JPH1010139A - Apparatus for measuring light physical-property of minute part - Google Patents

Apparatus for measuring light physical-property of minute part

Info

Publication number
JPH1010139A
JPH1010139A JP16555896A JP16555896A JPH1010139A JP H1010139 A JPH1010139 A JP H1010139A JP 16555896 A JP16555896 A JP 16555896A JP 16555896 A JP16555896 A JP 16555896A JP H1010139 A JPH1010139 A JP H1010139A
Authority
JP
Japan
Prior art keywords
light
probe
sample
substance
spectroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16555896A
Other languages
Japanese (ja)
Inventor
Masashi Kuwabara
正史 桑原
Kojiro Okude
幸二郎 奥出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16555896A priority Critical patent/JPH1010139A/en
Publication of JPH1010139A publication Critical patent/JPH1010139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To identify a substance at an atomic level with good positional resolution, by injecting electrons to the substance from a probe of a scanning probe microscope and detecting a light emitted from the substance immediately below a front end of the probe. SOLUTION: A window 15 is formed of a transparent substance to light in order to take a light condensed by a concave mirror 8 out of an atmosphere bath 13. The light is condensed by the concave mirror 8 and at the same time turned to a parallel light, then taken out of the atmosphere bath 13 through the window 15. The light is reduced by a lens 6 and brought into a spectroscope 9. The light condensed by the concave mirror 8 is not directly brought into the spectroscope 9, but sent to the spectroscope after turned to the parallel light, because the light might be scattered or reflected and weakened in intensity unless the light were parallel to the Window 15 when taken out of the atmosphere bath 13. A driving mechanism moves an optical fiber 7 from outside of the atmosphere bath 13 to bring the fiber close to a front end of a probe 1. The apparatus can measure a surface shape of a sample 2, perform spectrometry and measure an emission intensity at the same time, so that a measurement time is shortened and influences by a heat drift are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微小部光物性測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring optical properties of minute parts.

【0002】[0002]

【従来の技術】走査型トンネル顕微鏡(Scanning Tunnel
ing Microscope:STM)および原子間力顕微鏡(Atomi
c Force Microscope:AFM)は、試料表面形状を原子
レベルで測定可能な超高分解能な顕微鏡である。試料表
面の形状の測定のみならず、トンネル分光法や原子間力
測定により試料表面の電子状態などが原子レベルで解明
可能である。また、これらの顕微鏡の技術を応用して開
発された多機能な顕微鏡(総称して走査型プローブ顕微
鏡と呼ばれる。)により、試料表面の磁気,電位,摩擦
力などがミクロン以下の位置分解能で測定可能である。
また従来の光学顕微鏡や電子顕微鏡と異なりレンズ系を
使用わないため、測定雰囲気に左右されないという特徴
を持つ。
2. Description of the Related Art Scanning Tunnel
ing Microscope (STM) and Atomic Force Microscope (Atomi)
c Force Microscope (AFM) is an ultra-high resolution microscope that can measure the surface shape of a sample at the atomic level. In addition to measuring the shape of the sample surface, tunneling spectroscopy and atomic force measurement can clarify the electronic state of the sample surface at the atomic level. In addition, a multifunctional microscope (collectively referred to as a scanning probe microscope) developed by applying these microscope technologies measures the magnetism, potential, frictional force, etc. of the sample surface with a positional resolution of less than a micron. It is possible.
Further, unlike conventional optical microscopes and electron microscopes, since a lens system is not used, it has the characteristic that it is not affected by the measurement atmosphere.

