JPH10102237A - Electrode forming method - Google Patents

Electrode forming method

Info

Publication number
JPH10102237A
JPH10102237A JP8272875A JP27287596A JPH10102237A JP H10102237 A JPH10102237 A JP H10102237A JP 8272875 A JP8272875 A JP 8272875A JP 27287596 A JP27287596 A JP 27287596A JP H10102237 A JPH10102237 A JP H10102237A
Authority
JP
Japan
Prior art keywords
vapor deposition
mask
deposition mask
slit
small holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8272875A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawamura
義裕 河村
Tomoyuki Shirasaki
友之 白嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP8272875A priority Critical patent/JPH10102237A/en
Publication of JPH10102237A publication Critical patent/JPH10102237A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes

Abstract

PROBLEM TO BE SOLVED: To narrow the clearance between electrodes even if a vapor-deposition mask is used without the mask being affected by an aspect ratio. SOLUTION: A metallic strip electrode is formed on an org. light emitting layer formed on a transparent substrate via a transparent electrode by the use of a vapor-deposition mask 11. In this case, many small circular holes 13 are formed in the mask 11 at a specified space S1 , the mask 11 is moved in the direction orthogonal to the line of the small holes 13, and deposition is carried out. Accordingly, only the formation of the small holes 13 in the mask 11 at a specified space S1 is necessary, a slender slit need not be formed unlike the conventional vapor-deposition mask, the workability of the mask 11 is improved, the mask is not affected by the aspect ratio so much as compared with the conventional one having a slit, the mechanical strength is ensured, the mask 11 can be thinned, hence the space S1 between the small holes 13 is made narrower than that of conventional way, and the clearance between the electrodes is also narrowed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電極形成方法に
関する。
[0001] The present invention relates to a method for forming an electrode.

【0002】[0002]

【従来の技術】従来、表示装置には、自ら発光せずに情
報を表示する液晶表示装置や、自ら発光して情報を表示
する電界発光表示装置や、プラズマディスプレイなどが
あり、ここでは、電界発光表示装置を例にとって説明す
る。この電界発光表示装置は、発光性物質からなる発光
層に電界を印加し、発光層内での電子や正孔の移動また
は結合により発光層を励起し、これにより発光層を発光
させてドット状に情報を表示する構造のものである。
2. Description of the Related Art Conventionally, display devices include a liquid crystal display device which displays information without emitting light by itself, an electroluminescent display device which emits light to display information, and a plasma display. A light emitting display device will be described as an example. In this electroluminescent display device, an electric field is applied to a light-emitting layer made of a light-emitting substance, and the light-emitting layer is excited by the movement or combination of electrons and holes in the light-emitting layer, thereby causing the light-emitting layer to emit light and emit dots. The structure is such that information is displayed on the display.

【0003】図10および図11はその一例を示した図
である。この電界発光表示装置は、ガラス基板1の上面
に、ITOなどの透明導電材料からなる帯状の透明電極
2が配列形成されているとともに、これら透明電極2を
覆って有機発光層3が形成され、この有機発光層3の上
面にMgIn、AlLiなどからなる帯状の金属電極4
が透明電極2に対し直交して形成された構造になってい
る。この電界発光表示装置では、透明電極2と金属電極
4とが有機発光層3を挾んで対向する領域がそれぞれ画
素をなし、各画素がドットマトリックス状に配列され、
これら各画素に対応する透明電極2と金属電極4とに直
流電圧を選択的に印加することにより、印加された有機
発光層3中での電子と正孔の結合によって有機発光層3
が励起されて発光し、その光が透明電極2およびガラス
基板1を通して放射される。
FIG. 10 and FIG. 11 are diagrams showing one example. In this electroluminescent display device, strip-shaped transparent electrodes 2 made of a transparent conductive material such as ITO are arranged and formed on an upper surface of a glass substrate 1, and an organic light emitting layer 3 is formed to cover these transparent electrodes 2. A band-shaped metal electrode 4 made of MgIn, AlLi, or the like is formed on the upper surface of the organic light emitting layer 3.
Are formed orthogonal to the transparent electrode 2. In this electroluminescent display device, a region where the transparent electrode 2 and the metal electrode 4 oppose each other with the organic light emitting layer 3 interposed therebetween forms pixels, and the pixels are arranged in a dot matrix.
By selectively applying a DC voltage to the transparent electrode 2 and the metal electrode 4 corresponding to each pixel, the organic light emitting layer 3 is formed by the combination of electrons and holes in the applied organic light emitting layer 3.
Is excited to emit light, and the light is emitted through the transparent electrode 2 and the glass substrate 1.

【0004】有機発光層3とは、エレクトロルミネッセ
ンス層(EL層)のことであり、その構造には、例えば
正孔輸送性、発光性、および電子輸送性を兼ね備えた有
機層からなる1層構造のもの、または正孔輸送性のみま
たは正孔輸送性および発光性を備えた第1有機層と、電
子輸送性のみまたは発光性および電子輸送性を備えた第
2有機層とを積層した2層構造のもの、あるいは正孔輸
送性の第1有機層、発光性の第2有機層、電子輸送性機
能の第3有機層を順次積層した3層構造のものなどがあ
る。
[0004] The organic light emitting layer 3 is an electroluminescent layer (EL layer), and has a single-layer structure composed of an organic layer having, for example, a hole transporting property, a light emitting property and an electron transporting property. Or a two-layer structure in which a first organic layer having only a hole-transport property or a hole-transport property and a light-emitting property and a second organic layer having only an electron-transport property or a light-emitting property and an electron-transport property are laminated. And a three-layer structure in which a first organic layer having a hole transporting property, a second organic layer having a light emitting property, and a third organic layer having an electron transporting function are sequentially laminated.

【0005】このような電界発光表示装置では、有機発
光層3が水分や酸素に弱く、有機発光層3に水分や酸素
が侵入すると、発光特性が劣化するため、有機発光層3
の上面に帯状の金属電極4を形成する際には、図12に
示すように、蒸着マスク5を用いた真空蒸着により金属
電極4を形成する必要がある。この真空蒸着に用いる蒸
着マスク5は、図13に示すように、有機発光層3上の
所定個所に金属を蒸着させるために、通常、ステンレス
鋼や真鍮などの金属板6に帯状の金属電極4と同じ幅L
で同じ長さの細長いスリット孔7を所定間隔Sだけ隔て
て多数配列形成した構造になっている。
In such an electroluminescent display device, the organic light emitting layer 3 is susceptible to moisture and oxygen, and when moisture and oxygen enter the organic light emitting layer 3, the light emitting characteristics are deteriorated.
When the strip-shaped metal electrode 4 is formed on the upper surface of the substrate, it is necessary to form the metal electrode 4 by vacuum evaporation using an evaporation mask 5 as shown in FIG. As shown in FIG. 13, a vapor deposition mask 5 used for this vacuum vapor deposition usually has a strip-shaped metal electrode 4 on a metal plate 6 such as stainless steel or brass in order to vapor-deposit a metal at a predetermined location on the organic light emitting layer 3. Same width L as
Thus, a large number of elongated slit holes 7 having the same length are arranged at predetermined intervals S.

