JPH10101601A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPH10101601A
JPH10101601A JP8262091A JP26209196A JPH10101601A JP H10101601 A JPH10101601 A JP H10101601A JP 8262091 A JP8262091 A JP 8262091A JP 26209196 A JP26209196 A JP 26209196A JP H10101601 A JPH10101601 A JP H10101601A
Authority
JP
Japan
Prior art keywords
silica
catalyst
carrier
silica gel
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8262091A
Other languages
Japanese (ja)
Inventor
Iwao Ishino
巖 石野
Masaki Saito
正喜 斎藤
Yutaka Shingu
裕 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ETANOOLE KK
Original Assignee
NIPPON ETANOOLE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ETANOOLE KK filed Critical NIPPON ETANOOLE KK
Priority to JP8262091A priority Critical patent/JPH10101601A/en
Publication of JPH10101601A publication Critical patent/JPH10101601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To industrially and advantageously produce ethanol with high activities and a high selectivity by carrying out the hydrating reaction of ethylene with a new long-lived and high-performance catalyst system. SOLUTION: A catalyst carrier having at least >=1.23ml/g, preferably >=1.31ml/g and usually <=2.0ml/g average pore volume in a phosphoric acid catalyst supported on the silica carrier is used. The silica carrier further has at least average 9nm, preferably at least 20nm, more preferably >=25nm average pore diameter and a specific surface area within the range of 50-400m<2> /g and at least 99wt.% silica purity. The silica carrier is preferably a spherical form having an average grain diameter within the range of 2-6mm, a bulk density within the range of 0.3-0.6kg/l and an average grain strength within the range of 1.5-5.0kg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エチレン水和反応
によるエタノールの製造方法に関する。更に詳しくは、
エチレンの水和反応に使用される燐酸触媒の担持体であ
るシリカに関するものである。
TECHNICAL FIELD The present invention relates to a method for producing ethanol by an ethylene hydration reaction. More specifically,
The present invention relates to silica, which is a support for a phosphoric acid catalyst used in the hydration reaction of ethylene.

【0002】[0002]

【従来の技術】エチレンを気相中で高温、高圧において
水蒸気と反応させてエタノールを製造することは公知で
ある。これらエタノールの合成は触媒の存在下で実施さ
れ、しかも担体上に担持されている燐酸が触媒として通
常使用される。また、その担持体としては、珪質支持
体、例えば珪藻土あるいはシリカゲルが用いられる
(「アルコールハンドブック」発酵工業協会発行、昭和
61年3月八版 70頁参照)。
2. Description of the Prior Art It is known to produce ethanol by reacting ethylene with water vapor at high temperature and high pressure in the gas phase. The synthesis of these ethanols is carried out in the presence of a catalyst, and phosphoric acid supported on a carrier is usually used as a catalyst. As the carrier, a siliceous support, for example, diatomaceous earth or silica gel is used (see “Alcohol Handbook”, published by the Fermentation Industry Association, March 8, 1986, p. 70).

【0003】特開昭52−133095号公報、特公昭
53−37315号公報、特開平6−184022号公
報等には、一般的記載として平均細孔容積0.6ml/
g以上のシリカ担体を用いることが述べられているが、
具体例でに使用されているのはシリカ担体の平均細孔容
積は高々1.20ml/gであり、且つ燐酸担持量の少
ない触媒によりエチレンの水和反応を行っているため
に、エチレンの転化率及びエチレン選択率は満足できる
ものではない。また、これら先行技術には、シリカゲル
の細孔容積のエチレン転化率およびエタノール収率等へ
の影響についての認識は全くない。さらに、このような
触媒では、水蒸気と接触したときに物理的ならびに化学
的な劣化が起き、その為、長期間使用することにより活
性の低下をきたし、且つ甚だしいときには担体粒子が互
いに凝集してブロック状となり、触媒取替え、抜き出し
時に極めて困難性を有する場合がある。また、これら触
媒のエタノールの活性は一般に選択率は高いものの収率
が低く、工業的に更なる高収率の得られる触媒技術の開
発が望まれている。
[0003] JP-A-52-133095, JP-B-53-37315, JP-A-6-184022 and the like generally describe an average pore volume of 0.6 ml / liter.
Although it is stated that a silica carrier of g or more is used,
In the specific example, the average pore volume of the silica carrier is at most 1.20 ml / g, and the hydration reaction of ethylene is carried out with a catalyst having a small amount of phosphoric acid. Rate and ethylene selectivity are not satisfactory. Further, these prior arts have no recognition of the effect of the pore volume of silica gel on the ethylene conversion, ethanol yield, and the like. In addition, such catalysts undergo physical and chemical degradation upon contact with water vapor, which leads to reduced activity over long periods of use, and in extreme cases, the carrier particles aggregate and block. And it may be extremely difficult to replace or withdraw the catalyst. In addition, the activity of ethanol in these catalysts is generally high in selectivity but low in yield, and there is an industrial demand for the development of a catalyst technology capable of obtaining a higher yield.