【0003】しかし、STMやAFMおよび走査型プロ
ーブ顕微鏡(Scanning ProbeMicroscope:SPM)で有
益な情報を試料より得るためには、試料表面の組成や構
造がよく規定されていなければならない。すなわち、表
面形状が複雑でかつ多種類の元素からなる試料では、表
面形状の測定結果のみ信用でき、電位,摩擦力,磁気の
測定結果が得られたとしてもその解析は非常に困難であ
り有益な情報を引き出すことは不可能である。このこと
は走査型プローブ顕微鏡で表面の物質が同定できないた
め、得られる情報と表面の物質との相関がとれないため
である。一方、表面の物質を同定する方法としてオージ
ェ電子分光法などがあるが、位置分解能はサブミクロン
であり、近年必要性が高まっているナノオーダの分解手
法となりえない。また、測定には高真空が必要であるた
め、排気系や真空槽などの装置が必要となり大がかりな
装置となってしまう。SPMの優れた位置分解能を生か
した物質の同定方法が望まれている。そのような状況の
中、STMを用いた発光現象が報告された(Z.Phys.B Vo
l.72 P497 1988)。これはSTMの探針から電子を試料
に打ち込むことにより、試料から光が放出されるという
現象である。打ち込まれる電子は試料表面で原子レベル
の広がりしか持たないため、そこから放出される光には
原子レベルの情報が含まれている。したがって、この放
出される光を解析することにより原子レベルでの光物性
がわかる。例えば、放出される光を分光し、スペクトル
の形を解析することにより試料表面の物質が同定できる
と考えられる。特に表面金属を試料とした場合、そのス
ペクトルの形は金属種類により異なるため、多種類の金
属種が存在する試料表面の金属種分布測定といった分解
も可能になる。
However, in order to obtain useful information from a sample by using an STM, an AFM, and a scanning probe microscope (SPM), the composition and structure of the sample surface must be well defined. In other words, in the case of a sample whose surface shape is complex and consists of many types of elements, only the measurement results of the surface shape are reliable, and even if the measurement results of potential, frictional force, and magnetism are obtained, the analysis is very difficult and beneficial. It is impossible to extract important information. This is because the surface material cannot be identified by the scanning probe microscope, and the obtained information cannot be correlated with the surface material. On the other hand, there is an Auger electron spectroscopy or the like as a method for identifying a substance on the surface. However, since the positional resolution is submicron, it cannot be used as a nano-order decomposition method that has been increasingly required in recent years. Further, since a high vacuum is required for the measurement, devices such as an exhaust system and a vacuum tank are required, and the device becomes large-scale. There is a demand for a method for identifying a substance utilizing the excellent positional resolution of SPM. Under such circumstances, a light emission phenomenon using STM was reported (Z.Phys.B Vo
l.72 P497 1988). This is a phenomenon in which light is emitted from the sample when electrons are injected into the sample from the probe of the STM. Since the injected electrons have only an atomic level spread on the sample surface, the light emitted therefrom contains atomic level information. Therefore, by analyzing the emitted light, the optical properties at the atomic level can be determined. For example, it is considered that a substance on the sample surface can be identified by analyzing emitted light and analyzing the shape of the spectrum. In particular, when a surface metal is used as a sample, the shape of the spectrum differs depending on the type of metal, so that decomposition such as measurement of the distribution of metal species on the surface of the sample in which many types of metal are present is possible.

【0004】放出される光は極微弱なのでフォトンカウ
ンティング法とよばれる光子一個一個を数える光検出法
が使われるが、この方法は積算時間を必要とするため測
定したい場所に探針を停止させておかなくてはならな
い。しかし、試料やSPM装置には熱ドリフトが存在す
るため、探針と試料との位置が測定中にずれてしまい位
置分解能が落ちるという欠点があった。特に分光測定で
は光スペクトルを測定するため、積算時間が長くかかる
のでさらに位置分解能が低下する。
Since the emitted light is extremely weak, a photon counting method called photon counting, which counts each photon one by one, is used. However, since this method requires an integration time, the probe is stopped at a place where measurement is desired. I have to do it. However, since the sample and the SPM apparatus have a thermal drift, the position of the probe and the sample is shifted during the measurement, and the position resolution is reduced. In particular, in spectrometry, since an optical spectrum is measured, the integration time is long, and the positional resolution is further reduced.

【0005】放出される光を分光するという測定の他
に、表面形状を測定すると同時に光強度を測定するとい
う方法が報告されている。これは表面形状と光強度との
相関をとり、試料微小部の光物性を解明するものであ
る。分光する必要がないため分光器がいらず、また積算
時間をほとんど必要としないため、探針を停止させるこ
となく測定が可能である。しかし、従来は観察する波長
範囲を一箇所のみで測定(例えば、可視領域の光をすべ
て一緒に測定)していただけであり、多数の異なる波長
範囲を表面形状測定と同時に測定することはされていな
い。同時に異なる波長範囲を測定することは、分光測定
と同様に試料表面の光物性を微小領域で解析するために
必要なことであるが、従来の装置では集光系が一つしか
なく不可能である。
[0005] In addition to the measurement of spectroscopy of the emitted light, there have been reported methods of measuring the surface intensity and simultaneously measuring the light intensity. This is to obtain the correlation between the surface shape and the light intensity, and to clarify the optical properties of the minute part of the sample. Since there is no need for spectroscopy, no spectroscope is required, and since almost no integration time is required, measurement can be performed without stopping the probe. However, conventionally, the wavelength range to be observed is measured only at one place (for example, all the light in the visible region is measured together), and many different wavelength ranges are measured simultaneously with the surface shape measurement. Absent. Simultaneous measurement of different wavelength ranges is necessary to analyze the optical properties of the sample surface in a very small area, as in spectroscopy. is there.