【0006】そして、この蒸着マスク5を用いて真空蒸
着をする場合には、図12に示すように、ガラス基板1
を上下反転させて有機発光層3を下に向け、この有機発
光層3の下側に蒸着マスク5を固定し、この状態で金属
を蒸着させている。このときには、蒸着マスク5のスリ
ット孔7を金属分子8が通り抜けて有機発光層3の表面
に蒸着することになる。このため、図10に示すよう
に、帯状の金属電極4が蒸着マスク5のスリット孔7の
幅Lと同じ幅で配列形成され、蒸着マスク5で遮断され
た部分が金属電極4間の隙間になり、この隙間が蒸着マ
スク5のスリット孔7間の間隔Sと同じ幅になる。
When vacuum evaporation is performed using the evaporation mask 5, as shown in FIG.
Is turned upside down so that the organic light emitting layer 3 faces downward, a vapor deposition mask 5 is fixed below the organic light emitting layer 3, and a metal is vapor deposited in this state. At this time, the metal molecules 8 pass through the slit holes 7 of the evaporation mask 5 and are evaporated on the surface of the organic light emitting layer 3. For this reason, as shown in FIG. 10, the strip-shaped metal electrodes 4 are formed in an array with the same width as the width L of the slit hole 7 of the vapor deposition mask 5, and a portion blocked by the vapor deposition mask 5 is formed in a gap between the metal electrodes 4. This gap has the same width as the interval S between the slit holes 7 of the evaporation mask 5.

【0007】[0007]

【発明が解決しようとする課題】ところで、このような
電界発光表示装置では、画素数を減らさずに、各画素の
面積を大きくして表示の視認性を向上させるために、金
属電極4間の隙間を狭くして金属電極4の幅を広くする
ことが要望されており、これに応えるために蒸着マスク
5のスリット孔7間の間隔Sを狭くする必要がある。し
かしながら、このような従来の蒸着マスク5では、ステ
ンレス鋼や真鍮などの金属板6に細長いスリット孔7を
所定間隔Sで順に形成しているため、金属板6の加工に
限度が生じ、スリット孔7の幅Lまたはスリット孔7間
の間隔Sに対する金属板6の厚さtとの比(アスペクト
比)は1:1が加工限度とされ、これ以上になると、ス
リット孔7の内面がテーパ状になり、十分な加工精度が
得られず、またアスペクト比を低く抑えるために金属板
6を薄くすることが考えられるが、実際には0.1mm
程度の厚さが限度で、これ以下の厚さであると、蒸着時
に蒸着マスク5が耐えられないという問題が生じる。し
たがって、このような蒸着マスク5を用いた電極形成方
法では、蒸着マスク5がアスペクト比に左右されるた
め、蒸着マスク5の厚さを薄くすることができないばか
りか、金属電極4間の隙間を狭くするのにも限界があ
り、各画素を大きくして表示の視認性を十分に向上させ
ることができないという問題がある。
By the way, in such an electroluminescent display device, in order to increase the area of each pixel and improve display visibility without reducing the number of pixels, the distance between the metal electrodes 4 is increased. There is a demand for narrowing the gap to increase the width of the metal electrode 4, and in order to meet this demand, it is necessary to narrow the interval S between the slit holes 7 of the vapor deposition mask 5. However, in such a conventional vapor deposition mask 5, since the elongated slit holes 7 are sequentially formed at predetermined intervals S in the metal plate 6 such as stainless steel or brass, the processing of the metal plate 6 is limited, and the slit hole is limited. The ratio (aspect ratio) of the thickness L of the metal plate 6 to the width L of the slits 7 or the spacing S between the slit holes 7 (aspect ratio) is limited to 1: 1. It is considered that sufficient processing accuracy cannot be obtained, and it is conceivable to make the metal plate 6 thin in order to keep the aspect ratio low.
If the thickness is less than this, a problem arises that the deposition mask 5 cannot withstand the deposition. Therefore, in such an electrode forming method using the vapor deposition mask 5, since the vapor deposition mask 5 is affected by the aspect ratio, not only the thickness of the vapor deposition mask 5 cannot be reduced, but also the gap between the metal electrodes 4 is reduced. There is a limit to making the pixel narrower, and there is a problem that the visibility of display cannot be sufficiently improved by enlarging each pixel.

【0008】この発明の課題は、蒸着マスクがアスペク
ト比に左右されず、蒸着マスクを用いても金属電極間の
隙間を狭く形成することができるようにすることであ
る。
An object of the present invention is to make it possible to form a narrow gap between metal electrodes even when an evaporation mask is used, regardless of the aspect ratio of the evaporation mask.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
蒸着マスクを用いて帯状の電極を蒸着により配列形成す
る電極形成方法において、蒸着マスクに複数の小孔を所
定間隔で配列形成し、この蒸着マスクを小孔の配列方向
に対し交差する方向に移動させながら蒸着するようにし
たことを特徴としている。請求項1記載の発明において
は、蒸着マスクに複数の小孔を所定間隔で形成するだけ
で良く、従来の蒸着マスクのように最終的に形成される
帯状の電極と同じ形状のスリット孔を形成する必要がな
いため、蒸着マスクの加工性が向上するともに、従来の
スリット孔を形成する場合に比べて、アスペクト比に左
右されず、しかも機械的強度に対する不安も少ないの
で、蒸着マスクの厚さを薄くすることができ、このため
従来のものよりも小孔間の間隔を狭くすることができ、
これにより配列された多数の小孔が移動して最終的に形
成される電極間の隙間を狭く形成することができる。
According to the first aspect of the present invention,
In an electrode forming method of forming band-shaped electrodes by vapor deposition using a vapor deposition mask, a plurality of small holes are arranged and formed at predetermined intervals in a vapor deposition mask, and the vapor deposition mask is moved in a direction intersecting the arrangement direction of the small holes. It is characterized in that the vapor deposition is performed while being performed. According to the first aspect of the present invention, it is only necessary to form a plurality of small holes at predetermined intervals in a vapor deposition mask, and to form a slit hole having the same shape as a band-shaped electrode finally formed like a conventional vapor deposition mask. Since there is no need to perform this process, the processability of the deposition mask is improved, and the thickness of the deposition mask is not affected by the aspect ratio and less anxious about the mechanical strength compared to the conventional case where slit holes are formed. Can be made thinner, so that the interval between the small holes can be narrower than the conventional one,
As a result, a large number of the arranged small holes move, and the gap between the electrodes finally formed can be narrowed.

【0010】この場合、請求項2に記載のごとく、複数
の小孔を、蒸着マスクの移動方向に対し交差する方向に
一列に配列しても良いが、請求項3に記載のごとく、複
数の小孔を、蒸着マスクの移動方向に対し交差する方向
に複数列で、かつ蒸着マスクの移動方向において相互に
重ならずに配列すれば、アスペクト比にまったく左右さ
れずに多数の小孔を形成することができ、しかもこれら
複数列の小孔が相互に重ならずに移動して電極を形成す
るので、最終的に形成される電極間の隙間をより一層狭
くすることができる。
In this case, the plurality of small holes may be arranged in a line in a direction intersecting with the moving direction of the evaporation mask, as described in claim 2, but as described in claim 3, a plurality of small holes are arranged. By arranging the small holes in multiple rows in the direction crossing the direction of movement of the evaporation mask and without overlapping each other in the direction of movement of the evaporation mask, a large number of small holes are formed without being affected by the aspect ratio at all. Since the plurality of rows of small holes move without overlapping each other to form an electrode, the gap between the finally formed electrodes can be further reduced.