【0004】[0004]

【発明が解決しようとする課題】本発明は、エチレン水
和反応によりエタノールを製造する際に、従来のシリカ
担持燐酸触媒よりも収率および選択性に優れ、エタノー
ル生産収率をより高くすることができるばかりでなく、
触媒系の経時的活性低下が少なく、担体の粒子強度の物
理的及び化学的な低下を防止して触媒の寿命を延ばすこ
とができる、より高性能な新規の触媒系を提供するもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing ethanol by an ethylene hydration reaction which has a higher yield and selectivity than conventional silica-supported phosphoric acid catalysts and a higher ethanol production yield. Not only can be
An object of the present invention is to provide a novel high-performance catalyst system which has a small decrease in activity of the catalyst system over time and can prevent a physical and chemical decrease in the particle strength of the carrier and extend the life of the catalyst.

【0005】[0005]

【課題を解決するための手段】本発明者らは、鋭意研究
の結果、エチレン水和反応によるエタノールの製造を行
うに際し、上記の課題を解決するためには、特定の細孔
容積を有するシリカ担体を使用し、さらに好ましくは、
特定のエチレン水和反応条件下において、特に高い特定
の比表面積、細孔直径、純度、および粒子強度を持つ球
状シリカを使用することによって、触媒系の性能を改善
することができることを見出だし、本発明を完成するに
至った。すなわち、本発明は、シリカ担体上に担持され
た燐酸触媒からなる触媒系の存在下に、エチレンの水和
反応によりエタノールを製造する方法において、該シリ
カ担体が少なくとも1.23ml/gの平均細孔容積を
有することを特徴とするエタノールの製造方法である。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that when producing ethanol by the ethylene hydration reaction, in order to solve the above-mentioned problems, silica having a specific pore volume is required. Using a carrier, more preferably,
Under certain ethylene hydration reaction conditions, it has been found that the use of spherical silica with a particularly high specific surface area, pore diameter, purity, and particle strength can improve the performance of the catalyst system, The present invention has been completed. That is, the present invention provides a method for producing ethanol by a hydration reaction of ethylene in the presence of a catalyst system comprising a phosphoric acid catalyst supported on a silica carrier, wherein the silica carrier has an average fineness of at least 1.23 ml / g. A method for producing ethanol, characterized by having a pore volume.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1.シリカ担体 本発明で使用されるシリカ担体は、少なくとも1.23
ml/g以上、好ましくは1.31ml/g以上で、通
常は2.0ml/g以下の平均細孔容積を有するもので
ある。平均細孔容積が1.23ml/g未満であると、
燐酸の担持量が少なくなり、エチレン転化率の低下が著
しくその改良効果が期待できない。また、細孔容積が大
きすぎると、エチレンの水和反応中に高圧、高温下での
シリカゲルの化学劣化が起き易く、触媒寿命を低下さ
せ、粒子強度も低くなる傾向があるので、実用的にはシ
リカ担体の平均細孔容積の上限は2.0ml/g程度で
ある。
1. Silica carrier The silica carrier used in the present invention has at least 1.23
It has an average pore volume of not less than ml / g, preferably not less than 1.31 ml / g, and usually not more than 2.0 ml / g. When the average pore volume is less than 1.23 ml / g,
The supported amount of phosphoric acid is reduced, and the conversion of ethylene is significantly reduced, so that its improvement effect cannot be expected. Also, if the pore volume is too large, chemical degradation of silica gel under high pressure and high temperature is likely to occur during the hydration reaction of ethylene, reducing the catalyst life and reducing the particle strength. The upper limit of the average pore volume of the silica carrier is about 2.0 ml / g.

