860B1 (en) * 2016-05-12 2016-12-21 ジャパンパイル株式会社 Pile hole excavation management method
JP2018096146A (en) * 2016-12-15 2018-06-21 前田建設工業株式会社 Support layer confirmation method and foundation improvement method

Also Published As

Publication number Publication date
JP3718784B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP7311244B2 (en) Ground evaluation system and ground evaluation method
JP6911356B2 (en) Support layer arrival judgment method and judgment support system
JP6874378B2 (en) Support layer arrival judgment method and judgment support system
CN111878084B (en) Rapid treatment method for controlling surface subsidence by using large-diameter shield construction in case of meeting stratum funnel
CN111485544A (en) Disposal detection structure and method for karst cave under rock-socketed pile base
CN106149770B (en) The large-section in-situ concrete pile hole wall rock mass integrality detection method that bored concrete pile pile foundation construction period synchronously carries out
JP6969212B2 (en) Support layer arrival judgment method and judgment support system
Porbaha et al. State of the art in construction aspects of deep mixing technology
Issakulov et al. Investigation of the interaction of the bored micro pile by DDS (FDP) technology with the soil ground
JPH10102478A (en) Deep mixing method with method for judging arrival on sea bottom
CN212405086U (en) Disposal and detection structure for karst cave under rock-socketed pile base
CN109113051A (en) The method of bored pile construction work efficiency is improved under the conditions of karsts developing area
KR100755351B1 (en) N of standard penetration test measuring method and the apparatus using electric current data
JP6799253B2 (en) How to excavate the ground
JP2017115457A (en) Ground investigation method and ground investigation device
Brettmann et al. Advances in auger pressure grouted piles: design, construction and testing
CN114351774A (en) Method for predicting and processing collapsed hole of cast-in-place pile
JP2873397B2 (en) Land Survey System
CN114329953A (en) Method for judging whether screw pile enters bearing stratum or not
Grabar et al. Workflow for the geotechnical landslide model-case study from north Croatia
Chugh In situ strength characteristics of coal mine floor strata in Illinois
Mutiara Analysis of bored pile foundation bearing capacity based on cone penetration test data (case study: cilellang weir location)
JP7332004B2 (en) Ground evaluation system and ground evaluation method
CN113882440B (en) Method for predicting construction efficiency of composite pile under consideration of multi-factor influence
NeSmith et al. Application of data acquired during drilled displacement pile installation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050725

A61 First payment of annual fees (during grant procedure)

Effective date: 20050824

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090916

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100916

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110916

LAPS Cancellation because of no payment of annual fees