【0011】また、請求項4記載の発明は、蒸着マスク
を用いて帯状の電極を蒸着により配列形成する電極形成
方法において、蒸着マスクに細長いスリット孔を最終的
に形成される帯状の電極に対し1つ置き、または複数個
置きに配列形成し、この蒸着マスクによる蒸着を複数回
に分け、1回ごとに蒸着マスクの位置をずらして繰り返
し蒸着するようにしたことを特徴としている。請求項4
記載の発明においては、スリット孔の幅に比べてスリッ
ト孔間の間隔を十分に広くすることができるので、アス
ペクト比に左右されずにスリット孔を精度良く形成する
ことができ、しかもスリット孔間の間隔をスリット孔の
幅に対する蒸着マスクの位置ずらし回数の倍数の幅に近
いづければ、最終的に形成される電極間の隙間を狭くす
ることができる。
According to a fourth aspect of the present invention, there is provided an electrode forming method for arranging strip electrodes by vapor deposition using a vapor deposition mask, wherein the elongated slit holes are finally formed in the vapor deposition mask with respect to the strip electrodes. It is characterized in that the deposition is performed by alternately or alternately depositing a plurality of the deposition masks, and the deposition using the deposition mask is divided into a plurality of times, and the position of the deposition mask is shifted each time and the deposition is repeated. Claim 4
In the described invention, the interval between the slit holes can be made sufficiently wider than the width of the slit holes, so that the slit holes can be formed with high accuracy without being affected by the aspect ratio. Can be narrowed to a width which is a multiple of the number of times the position of the deposition mask is shifted with respect to the width of the slit hole.

【0012】さらに、請求項5記載の発明は、蒸着マス
クを用いて帯状の電極を蒸着により配列形成する電極形
成方法において、蒸着マスクに細長いスリット孔を最終
的に形成される帯状の電極の幅よりも狭い幅で配列形成
し、この蒸着マスクをスリット孔の幅方向に移動させな
がら蒸着することを特徴としている。請求項5記載の発
明においては、蒸着マスクにスリット孔を従来と同じ数
だけ形成しても、スリット孔の幅をスリット孔間の間隔
よりも狭くすることができるので、アスペクト比に左右
されずにスリット孔を形成することができ、しかもスリ
ット孔間の間隔が広くても、蒸着マスクのスリット孔の
幅方向への移動量を調節することにより、最終的に形成
される電極間の隙間を狭くすることができる。
Further, according to a fifth aspect of the present invention, there is provided an electrode forming method for arranging strip electrodes by vapor deposition using a vapor deposition mask, wherein the width of the strip electrodes in which narrow slit holes are finally formed in the vapor deposition mask. It is characterized by forming an array with a narrower width, and performing evaporation while moving the evaporation mask in the width direction of the slit hole. According to the fifth aspect of the present invention, even if the same number of slit holes as in the related art is formed in the vapor deposition mask, the width of the slit holes can be made smaller than the interval between the slit holes, so that it is not affected by the aspect ratio. Even if the gap between the slit holes is wide, by adjusting the amount of movement of the slit hole in the width direction of the vapor deposition mask, the gap between the electrodes finally formed can be reduced. Can be narrow.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[第1実施形態]以下、図1〜図3を参照して、この発
明を電界発光表示装置に適用した第1実施形態について
説明する。なお、図10〜図13に示された従来例と同
一部分には同一符号を付し、その説明は省略する。ガラ
ス基板1の下面に透明電極2を覆って形成された有機発
光層3の下面に金属電極10を形成する場合には、図1
に示すように、有機発光層3の下側に蒸着マスク11を
配置して真空蒸着を行なう。この場合、蒸着マスク11
は、図2に示すように、ステンレス鋼や真鍮などの金属
板12に円形状の多数の小孔13が所定間隔S1で1列
に配列形成された構造になっている。したがって、この
蒸着マスク11を用いて真空蒸着をする場合には、有機
発光層3の下側に蒸着マスク11を配置した状態で、図
3に示すように蒸着マスク11を小孔13の配列方向に
対して直交する方向に移動させながら蒸着をする。する
と、蒸着マスク11の移動に伴って小孔13を通り抜け
た金属分子8が有機発光層3の下面に順次蒸着するの
で、有機発光層3の下面に蒸着マスク11の小孔13の
内径L1と同じ幅の帯状の金属電極10が形成されると
ともに、金属電極10間の隙間が蒸着マスク11の小孔
13の間隔S1と同じ幅で形成される。
[First Embodiment] A first embodiment in which the present invention is applied to a light emitting display device will be described below with reference to FIGS. The same parts as those in the conventional example shown in FIGS. 10 to 13 are denoted by the same reference numerals, and description thereof will be omitted. When the metal electrode 10 is formed on the lower surface of the organic light emitting layer 3 formed on the lower surface of the glass substrate 1 so as to cover the transparent electrode 2, FIG.
As shown in (1), a vapor deposition mask 11 is arranged below the organic light emitting layer 3 to perform vacuum vapor deposition. In this case, the deposition mask 11
As shown in FIG. 2, it has a large number of small holes 13 of the metal plate 12 circularly shaped such as stainless steel or brass is formed and arranged in a row at predetermined intervals S 1 structure. Therefore, when vacuum deposition is performed using this vapor deposition mask 11, the vapor deposition mask 11 is placed under the organic light emitting layer 3 and the vapor deposition mask 11 is arranged in the direction in which the small holes 13 are arranged as shown in FIG. Is deposited while being moved in a direction orthogonal to. Then, the metal molecules 8 passing through the small holes 13 are sequentially deposited on the lower surface of the organic light emitting layer 3 with the movement of the vapor deposition mask 11, so that the inner diameter L 1 of the small holes 13 of the vapor deposition mask 11 is formed on the lower surface of the organic light emitting layer 3. And the gap between the metal electrodes 10 is formed with the same width as the interval S 1 between the small holes 13 of the vapor deposition mask 11.

【0014】このような金属電極10の形成方法では、
金属板12に円形状の小孔13を形成するだけで良く、
従来の蒸着マスク5のように細長いスリット孔7を形成
する必要がないため、蒸着マスク11の加工性が向上す
るともに、従来のスリット孔7を形成する場合に比べて
アスペクト比に左右されることがなく、しかも機械的強
度に対する不安も少ないので、蒸着マスク11の厚さt
1を従来の蒸着マスク5の厚さtよりも薄くすることが
でき、このため小孔13間の間隔S1を従来のスリット
孔7間の間隔Sよりも狭くすることができ、これにより
配列された多数の小孔13が移動して最終的に形成され
る金属電極10間の隙間を従来のものよりも狭くするこ
とができる。この場合、小孔13の内径L1を小孔13
間の間隔S1よりも大きく(L1<S1)形成すれば、金
属電極10間の隙間が従来のものよりも狭い幅で、金属
電極10の幅を広くすることができ、これにより電界発
光表示装置の各画素の面積を大きくすることができ、表
示の視認性を向上させることができる。また、小孔13
の内径L1を小孔13間の間隔S1と同じ(L1=S1)に
すれば、従来のものに比べて金属電極10の本数を増大
させることができ、これにより電界発光表示装置の画素
数が増大し、高解像度の表示が可能になる。
In such a method of forming the metal electrode 10,
All that is required is to form a circular small hole 13 in the metal plate 12.
Since it is not necessary to form the elongated slit holes 7 unlike the conventional vapor deposition mask 5, the processability of the vapor deposition mask 11 is improved, and the aspect ratio is more affected than the case where the conventional slit holes 7 are formed. And the thickness t of the vapor deposition mask 11
1 can be made thinner than the thickness t of the conventional evaporation mask 5, the spacing S 1 between Thus small holes 13 can be narrower than the interval S between the conventional slit 7, thereby sequences A large number of the small holes 13 are moved and the gap between the finally formed metal electrodes 10 can be made narrower than the conventional one. In this case, the inner diameter L 1 of the small hole 13 is
If the distance between the metal electrodes 10 is formed larger than the distance S 1 (L 1 <S 1 ), the gap between the metal electrodes 10 can be narrower than the conventional one, and the width of the metal electrodes 10 can be increased. The area of each pixel of the light-emitting display device can be increased, and display visibility can be improved. In addition, small hole 13
If the inner diameter L 1 in the same (L 1 = S 1) and the spacing S 1 between the small hole 13, it is possible to increase the number of the metal electrode 10 as compared with the conventional, thereby light-emitting display device And the number of pixels increases, and high-resolution display becomes possible.