【0007】シリカ担体は、さらに少なくとも平均9n
m、好ましくは少なくとも20nm、より好ましくは2
5nm以上の平均細孔直径を有し、比表面積が50〜4
00m2/gの範囲であり、少なくとも99重量%のシリカ
の純度を有するものであり、平均粒子径2〜6mmの範
囲の球形状であり、嵩密度が0.3〜0.6Kg/lの範
囲にあるものが好ましい。 平均細孔直径が小さすぎる
と、シリカゲルの一次粒子が小さくなり、反応初期にポ
ーラスなシリカゲルが燐酸に溶解され、非ポーラスなシ
リカ結晶が担体シリカゲル表面に再沈、堆積してその表
面を覆ってしまい、結果として触媒活性を低下させてし
まう。シリカ担体の粒子径および嵩密度が小さすぎると
反応器での圧力損失が大きくなり、また大きすぎると反
応器に充填できる触媒量が少なくなってしまう。また粒
子の強度は、1.5kg以上で高いほど好ましいが、高
すぎると大きな細孔容積を維持するのが難しく、実質
上、1.5〜5.0kgの範囲にあることが好ましい。
上述したシリカゲルは、基本的には、例えば、特公平7
−64543号及び特開昭58−135119号公報に
記載されている方法によって製造することができる。ま
た、このようなシリカ担体は、富士シリシア化学(株)
から入手することができ、例えば商品名:「キャリアク
ト」Q10HP、Q30HP、Q50HP等がその一例
である。
The silica carrier further comprises at least 9n on average
m, preferably at least 20 nm, more preferably 2
It has an average pore diameter of 5 nm or more and a specific surface area of 50 to 4
In the range of 00m 2 / g, at least 99% by weight are those having a purity of silica, a spherical shape in a range of the average particle diameter of 2 to 6 mm, a bulk density of 0.3~0.6Kg / l Those in the range are preferred. If the average pore diameter is too small, the primary particles of the silica gel will become small, the porous silica gel will be dissolved in phosphoric acid at the beginning of the reaction, and the non-porous silica crystals will reprecipitate and deposit on the surface of the carrier silica gel, covering the surface. As a result, the catalyst activity is reduced. If the particle size and bulk density of the silica carrier are too small, the pressure loss in the reactor will increase, and if it is too large, the amount of catalyst that can be charged into the reactor will decrease. Further, the strength of the particles is preferably as high as 1.5 kg or more, but if it is too high, it is difficult to maintain a large pore volume, and it is preferable that the strength is substantially in the range of 1.5 to 5.0 kg.
The above-mentioned silica gel is basically, for example,
-64543 and JP-A-58-135119. Such a silica carrier is available from Fuji Silysia Chemical Ltd.
For example, the product name: "Carrierct" Q10HP, Q30HP, Q50HP, etc. is an example.

【0008】2. エチレン水和反応 ( 触媒の調製)シリカゲルを触媒の支持体として用
い、予め15〜80重量%の燐酸水溶液に所定のシリカ
ゲルを浸漬した後、乾燥処理を行うなどによって、シリ
カゲルに燐酸を担持させることができる。この場合の含
浸支持体は使用前に乾燥して触媒系粒子とされるが、そ
の燐酸濃度は該粒子全重量に対して5〜70重量%、好
ましくは、10〜70重量%、更に好ましくは、20〜
60重量%、最も好ましくは、40〜60重量%程度で
ある。
2. Ethylene hydration reaction (Preparation of catalyst) Using silica gel as a catalyst support, a predetermined silica gel is immersed in a 15 to 80% by weight phosphoric acid aqueous solution in advance, and then dried to carry out a drying treatment. Phosphoric acid can be supported. In this case, the impregnated support is dried before use to obtain catalyst-based particles, and its phosphoric acid concentration is 5 to 70% by weight, preferably 10 to 70% by weight, more preferably 10 to 70% by weight based on the total weight of the particles. 20, 20
It is about 60% by weight, most preferably about 40 to 60% by weight.

【0009】(エチレン水和反応)エチレンと水とを原
料として気相反応によりエタノールを製造する場合、本
発明の特徴を最も良く享受するには、上記のようにして
得られた触媒粒子を100〜400℃、好ましくは20
0〜350℃の範囲の温度で使用することである。反応
圧力は通常10,000KPa以下、好ましくは3,0
00〜10,000KPaの範囲の圧力下に実施され
る。反応温度および反応圧力は一般に高くするほど高い
エチレン転化率が得られて好ましいが、温度、圧力の過
度の増大は副生成物が増大する恐れがあり、逆に低すぎ
ると反応が進まない。エチレンと水のモル比は、反応条
件下で水の凝縮が起こらないように、水/エチレン=
0.1〜0.8の範囲内で実施することが好ましい。
(Ethylene Hydration Reaction) In the case where ethanol is produced by a gas phase reaction using ethylene and water as raw materials, the catalyst particles obtained as described above must be mixed with 100 parts in order to obtain the best characteristics of the present invention. ~ 400 ° C, preferably 20
To be used at a temperature in the range of 0 to 350 ° C. The reaction pressure is usually 10,000 KPa or less, preferably 3.0 KPa.
It is carried out under a pressure in the range from 00 to 10,000 KPa. In general, the higher the reaction temperature and the reaction pressure, the higher the ethylene conversion can be obtained, which is preferable. However, if the temperature and pressure are excessively increased, the by-products may increase. The molar ratio of ethylene to water is such that water / ethylene =
It is preferable to carry out in the range of 0.1 to 0.8.

【0010】[0010]

【実施例】以下、実施例及び比較例を挙げて本発明をさ
らに詳細に説明する。なお、ここで使用した実施例のシ
リカゲルは、富士シリシア化学(株)に於いて(ゾル、
ゲル法により)製造されたものである。また、比較例と
しては、従来型のシリカゲルである W.R.Grace & Co 社
製の#57を用いた。これらのシリカゲルの物性値を表
−1に示す。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. The silica gel of the example used here was manufactured by Fuji Silysia Chemical Ltd. (Sol,
(By a gel method). As a comparative example, a conventional silica gel # 57 manufactured by WRGrace & Co was used. Table 1 shows the physical property values of these silica gels.

【0011】[シリカゲルの試験方法] (純度:SiO2として) JISK1150−1994 シリカゲル
試験方法(5.6.5によった。 (比表面積)JISK1150−1994 シリカゲル試験方法
(5.1)によった。 (平均細孔容積)JISK1150−1994 シリカゲル試験
方法(5.2)によった。 (平均細孔直径)JISK1150−1994 シリカゲル試験
方法(5.3)によった。 (粒子強度)JISK1150−1994 シリカゲル試験方法
(5.9.2)によった。 (平均粒子径)JISK1150−1994 シリカゲル試験方
法(5.7.1)によった。 (かさ密度)JISK1150−1994 シリカゲル試験方法
(5.10)によった。
[Test Method for Silica Gel] (Purity: as SiO 2 ) JIS K1150-1994 Silica gel test method (according to 5.6.5. (Specific surface area) JIS K1150-1994 silica gel test method
According to (5.1). (Average pore volume) According to JIS K1150-1994 silica gel test method (5.2). (Average pore diameter) According to JIS K1150-1994 silica gel test method (5.3). (Particle strength) JIS K1150-1994 Silica gel test method
According to (5.9.2). (Average particle size) According to JIS K1150-1994 silica gel test method (5.7.1). (Bulk density) JIS K1150-1994 Silica gel test method
According to (5.10).