【0015】[第2実施形態]次に、図4および図5を
参照して、この発明を電界発光表示装置に適用した第2
実施形態について説明する。この場合には、図1〜図3
に示された第1実施形態と同一部分に同一符号を付し、
その説明は省略する。この電界発光表示装置の金属電極
20の形成に用いる蒸着マスク21は、図5に示すよう
に、金属板12に円形状の多数の小孔13が、蒸着マス
ク21の移動方向に対して直交する方向に沿って千鳥足
状、つまり2列で蒸着マスク21の移動方向において相
互に重ならないように配列形成された構造になってい
る。すなわち、1列目の小孔13は、これら小孔13間
の間隔S2が小孔13の内径L1よりも広い幅で配列され
ており、2列目の小孔13は、1列目の小孔13間の隙
間S2内に食み出すことなく対応し、かつ隣接する1列
目の小孔13からその内径L1の長さ以上の間隔S2だけ
離れて配列されている。
[Second Embodiment] Next, referring to FIGS. 4 and 5, a second embodiment in which the present invention is applied to an electroluminescent display device will be described.
An embodiment will be described. In this case, FIGS.
The same reference numerals are given to the same parts as in the first embodiment shown in FIG.
The description is omitted. As shown in FIG. 5, a vapor deposition mask 21 used for forming a metal electrode 20 of this electroluminescent display device has a large number of circular small holes 13 formed in a metal plate 12 at right angles to the moving direction of the vapor deposition mask 21. The structure is arranged in a staggered fashion along the direction, that is, arranged in two rows so as not to overlap each other in the moving direction of the vapor deposition mask 21. That is, the first row of small holes 13, the spacing S 2 between these small holes 13 are arranged in width than the inner diameter L 1 of the small holes 13, the second row of small holes 13, first column corresponding, and are arranged apart from the adjacent first row of small holes 13 by the distance S 2 over the length of the inner diameter L 1 without protrudes it into the gap S 2 between the small holes 13 of the.

【0016】そして、この蒸着マスク21を用いて真空
蒸着により金属電極20を形成する場合には、第1実施
形態と同様、有機発光層3の下側に蒸着マスク21を配
置した状態で、蒸着マスク21を小孔13の配列方向に
対して直交する方向に移動させながら蒸着をする。する
と、蒸着マスク21の移動に伴って小孔13を通り抜け
た金属分子8が有機発光層3の下面に順次蒸着するの
で、有機発光層3の下面に蒸着マスク21の小孔13の
内径L1と同じ幅の帯状の金属電極20が形成されると
ともに、金属電極20間の隙間は蒸着マスク21の1列
目の小孔13間の間隔S2とこれに対向する2列目の小
孔13の内径L1との差(=S2−L1)のほぼ半分の間
隔で形成される。
When the metal electrode 20 is formed by vacuum vapor deposition using the vapor deposition mask 21, the vapor deposition is performed with the vapor deposition mask 21 disposed below the organic light emitting layer 3 as in the first embodiment. Vapor deposition is performed while moving the mask 21 in a direction perpendicular to the arrangement direction of the small holes 13. Then, the metal molecules 8 passing through the small holes 13 are sequentially deposited on the lower surface of the organic light emitting layer 3 with the movement of the vapor deposition mask 21, so that the inner diameter L 1 of the small holes 13 of the vapor deposition mask 21 is formed on the lower surface of the organic light emitting layer 3. And the gap between the metal electrodes 20 is the distance S 2 between the small holes 13 in the first row of the vapor deposition mask 21 and the small holes 13 in the second row opposed thereto. It is formed by about half the distance of the difference between the inner diameter L 1 of (= S 2 -L 1).

【0017】このような金属電極20の形成方法では、
蒸着マスク21に形成された1列目の小孔13間の間隔
2が小孔13の内径L1よりも広く形成され、2列目の
小孔13が1列目の小孔13間の隙間S2内に食み出す
ことなく対応し、かつ隣接する1列目の小孔13から内
径L1以上の間隔S2だけ離れているので、アスペクト比
にまったく左右されずに、多数の小孔13を形成するこ
とができ、しかも小孔13が移動して最終的に形成され
た金属電極20間の隙間が1列目の小孔13間の間隔S
2とこれに対向する2列目の小孔13の内径L1との差
(=S2−L1)のほぼ半分の間隔であるから、金属電極
20間の隙間を第1実施例のものに比べてより一層狭く
することができる。
In such a method of forming the metal electrode 20,
Spacing S 2 between the first row of small holes 13 formed in the evaporation mask 21 is formed wider than the inner diameter L 1 of the small holes 13, the second row of small holes 13 between the first row of small holes 13 response without protruding into the gap S 2, and so from the adjacent first row of small holes 13 are separated by an inner diameter L 1 or more spacing S 2, irrespective all the aspect ratio, number of small The holes 13 can be formed, and the gaps between the metal electrodes 20 that are finally formed by the movement of the small holes 13 are equal to the spacing S between the small holes 13 in the first row.
Since approximately half of the interval of the difference between the inner diameter L 1 of the second row of small holes 13 that faces 2 and to (= S 2 -L 1), those gaps between the metal electrodes 20 of the first embodiment Can be made even smaller than in

【0018】なお、上記第2実施形態では、蒸着マスク
21に小孔13を2列に配列形成したが、これに限ら
ず、3列以上の複数列に配列形成しても良い。この場合
には、各列の小孔13間の間隔を小孔13が列数に応じ
た数だけ配置できる大きさにすれば良い。また、上記第
1、第2実施形態では、蒸着マスク11、21の小孔1
3を円形状に形成したが、これに限らず、各辺が蒸着マ
スクの移動方向と平行もしくは直交する正方形などの四
角形状に形成しても良い。このようにすれば、金属電極
を均一な厚さに形成することができる。
Although the small holes 13 are formed in the vapor deposition mask 21 in two rows in the second embodiment, the present invention is not limited to this, and the small holes 13 may be formed in three or more rows. In this case, the interval between the small holes 13 in each row may be set to such a size that the small holes 13 can be arranged by the number corresponding to the number of rows. In the first and second embodiments, the small holes 1 of the evaporation masks 11 and 21 are used.
Although 3 is formed in a circular shape, the present invention is not limited to this, and each side may be formed in a square shape such as a square parallel or orthogonal to the moving direction of the evaporation mask. With this configuration, the metal electrode can be formed with a uniform thickness.

【0019】[第3実施形態]次に、図6および図7を
参照して、この発明を電界発光表示装置に適用した第3
実施形態について説明する。この場合には、図10〜図
13に示された従来例と同一部分に同一符号を付し、そ
の説明は省略する。この電界発光表示装置の金属電極2
5の形成に用いる蒸着マスク26は、図7に示すよう
に、金属板6に細長いスリット孔27が最終的に形成さ
れる金属電極25に対し1つ置きに形成された構造にな
っている。この場合、スリット孔27は、従来のスリッ
ト孔7の幅Lよりも広い幅L2で、最終的に形成される
金属電極25と同じ長さに形成されている。また、スリ
ット孔27間の間隔S3は、スリット孔27が1つ置き
に形成されることから、スリット孔27の幅L2の3倍
よりも短く(S3<3×L2)、かつスリット孔27の幅
2よりも長い(S3>L2)範囲内の幅で形成されてい
る。
[Third Embodiment] Next, referring to FIGS. 6 and 7, a third embodiment in which the present invention is applied to an electroluminescent display device will be described.
An embodiment will be described. In this case, the same parts as those of the conventional example shown in FIGS. 10 to 13 are denoted by the same reference numerals, and description thereof will be omitted. Metal electrode 2 of this electroluminescent display device
As shown in FIG. 7, the vapor deposition mask 26 used for forming the metal layer 5 has a structure in which a long and narrow slit hole 27 is formed in the metal plate 6 every other metal electrode 25 to be finally formed. In this case, the slit holes 27, a wide width L 2 than the width L of the conventional slit 7 is formed in the same length as the metal electrode 25 to be finally formed. Further, the interval S 3 between the slit holes 27 is shorter than three times the width L 2 of the slit holes 27 (S 3 <3 × L 2 ) since every other slit hole 27 is formed, and The slit hole 27 is formed to have a width longer than the width L 2 (S 3 > L 2 ).

【0020】そして、この蒸着マスク26を用いて真空
蒸着により金属電極25を形成する場合には、図6に示
すように、有機発光層3の下側に蒸着マスク26を配置
した状態で、1回目の蒸着を行なう。すると、有機発光
層3の下面に金属電極25が1つ置きにスリット孔27
の幅L2で形成される。この後、蒸着マスク26をずら
して1つ置きに形成された金属電極25の間にスリット
孔27を対応させ、この状態で2回目の蒸着を行なう。
すると、1回目に形成された金属電極25間に2回目の
蒸着による金属電極25が1つ置きにスリット孔27の
幅L2と同じ幅で形成される。これにより、金属電極2
5が従来のものよりも広い幅L2で形成されるととも
に、1回目に形成された金属電極25と2回目に形成さ
れた金属電極25との間にスリット孔27間の間隔S3
よりも狭い幅の隙間が形成される。
When the metal electrode 25 is formed by vacuum evaporation using the evaporation mask 26, as shown in FIG. The second evaporation is performed. Then, on the lower surface of the organic light emitting layer 3, every other metal electrode 25 is provided with a slit hole 27.
Formed by the width L 2. Thereafter, the vapor deposition mask 26 is shifted so that the slit holes 27 correspond to the metal electrodes 25 formed alternately, and the second vapor deposition is performed in this state.
Then, every other metal electrode 25 formed by the second vapor deposition is formed with the same width as the width L 2 of the slit hole 27 between the first formed metal electrodes 25. Thereby, the metal electrode 2
5 together are formed in a wide width L 2 than the prior art, the spacing S 3 between the slits 27 between the first metal electrode 25 formed on the metal electrode 25 formed on the second
A narrower gap is formed.

【0021】このような金属電極25の形成方法では、
蒸着マスク26にスリット孔27を1つ置きに形成する
ので、スリット孔27の幅L2を従来のものよりも広い
幅にしても、スリット孔27の幅L2に比べてスリット
孔27間の間隔S3が十分に広くいので、アスペクト比
に左右されることがなく、スリット孔27を精度良く形
成することができ、しかもスリット孔27間の間隔S3
をスリット孔27の幅L2に近づくように設定すれば、
スリット孔27間の間隔S3の幅が広くても、最終的に
形成された金属電極25間の隙間を従来のものに比べて
非常に狭くすることができる。
In such a method of forming the metal electrode 25,
Since forming the slits 27 are alternately in the deposition mask 26, even if the width L 2 of the slit hole 27 in the wider width than that of the conventional, between slits 27 than the width L 2 of the slit hole 27 the spacing S 3 is have sufficiently wide, without being is dependent on the aspect ratio, the slits 27 can be formed accurately, yet spacing S 3 between the slits 27
By setting so as to approach the width L 2 of the slit hole 27,
Be wider width of the spacing S 3 between the slits 27, the gap between the finally formed metal electrodes 25 can be very narrow as compared with the prior art.

【0022】なお、上記第3実施形態では、蒸着マスク
26にスリット孔27を1つ置きに形成した場合につい
て述べたが、これに限らず、スリット孔27を複数置き
に形成しても良い。この場合には、スリット孔27間の
間隔S3をスリット孔27の幅L2に対する蒸着マスク2
6の位置ずらし回数nの倍数の幅(S3=L2×n)に近
いづければ、最終的に形成される金属電極25間の隙間
を第3実施形態と同様に狭くすることができる。
In the third embodiment, the case where every other slit hole 27 is formed in the vapor deposition mask 26 has been described. However, the present invention is not limited to this, and a plurality of slit holes 27 may be formed. In this case, the interval S 3 between the slit holes 27 is set to be equal to the width L 2 of the
If the width is close to a width (S 3 = L 2 × n) which is a multiple of the number n of the position shifts of 6, the gap between the finally formed metal electrodes 25 can be narrowed as in the third embodiment. .

【0023】[第4実施形態]次に、図8および図9を
参照して、この発明を電界発光表示装置に適用した第4
実施形態について説明する。この場合にも、図10〜図
13に示された従来例と同一部分に同一符号を付し、そ
の説明は省略する。この電界発光表示装置の金属電極3
0の形成に用いる蒸着マスク31は、図9に示すよう
に、金属板6に細長いスリット孔32が最終的に形成さ
れる金属電極30に対応し、その幅よりも狭い幅L3
形成された構造になっている。すなわち、スリット孔3
2は、従来のスリット孔7の幅Lと同じかそれよりも狭
い幅L3(≦L)で、最終的に形成される金属電極30
と同じ長さに形成されている。また、スリット孔32間
の間隔S4は、従来のスリット孔7間の隙間Sと同じか
それよりも広く(S4≧S)形成されている。
[Fourth Embodiment] Next, referring to FIGS. 8 and 9, a fourth embodiment in which the present invention is applied to an electroluminescent display device will be described.
An embodiment will be described. Also in this case, the same parts as those of the conventional example shown in FIGS. 10 to 13 are denoted by the same reference numerals, and description thereof will be omitted. Metal electrode 3 of this electroluminescent display device
As shown in FIG. 9, the vapor deposition mask 31 used to form 0 corresponds to the metal electrode 30 where the elongated slit hole 32 is finally formed in the metal plate 6, and is formed with a width L 3 smaller than the width thereof. It has a structure. That is, the slit hole 3
Reference numeral 2 denotes a width L 3 (≦ L) which is equal to or smaller than the width L of the conventional slit hole 7, and is a metal electrode 30 to be finally formed.
It is formed to the same length as. The interval S 4 between the slit holes 32 is equal to or larger than the gap S between the conventional slit holes 7 (S 4 ≧ S).