【0012】実施例および比較例 (触媒の調製)実施例として、富士シリシア(株)から
入手しシリカ担体(商品名「キャリアクト」Q10H
P、Q30HP及びQ50HP)、および比較例とし
て、従来型のW.R.Grace & Co 社製の#57を触媒の支
持体として用い、予め65重量%の燐酸水溶液に所定の
シリカゲルを1時間浸漬した後、ロート上に移し燐酸水
溶液を完全に液切りした。乾燥処理は窒素気流中、15
0℃で、20時間を掛けて行い、シリカゲルに燐酸を担
持させた触媒粒子を調製した。触媒粒子の燐酸濃度は、
浸漬前の乾燥シリカの重量および燐酸を担持し、乾燥処
理した触媒粒子の全重量をそれぞれ測定し求めた。その
結果を表−1に示す。W.R.Grace & Co 社製の#57
は、上記処方によって燐酸を担持した場合、その粒子の
粒子強度は、約半分程度まで低下するが、実施例である
本発明品に於いては、いづれも強度低下は見られなかっ
た。
Examples and Comparative Examples (Preparation of Catalyst) As an example, a silica carrier (trade name “Caractact” Q10H) obtained from Fuji Silysia Ltd. was used.
P, Q30HP and Q50HP), and as a comparative example, using a conventional type # 57 manufactured by WRGrace & Co as a catalyst support, previously immersing predetermined silica gel in a 65% by weight aqueous phosphoric acid solution for 1 hour, It was transferred to the top and the phosphoric acid aqueous solution was completely drained. Drying is performed in a nitrogen stream at 15
The reaction was performed at 0 ° C. for 20 hours to prepare catalyst particles having phosphoric acid supported on silica gel. The phosphoric acid concentration of the catalyst particles is
The weight of the dried silica before immersion and the total weight of the catalyst particles carrying phosphoric acid and dried were measured and determined. Table 1 shows the results. # 57 made by WRGrace & Co
When phosphoric acid was supported by the above formulation, the particle strength of the particles was reduced to about half, but in the present invention product as an example, no reduction in strength was observed in any case.

【0013】(エチレン水和反応)上記で得られた各触
媒粒子40mlを充填した内径約2cmの銅内張りSU
S製の縦型固定層流通管状小型反応器を用いて、表−2
に示す合成条件にてエタノールの合成を行った。反応を
経過し、安定な定常活性が得られたことを確認してから
(約6時間後)、反応出口のガスを全量気相でガスクロ
マトグラフに導入し分析した。これら合成実験にて得ら
れた結果を表−1に示す。
(Ethylene hydration reaction) A copper-lined SU having an inner diameter of about 2 cm filled with 40 ml of each of the catalyst particles obtained above.
Using a vertical fixed-bed flow tubular small reactor made of S, Table-2
The synthesis of ethanol was carried out under the following synthesis conditions. After the reaction was completed and it was confirmed that stable steady-state activity was obtained (after about 6 hours), all of the gas at the reaction outlet was introduced into a gas chromatograph in gas phase and analyzed. Table 1 shows the results obtained in these synthesis experiments.

【0014】(実験結果の考察)触媒の寿命には2種類
の要因が存在する。すなわち、その1つは、初期の粒子
強度が弱い為に反応器に投入した際、自重の為、あるい
は反応の立ち上げあるいは停止中断による熱刺激の為に
シリカゲルが破砕、凝集しブロック化してしまう、いわ
ゆる物理的劣化現象である。この場合は、初期のシリカ
粒子の強度を大きくすること、及び製造時の構造的な歪
みの少ないものにすることによって触媒調整工程での燐
酸担持による強度低下を防ぐことが効果的である。実施
例である本発明で限定される特定のシリカゲルに於いて
は、比較例である従来型のW.R.Grace & Co 社製の#5
7と比較してすべて良好な結果が得られていることが表
−1に示したデータから明らかである。
(Consideration of Experimental Results) There are two factors in the life of the catalyst. That is, one of them is that silica gel is crushed, agglomerated and blocked due to its own weight or thermal stimulation due to the start or stop of the reaction when it is put into the reactor because the initial particle strength is weak. This is a so-called physical deterioration phenomenon. In this case, it is effective to increase the strength of the silica particles at the initial stage and to reduce the structural distortion at the time of production so as to prevent the strength from being reduced by phosphoric acid loading in the catalyst preparation step. In the specific silica gel limited by the present invention, which is an example, the conventional WRGrace & Co # 5, which is a comparative example, is used.
It is clear from the data shown in Table 1 that good results were all obtained as compared with No. 7.