【0024】そして、この蒸着マスク31を用いて真空
蒸着により金属電極30を形成する場合には、図8に示
すように、有機発光層3の下側に蒸着マスク31を配置
した状態で、蒸着マスク31をスリット孔32の配列方
向に沿って移動させながら蒸着をする。このときの蒸着
マスク31の移動量Pは、スリット孔32間の間隔S4
よりも少し短い距離(P<S4)の範囲内である。この
ように蒸着マスク31が移動すると、蒸着マスク31の
移動に伴ってスリット孔32を通り抜けた金属分子8が
有機発光層3の下面に順次蒸着してスリット孔32の幅
方向に蒸着し、一度に金属電極30が形成される。この
金属電極30の幅は、蒸着マスク31の移動量Pとスリ
ット孔32の幅L3との和(=P+L3)になり、金属電
極30間の隙間は、スリット孔32間の間隔S4とスリ
ット孔32の移動量Pとの差(=S4−P)で、スリッ
ト孔32間の間隔S4よりも狭く形成される。
When the metal electrode 30 is formed by vacuum vapor deposition using the vapor deposition mask 31, the vapor deposition is performed with the vapor deposition mask 31 disposed below the organic light emitting layer 3 as shown in FIG. The vapor deposition is performed while moving the mask 31 along the arrangement direction of the slit holes 32. At this time, the movement amount P of the evaporation mask 31 is determined by the distance S 4 between the slit holes 32.
It is within the range of a slightly shorter distance (P <S 4 ). When the vapor deposition mask 31 moves in this manner, the metal molecules 8 that have passed through the slit holes 32 with the movement of the vapor deposition mask 31 are sequentially vapor-deposited on the lower surface of the organic light emitting layer 3 and vapor-deposited in the width direction of the slit holes 32. A metal electrode 30 is formed. The width of the metal electrode 30 is the sum (= P + L 3 ) of the movement amount P of the evaporation mask 31 and the width L 3 of the slit hole 32, and the gap between the metal electrodes 30 is the distance S 4 between the slit holes 32. and the difference between the amount of movement P of the slits 32 (= S 4 -P), is narrower than the spacing S 4 between the slit 32.

【0025】このような金属電極30の形成方法では、
蒸着マスク31のスリット孔32を従来のスリット孔7
の幅Lと同じかそれよりも狭い幅L3(≦L)で形成
し、スリット孔32間の間隔S4を従来のスリット孔7
間の隙間Sと同じかそれよりも広く(S4≧S)形成し
たので、蒸着マスク31にスリット孔32を従来と同じ
数だけ形成しても、スリット孔32の幅L3をスリット
孔32間の間隔S4よりも狭くすることができ、このた
めアスペクト比に左右されることがなくスリット孔32
を形成することができ、しかもスリット孔32間の間隔
4が広くても、蒸着マスク31のスリット孔32の幅
方向への移動量Pを調節することにより、最終的に形成
される金属電極30間の隙間を従来のものと比べて狭く
することができる。
In such a method of forming the metal electrode 30,
The slit hole 32 of the evaporation mask 31 is replaced with the conventional slit hole 7.
The same or narrower width L 3 than the width L of (≦ L) by forming the spacing S 4 between the slit 32 of the conventional slit 7
Since the gap L is equal to or larger than the gap S between them (S 4 ≧ S), the width L 3 of the slit hole 32 is reduced even if the same number of slit holes 32 are formed in the evaporation mask 31 as in the prior art. It can be narrower than spacing S 4 between the slit hole 32 without being affected by this order aspect ratio
Can form, yet even wider spacing S 4 between the slit 32, by adjusting the movement amount P in the width direction of the slit 32 of the deposition mask 31, a metal electrode to be finally formed The gap between the 30 can be made narrower than the conventional one.

【0026】なお、上記第1〜第4実施形態では、電界
発光表示装置に適用した場合について述べたが、必ずし
も電界発光表示装置に限る必要はなく、液晶表示装置や
プラズマディスプレイなどの他の表示装置にも広く適用
することができる。
In the first to fourth embodiments, the case where the present invention is applied to an electroluminescent display device has been described. However, the present invention is not necessarily limited to the electroluminescent display device, and other display devices such as a liquid crystal display device and a plasma display may be used. It can be widely applied to devices.

【0027】[0027]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、蒸着マスクを用いて帯状の電極を蒸着によ
り配列形成する際、蒸着マスクに複数の小孔を所定間隔
で配列形成し、この蒸着マスクを小孔の配列方向に対し
交差する方向に移動させながら蒸着するので、蒸着マス
クに円形または四角形等の小孔を所定間隔で形成するだ
けで良く、従来の蒸着マスクのように最終的に形成され
る帯状の電極と同じ形状のスリット孔を形成する必要が
ないため、蒸着マスクの加工性が向上するともに、従来
のスリット孔を形成する場合に比べて、アスペクト比に
左右されず、しかも機械的強度に対する不安も少ないの
で、蒸着マスクの厚さを薄くすることができ、このため
従来のものよりも小孔間の間隔を狭くすることができ、
これにより配列された多数の小孔が移動して最終的に形
成される電極間の隙間を狭く形成することができる。
As described above, according to the first aspect of the present invention, when band-shaped electrodes are formed by vapor deposition using a vapor deposition mask, a plurality of small holes are formed at predetermined intervals in the vapor deposition mask. Then, since the evaporation is performed while moving the evaporation mask in a direction intersecting with the arrangement direction of the small holes, it is only necessary to form small holes such as circular or square at predetermined intervals in the evaporation mask, and it is necessary to form the holes like a conventional evaporation mask. Since it is not necessary to form a slit hole having the same shape as the band-shaped electrode finally formed, the processability of the deposition mask is improved, and the aspect ratio is more affected than when a conventional slit hole is formed. However, since there is little concern about mechanical strength, the thickness of the vapor deposition mask can be reduced, so that the space between the small holes can be narrower than that of the conventional one,
As a result, a large number of the arranged small holes move, and the gap between the electrodes finally formed can be narrowed.

【0028】また、請求項4記載の発明によれば、蒸着
マスクを用いて帯状の電極を蒸着により配列形成する
際、蒸着マスクに細長いスリット孔を最終的に形成され
る帯状の電極に対し1つ置き、または複数個置きに配列
形成し、この蒸着マスクによる蒸着を複数回に分け、1
回ごとに蒸着マスクの位置をずらして繰り返し蒸着する
ので、スリット孔の幅に比べてスリット孔間の間隔を十
分に広くすることができ、このためアスペクト比に左右
されずにスリット孔を精度良く形成することができ、し
かもスリット孔間の間隔をスリット孔の幅に対する蒸着
マスクの位置ずらし回数の倍数の幅に近いづけることに
より、最終的に形成される電極間の隙間を極めて狭くす
ることができる。
According to the fourth aspect of the present invention, when the strip-shaped electrodes are arrayed and formed by vapor deposition using a vapor deposition mask, a narrow slit hole is formed in the vapor deposition mask with respect to the band-shaped electrode finally formed. Every other or a plurality of them are arranged and formed.
Since the position of the evaporation mask is shifted every time and the evaporation is repeated, the interval between the slit holes can be made sufficiently large compared to the width of the slit holes, so that the slit holes can be precisely formed regardless of the aspect ratio. It is possible to make the gap between the electrodes finally formed extremely narrow by making the interval between the slit holes close to a multiple of the number of times the position of the deposition mask is shifted with respect to the width of the slit holes. it can.

【0029】さらに、請求項5記載の発明によれば、蒸
着マスクを用いて帯状の電極を蒸着により配列形成する
際、蒸着マスクに細長いスリット孔を最終的に形成され
る帯状の電極の幅よりも狭い幅で配列形成し、この蒸着
マスクをスリット孔の幅方向に移動させながら蒸着する
ので、蒸着マスクにスリット孔を従来と同じ数だけ形成
しても、スリット孔の幅をスリット孔間の間隔よりも狭
くすることができ、このためアスペクト比に左右されず
にスリット孔を形成することができ、しかもスリット孔
間の間隔が広くても、蒸着マスクのスリット孔の幅方向
への移動量を調節することにより、最終的に形成される
電極間の隙間を狭くすることができる。
Further, according to the fifth aspect of the present invention, when the strip-shaped electrodes are arrayed and formed by vapor deposition using a vapor deposition mask, a narrow slit hole is formed in the vapor deposition mask in accordance with the width of the band-shaped electrode finally formed. Since the vapor deposition mask is vapor-deposited while moving it in the width direction of the slit holes, even if the same number of slit holes are formed in the vapor deposition mask, the width of the slit holes is set between the slit holes. The gap can be narrower than the gap, so that the slit hole can be formed regardless of the aspect ratio, and even if the gap between the slit holes is wide, the amount of movement of the evaporation mask in the width direction of the slit hole can be increased. By adjusting the distance between the electrodes, the gap between the electrodes to be finally formed can be narrowed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を電界発光表示装置に適用した第1実
施形態における蒸着時の断面図。
FIG. 1 is a sectional view at the time of vapor deposition in a first embodiment in which the present invention is applied to an electroluminescent display device.

【図2】図1の蒸着マスクの背面図。FIG. 2 is a rear view of the vapor deposition mask of FIG.

【図3】図1のA−A断面図。FIG. 3 is a sectional view taken along line AA of FIG. 1;

【図4】この発明を電界発光表示装置に適用した第2実
施形態における蒸着時の断面図。
FIG. 4 is a sectional view at the time of vapor deposition in a second embodiment in which the present invention is applied to a light emitting display device.

【図5】図4の蒸着マスクの背面図。FIG. 5 is a rear view of the deposition mask of FIG. 4;

【図6】この発明を電界発光表示装置に適用した第3実
施形態における蒸着終了時の断面図。
FIG. 6 is a cross-sectional view at the end of vapor deposition in a third embodiment in which the present invention is applied to an electroluminescent display device.

【図7】図6の蒸着マスクの背面図。FIG. 7 is a rear view of the vapor deposition mask of FIG. 6;

【図8】この発明を電界発光表示装置に適用した第4実
施形態における蒸着終了時の断面図。
FIG. 8 is a cross-sectional view at the end of vapor deposition in a fourth embodiment in which the present invention is applied to a light emitting display.

【図9】図8の蒸着マスクの背面図。FIG. 9 is a rear view of the vapor deposition mask of FIG. 8;

【図10】電界発光表示装置の背面図FIG. 10 is a rear view of the electroluminescent display device.

【図11】図10の電界発光表示装置の側面図。11 is a side view of the light emitting display of FIG.

【図12】従来の蒸着マスクを用いた真空蒸着により金
属電極を形成する過程を示した断面図。
FIG. 12 is a cross-sectional view showing a process of forming a metal electrode by vacuum evaporation using a conventional evaporation mask.

【図13】図12の蒸着マスクの背面図。FIG. 13 is a rear view of the vapor deposition mask of FIG.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 有機発光層 10、20、25、30 金属電極 11、21、26、31 蒸着マスク 13 小孔 27、32 スリット孔 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent electrode 3 Organic light emitting layer 10, 20, 25, 30 Metal electrode 11, 21, 26, 31 Deposition mask 13 Small hole 27, 32 Slit hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蒸着マスクを用いて帯状の電極を蒸着によ
り配列形成する電極形成方法において、 前記蒸着マスクに複数の小孔を所定間隔で配列形成し、
この蒸着マスクを前記小孔の配列方向に対し交差する方
向に移動させながら蒸着することを特徴とする電極形成
方法。
1. An electrode forming method for arranging strip electrodes by vapor deposition using a vapor deposition mask, wherein a plurality of small holes are arrayed and formed at predetermined intervals in the vapor deposition mask,
An electrode forming method, wherein the evaporation is performed while moving the evaporation mask in a direction intersecting the arrangement direction of the small holes.
【請求項2】前記複数の小孔は、前記蒸着マスクの移動
方向に対し交差する方向に一列に配列されていることを
特徴とする請求項1記載の電極形成方法。
2. The method according to claim 1, wherein the plurality of small holes are arranged in a line in a direction intersecting a moving direction of the deposition mask.
【請求項3】前記複数の小孔は、前記蒸着マスクの移動
方向に対し交差する方向に複数列で、かつ前記蒸着マス
クの移動方向において相互に重ならずに配列されている
ことを特徴とする請求項1記載の電極形成方法。
3. The method according to claim 1, wherein the plurality of small holes are arranged in a plurality of rows in a direction intersecting with the moving direction of the vapor deposition mask and are not overlapped with each other in the moving direction of the vapor deposition mask. The method for forming an electrode according to claim 1.
【請求項4】蒸着マスクを用いて帯状の電極を蒸着によ
り配列形成する電極形成方法において、 前記蒸着マスクに細長いスリット孔を最終的に形成され
る前記帯状の電極に対し1つ置き、または複数個置きに
配列形成し、この蒸着マスクによる蒸着を複数回に分
け、1回ごとに前記蒸着マスクの位置をずらして繰り返
し蒸着することを特徴とする電極形成方法。
4. An electrode forming method for arranging strip electrodes by vapor deposition using a vapor deposition mask, wherein one or a plurality of elongated slit holes are formed in the vapor deposition mask with respect to the finally formed band electrode. A method for forming an electrode, comprising: arranging a plurality of individual depositions; dividing the deposition by a plurality of deposition masks into a plurality of depositions;
【請求項5】蒸着マスクを用いて帯状の電極を蒸着によ
り配列形成する電極形成方法において、 前記蒸着マスクに細長いスリット孔を最終的に形成され
る前記帯状の電極の幅よりも狭い幅で配列形成し、この
蒸着マスクを前記スリット孔の幅方向に移動させながら
蒸着することを特徴とする電極形成方法。
5. An electrode forming method for arranging strip electrodes by vapor deposition using a vapor deposition mask, wherein narrow slit holes are arranged in the vapor deposition mask with a width smaller than the width of the strip electrodes to be finally formed. An electrode forming method comprising: forming a film; and performing vapor deposition while moving the vapor deposition mask in a width direction of the slit hole.
JP8272875A 1996-09-25 1996-09-25 Electrode forming method Pending JPH10102237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8272875A JPH10102237A (en) 1996-09-25 1996-09-25 Electrode forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8272875A JPH10102237A (en) 1996-09-25 1996-09-25 Electrode forming method

Publications (1)

Publication Number Publication Date
JPH10102237A true JPH10102237A (en) 1998-04-21

Family

ID=17519986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8272875A Pending JPH10102237A (en) 1996-09-25 1996-09-25 Electrode forming method

Country Status (1)