【0015】触媒の寿命のもう一つの要因に、化学的劣
化によるシリカゲルの粒子強度の経時劣化及びエタノー
ルの合成活性の低下現象がある。この現象は、シリカの
水熱反応条件下でシリカゲル(非晶性)が燐酸と反応し
ケイ燐酸塩となり一旦燐酸中に溶解する。この時シリカ
ゲルの細孔構造が徐々に崩壊する。更にこのケイ燐酸塩
のシリカ成分が反応経過と共にシリカゲル表面にシリカ
結晶として卵の殻状に析出する。このシリカの結晶は、
シリカゲルのように細孔構造がほとんどなく燐酸の保持
能力に劣る為、殻の成長と共に徐々に触媒活性も低下し
ていくと考えられる。従って、この触媒の化学的寿命の
判定方法としては、反応中生成した結晶性シリカによる
シリカゲルの表面への卵の殻状物の堆積の状況を走査型
電子顕微鏡などによって観察すればよい。
Another factor in the life of the catalyst is a phenomenon in which the particle strength of silica gel deteriorates with time due to chemical deterioration and a phenomenon in which the activity of synthesizing ethanol decreases. This phenomenon occurs because silica gel (amorphous) reacts with phosphoric acid to form silicic acid phosphate under hydrothermal reaction conditions of silica, and is once dissolved in phosphoric acid. At this time, the pore structure of the silica gel gradually collapses. Further, the silica component of the silicate is precipitated on the surface of the silica gel as silica crystals in the form of an egg shell as the reaction progresses. This silica crystal is
It is thought that the catalytic activity gradually decreases with the growth of the shell, because it has little pore structure and is inferior in the ability to retain phosphoric acid as in silica gel. Therefore, as a method of determining the chemical life of the catalyst, the state of the deposition of egg shells on the surface of the silica gel by the crystalline silica generated during the reaction may be observed by a scanning electron microscope or the like.

【0016】小型反応器で12時間反応後、使用した触
媒を取り出して、反応活性の劣化の兆候と判断される、
反応中生成した結晶性シリカによるシリカゲルの表面へ
の卵の殻状物の堆積の状況を走査型電子顕微鏡にて観察
した。その結果、平均細孔直径が比較的小さい本発明の
Q10HPについては、シリカゲルの表面への卵の殻状
物の堆積が観察された。一方、平均細孔直径を大きくし
た実施例中の本発明品のシリカゲルであるQ30HP及
びQ50HPについてはシリカゲルの表面への卵の殻状
物の堆積が観察されなかった。
After reacting in a small reactor for 12 hours, the used catalyst is taken out and judged to be a sign of deterioration of the reaction activity.
The state of the deposition of egg shells on the silica gel surface by the crystalline silica produced during the reaction was observed with a scanning electron microscope. As a result, for the Q10HP of the present invention having a relatively small average pore diameter, deposition of egg shells on the surface of silica gel was observed. On the other hand, for the silica gels Q30HP and Q50HP of the product of the present invention in the examples in which the average pore diameter was increased, no egg shell was deposited on the surface of the silica gel.