Country Link
JP (1) JPH10102237A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019776A1 (en) * 1998-09-30 2000-04-06 Koninklijke Philips Electronics N.V. Method and device for manufacturing an electroluminescent display screen
JP2003208977A (en) * 2002-01-11 2003-07-25 Seiko Epson Corp Manufacturing method of organic el device and its equipment, electrooptic equipment, and electronic device
JP2006165306A (en) * 2004-12-08 2006-06-22 Hitachi Aic Inc Electromagnetic wave shield film
WO2011034011A1 (en) 2009-09-15 2011-03-24 シャープ株式会社 Vapor deposition method and vapor deposition apparatus
JP2012149329A (en) * 2011-01-21 2012-08-09 Ulvac Japan Ltd Film deposition mask, film deposition apparatus, and thin film deposition method
CN102899608A (en) * 2011-07-26 2013-01-30 群康科技(深圳)有限公司 Film coating method
US8691016B2 (en) 2010-02-03 2014-04-08 Sharp Kabushiki Kaisha Deposition apparatus, and deposition method
US8828856B2 (en) 2011-01-20 2014-09-09 Sharp Kabushiki Kaisha Substrate on which film is formed, and organic EL display device
US8907445B2 (en) 2011-01-19 2014-12-09 Sharp Kabushiki Kaisha Substrate to which film is formed, organic EL display device, and vapor deposition method
US8906718B2 (en) 2010-12-27 2014-12-09 Sharp Kabushiki Kaisha Method for forming vapor deposition film, and method for producing display device
US9055653B2 (en) 2010-04-12 2015-06-09 Sharp Kabushiki Kaisha Deposition apparatus and deposition method
US9076977B2 (en) 2011-01-18 2015-07-07 Sharp Kabushiki Kaisha Substrate to which film is formed and organic EL display device
US9076989B2 (en) 2010-12-27 2015-07-07 Sharp Kabushiki Kaisha Method for forming deposition film, and method for producing display device
US9246101B2 (en) 2010-03-09 2016-01-26 Sharp Kabushiki Kaisha Deposition mask, deposition apparatus, and deposition method
US9299946B2 (en) 2011-03-31 2016-03-29 Sharp Kabushiki Kaisha Display substrate, organic electroluminescent display device, and manufacturing method for display substrate and organic electroluminescent display device
US9622319B2 (en) 2011-01-20 2017-04-11 Sharp Kabushiki Kaisha Substrate to which film is formed, method for production, and organic EL display device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019776A1 (en) * 1998-09-30 2000-04-06 Koninklijke Philips Electronics N.V. Method and device for manufacturing an electroluminescent display screen
JP2003208977A (en) * 2002-01-11 2003-07-25 Seiko Epson Corp Manufacturing method of organic el device and its equipment, electrooptic equipment, and electronic device
JP2006165306A (en) * 2004-12-08 2006-06-22 Hitachi Aic Inc Electromagnetic wave shield film
US9947904B2 (en) 2009-09-15 2018-04-17 Sharp Kabushiki Kaisha Vapor deposition method for producing an organic EL panel
WO2011034011A1 (en) 2009-09-15 2011-03-24 シャープ株式会社 Vapor deposition method and vapor deposition apparatus
US9458532B2 (en) 2009-09-15 2016-10-04 Sharp Kabushiki Kaisha Vapor deposition method and vapor deposition apparatus
US8691016B2 (en) 2010-02-03 2014-04-08 Sharp Kabushiki Kaisha Deposition apparatus, and deposition method
US9246101B2 (en) 2010-03-09 2016-01-26 Sharp Kabushiki Kaisha Deposition mask, deposition apparatus, and deposition method
US9055653B2 (en) 2010-04-12 2015-06-09 Sharp Kabushiki Kaisha Deposition apparatus and deposition method
US8906718B2 (en) 2010-12-27 2014-12-09 Sharp Kabushiki Kaisha Method for forming vapor deposition film, and method for producing display device
US9076989B2 (en) 2010-12-27 2015-07-07 Sharp Kabushiki Kaisha Method for forming deposition film, and method for producing display device
TWI496902B (en) * 2011-01-18 2015-08-21 夏普股份有限公司 Coated substrate and organic el display device
US9076977B2 (en) 2011-01-18 2015-07-07 Sharp Kabushiki Kaisha Substrate to which film is formed and organic EL display device
US8907445B2 (en) 2011-01-19 2014-12-09 Sharp Kabushiki Kaisha Substrate to which film is formed, organic EL display device, and vapor deposition method
US9622319B2 (en) 2011-01-20 2017-04-11 Sharp Kabushiki Kaisha Substrate to which film is formed, method for production, and organic EL display device
TWI506152B (en) * 2011-01-20 2015-11-01 夏普股份有限公司 Coated substrate and organic el display device
US8828856B2 (en) 2011-01-20 2014-09-09 Sharp Kabushiki Kaisha Substrate on which film is formed, and organic EL display device
JP2012149329A (en) * 2011-01-21 2012-08-09 Ulvac Japan Ltd Film deposition mask, film deposition apparatus, and thin film deposition method
US9299946B2 (en) 2011-03-31 2016-03-29 Sharp Kabushiki Kaisha Display substrate, organic electroluminescent display device, and manufacturing method for display substrate and organic electroluminescent display device
CN102899608A (en) * 2011-07-26 2013-01-30 群康科技(深圳)有限公司 Film coating method
CN102899608B (en) * 2011-07-26 2015-01-14 群康科技(深圳)有限公司 Film coating method

Similar Documents

Publication Publication Date Title
JPH10102237A (en) Electrode forming method
US8402917B2 (en) Mask frame assembly for thin film deposition and associated methods
KR100469252B1 (en) Shadow Mask and Full Color Organic Electroluminescence Display Device Using the same
US9343708B2 (en) Mask strips and method for manufacturing organic light emitting diode display using the same
JP3675779B2 (en) Method for manufacturing organic EL display element
JPH10298738A (en) Shadow mask and vapor depositing method
US20230104337A1 (en) Mask assembly and organic light emitting display device manufactured using the same
JP2004014513A (en) Mask frame assembly for thin film depositing of organic electronic light emitting device
JP2002175878A (en) Forming method of layer, and manufacturing method of color luminous device
JP2010262920A (en) Organic light-emitting display device
TW201008373A (en) Method of depositing light emitting layer of organic EL device, method of manufacturing organic EL device, and organic EL device manufactured by the method
TWI429326B (en) Light emitting device and manufacturing method thereof
JP2002117975A (en) Manufacturing method of simple matrix pixel array type organic el device
US7253533B2 (en) Divided shadow mask for fabricating organic light emitting diode displays
JP2760347B2 (en) Organic thin film electroluminescent device and method of manufacturing the same
CN111886356A (en) Film formation mask and method for manufacturing display device using the same
CN113314681B (en) Electrode exhaust structure, electrode, display panel and display device
JP2002008871A (en) Organic electroluminescent display panel
JP2003229253A (en) Manufacturing device of organic electroluminescence display panel, and manufacturing method of the same
US6921309B2 (en) Method for manufacturing a light emission display panel
KR20080061676A (en) Shadow mask
JP4789340B2 (en) Semiconductor device and mask for manufacturing semiconductor device
JP2000239826A (en) Formation of thin film
WO2021199401A1 (en) Vapor deposition mask, display panel, and method for manufacturing display panel
KR20210086073A (en) Thin film deposition mask assembly and manufacturing method of organic light emitting display panel using same