【0017】[0017]

【発明の効果】本発明は、細孔容積が比較的大きなシリ
カ担体を使用することにより、さらに平均細孔直径およ
び比表面積の最適な多孔性シリカを担持体として用いて
シリカ担持燐酸触媒を使うことによって高活性で且つ高
選択性で、エタノールを製造することが可能であり、従
来のシリカ担持燐酸触媒より長期間使用できる、触媒寿
命の長い工業的に優れた方法である。
According to the present invention, a silica carrier having a relatively large pore volume is used, and a silica-supported phosphoric acid catalyst is further used by using a porous silica having an optimum average pore diameter and a specific surface area as a carrier. As a result, it is possible to produce ethanol with high activity and high selectivity, and this is an industrially superior method that can be used for a longer time than a conventional phosphoric acid catalyst supported on silica and has a long catalyst life.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【手続補正書】[Procedure amendment]

【提出日】平成8年10月29日[Submission date] October 29, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】特開昭52−133095号公報、特公昭
53−37315号公報、特開平6−184022号公
報等には、一般的記載として平均細孔容積0.6ml/
g以上のシリカ担体を用いることが述べられているが、
具体例で使用されているのはシリカ担体の平均細孔容積
は高々1.20ml/gであり、且つ燐酸担持量の少な
い触媒によりエチレンの水和反応を行っているために、
エチレンの転化率及びエチレン選択率は満足できるもの
ではない。また、これら先行技術には、シリカゲルの細
孔容積のエチレン転化率およびエタノール収率等への影
響についての認識は全くない。さらに、このような触媒
では、水蒸気と接触したときに物理的ならびに化学的な
劣化が起き、その為、長期間使用することにより活性の
低下をきたし、且つ甚だしいときには担体粒子が互いに
凝集してブロック状となり、触媒取替え、抜き出し時に
極めて困難性を有する場合がある。また、これら触媒の
エタノールの活性は一般に選択率は高いものの収率が低
く、工業的に更なる高収率の得られる触媒技術の開発が
望まれている。
[0003] JP-A-52-133095, JP-B-53-37315, JP-A-6-184022 and the like generally describe an average pore volume of 0.6 ml / liter.
Although it is stated that a silica carrier of g or more is used,
In the specific examples, the average pore volume of the silica carrier is at most 1.20 ml / g, and the hydration reaction of ethylene is carried out with a catalyst having a small amount of phosphoric acid,
Ethylene conversion and ethylene selectivity are not satisfactory. Further, these prior arts have no recognition of the effect of the pore volume of silica gel on the ethylene conversion, ethanol yield, and the like. In addition, such catalysts undergo physical and chemical degradation upon contact with water vapor, which leads to reduced activity over long periods of use, and in extreme cases, the carrier particles aggregate and block. And it may be extremely difficult to replace or withdraw the catalyst. In addition, the activity of ethanol in these catalysts is generally high in selectivity but low in yield, and there is an industrial demand for the development of a catalyst technology capable of obtaining a higher yield.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカ担体上に担持された燐酸触媒から
なる触媒系の存在下に、エチレンの水和反応によりエタ
ノールを製造する方法において、該シリカ担体が少なく
とも1.23ml/gの平均細孔容積を有することを特
徴とするエタノールの製造方法。
1. A method for producing ethanol by a hydration reaction of ethylene in the presence of a catalyst system comprising a phosphoric acid catalyst supported on a silica support, wherein the silica support has an average pore size of at least 1.23 ml / g. A method for producing ethanol, having a volume.
【請求項2】 前記シリカ担体が少なくとも1.31m
l/gの平均細孔容積を有し且つ少なくとも9nmの平
均細孔直径を有する請求項1記載の方法。
2. The method according to claim 1, wherein the silica carrier is at least 1.31 m.
The method of claim 1 having an average pore volume of 1 / g and having an average pore diameter of at least 9 nm.
【請求項3】 前記シリカ担体が少なくとも1.23〜
2.0ml/gの平均細孔容積を有し且つ少なくとも2
0nmの平均細孔直径を有する請求項1又は1記載の方
法。
3. The method according to claim 1, wherein the silica carrier is at least 1.23 to
Having an average pore volume of 2.0 ml / g and at least 2
A method according to claim 1 or 1 having an average pore diameter of 0 nm.
【請求項4】 前記シリカ担体が1.5〜5.0kgの
範囲の平均粒子強度を有する請求項1〜3のいずれかに
記載の方法。
4. The method according to claim 1, wherein the silica carrier has an average particle strength in the range from 1.5 to 5.0 kg.
JP8262091A 1996-10-02 1996-10-02 Production of ethanol Pending JPH10101601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262091A JPH10101601A (en) 1996-10-02 1996-10-02 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262091A JPH10101601A (en) 1996-10-02 1996-10-02 Production of ethanol

Publications (1)

Publication Number Publication Date
JPH10101601A true JPH10101601A (en) 1998-04-21

Family

ID=17370917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262091A Pending JPH10101601A (en) 1996-10-02 1996-10-02 Production of ethanol

Country Status (1)

Country Link
JP (1) JPH10101601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086928A1 (en) * 2005-04-15 2011-04-14 Olah George A Mitigating or eliminating the carbon footprint of human activities
WO2020090756A1 (en) 2018-11-02 2020-05-07 昭和電工株式会社 Method for producing alcohol and catalyst for producing alcohol
WO2021205900A1 (en) * 2020-04-10 2021-10-14 昭和電工株式会社 Method for producing alcohol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110086928A1 (en) * 2005-04-15 2011-04-14 Olah George A Mitigating or eliminating the carbon footprint of human activities
WO2020090756A1 (en) 2018-11-02 2020-05-07 昭和電工株式会社 Method for producing alcohol and catalyst for producing alcohol
KR20210035232A (en) 2018-11-02 2021-03-31 쇼와 덴코 가부시키가이샤 Alcohol production method and alcohol production catalyst
CN112930333A (en) * 2018-11-02 2021-06-08 昭和电工株式会社 Method for producing alcohol and catalyst for alcohol production
JPWO2020090756A1 (en) * 2018-11-02 2021-09-30 昭和電工株式会社 Alcohol production method and catalyst for alcohol production
CN112930333B (en) * 2018-11-02 2023-10-03 株式会社力森诺科 Alcohol production method and catalyst for alcohol production
US11981622B2 (en) 2018-11-02 2024-05-14 Resonac Corporation Method for producing alcohol and catalyst for producing alcohol
WO2021205900A1 (en) * 2020-04-10 2021-10-14 昭和電工株式会社 Method for producing alcohol

Similar Documents

Publication Publication Date Title
EP0949000B1 (en) Process for the preparation of fluid bed vinyl acetate catalyst support
RU2182516C2 (en) Heterogeneous bimetallic palladium-gold catalyst for production of vinyl acetate and method of its production
US4048096A (en) Surface impregnated catalyst
JP4473450B2 (en) Nickel catalyst
JPH07821A (en) Hydrogenation catalyst and method for preparation thereof and application thereof
EP2012917A1 (en) Titanium catalyst, its preparation and its use in epoxidation reactions
JP2005138000A (en) Catalyst, method for preparing catalyst and method for producing lower hydrocarbon using the same catalyst
JP3313164B2 (en) Silver catalyst for producing ethylene oxide and method for producing the same
US6355596B2 (en) Method for preparing titanium on silica catalysts with controlled distributions
US4380509A (en) Method for producing a catalyst for the hydration of olefins
JPH10101601A (en) Production of ethanol
US6187280B1 (en) Process for the preparation of aluminum fluoride
JPS5839515B2 (en) Glucose Isomera Zeno
JPH0639287A (en) Production of catalyst for hydration of olefin into alcohol
KR101358666B1 (en) Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles
JPH0144242B2 (en)
AU7649900A (en) Optimized method for the production of catalyst supports based on silica gel andchromium catalysts supported on silica gel
JPH0859566A (en) Production of methylamines
CN107417831B (en) Method for polymerizing ethylene and polyethylene
JP2001178457A (en) Method for immobilizing enzyme and immobilized enzyme
JPH0356433A (en) Production of dimethyl ether
JP2001062291A (en) Carrier of ethylene oxide production catalyst, ethylene oxide production catalyst and production of ethylene oxide
CN114620741B (en) Hierarchical pore molecular sieve and preparation method thereof
WO2023116315A1 (en) Titanium silicate molecular sieve, and nano-gold-loaded titanium silicate molecular sieve catalyst and preparation method therefor and use thereof
CN111589438B (en) Catalyst carrier and preparation method and application thereof