【0006】[0006]

【発明が解決しようとする課題】以上のように、SPM
は複雑な組成や構造を持つ試料ではその表面の形状を測
定するのみである。また、STMを使い、試料から放出
される光を分光することにより表面の物質同定ができる
可能性があるが、極微弱光のため積算時間が必要となり
位置分解能が低下するという欠点がある。表面形状と光
強度の同時測定では、集光系が一つしかないため一箇所
の波長範囲しか測定できないという欠点がある。本発明
の目的は、光を効率よく集光することにより積算時間を
短縮し位置分解能を上げ、原子レベルで物質同定できる
装置を提供することにある。また、多数の集光系を設け
表面形状を測定すると同時に多数の波長範囲の光強度を
測定するものである。
As described above, the SPM
Can only measure the shape of the surface of a sample having a complicated composition or structure. In addition, although there is a possibility that the surface substance can be identified by dispersing the light emitted from the sample using the STM, there is a disadvantage that the integration time is required due to the extremely weak light and the positional resolution is reduced. The simultaneous measurement of the surface shape and the light intensity has the disadvantage that only one wavelength range can be measured because there is only one condensing system. An object of the present invention is to provide an apparatus capable of condensing light efficiently, shortening the integration time, increasing the position resolution, and identifying a substance at an atomic level. Further, a large number of light collecting systems are provided to measure the surface shape and simultaneously measure the light intensity in a large number of wavelength ranges.

【0007】[0007]

【課題を解決するための手段】本発明は、表面の形状を
測定する走査型プローブ顕微鏡と、その探針先端直下の
試料より放出される光を集光する光学系と、その光を分
光する分光器と、光を検出するための光検出器とを備え
た走査型プローブ顕微鏡を用いた微小部光物性測定装置
である。
SUMMARY OF THE INVENTION The present invention provides a scanning probe microscope for measuring the shape of a surface, an optical system for condensing light emitted from a sample immediately below the tip of the probe, and a spectroscope for separating the light. This is a minute-part optical property measuring apparatus using a scanning probe microscope provided with a spectroscope and a photodetector for detecting light.

【0008】また本発明は、放出される光を効率よく集
光するための光学系として凹面鏡を用い、分光時の積算
時間を可能な限り短縮するSPMを用いた微小部光物性
測定装置である。
Further, the present invention is a minute-part optical property measuring apparatus which uses a concave mirror as an optical system for efficiently condensing emitted light and uses SPM which shortens the integration time at the time of spectroscopy as much as possible. .

【0009】また本発明は、放出される光を集光するた
めの光学系として光ファイバを多数用い、光強度測定の
際、各光ファイバの測定波長範囲をフィルタを使用して
変えることにより、表面形状を走査型プローブ顕微鏡で
測定すると同時に、波長範囲の異なった発光強度像を得
ることのできる走査型プローブ顕微鏡を用いた微小部光
物性測定装置である。
Further, the present invention uses a large number of optical fibers as an optical system for condensing emitted light, and at the time of measuring light intensity, changes the measurement wavelength range of each optical fiber by using a filter. This is a microscopic optical property measuring apparatus using a scanning probe microscope capable of measuring the surface shape with a scanning probe microscope and obtaining emission intensity images having different wavelength ranges at the same time.

【0010】従来のSPMで複雑な組成や構造を持つ試
料を測定する場合、表面形状を測定するのみであった。
これはSPMでは試料表面の物質が同定できないことに
由来している。近年STMからの光放出現象が報告され
ており、この光を検出,解析することにより試料表面の
物質同定の可能性がでてきた。放出される光は極微弱で
あるため、最高の感度を持つ光検出器を使っても10分
程度の積算時間が必要であり、その間探針を試料の測定
したい場所に停止させておかなければならない。したが
って、試料やSPM装置に熱ドリフトが存在しているた
め探針と試料との位置関係はたえず変化してしまい、積
算時間が長いほど位置分解能が低下するという欠点があ
る。従来は、集光系としてレンズやファイバを使うため
集光立体角が小さく(最大0.1sr 程度)、放出され
る光の1/60程度の光しか集めることができず積算時
間が長くなるのである。したがって、放出される光を可
能な限り集めることにより、積算時間を短縮し強いては
位置分解能の向上が期待できる。そこで放出される光を
可能な限り集め積算時間を短くし位置分解能を向上させ
るため、集光系に凹面鏡を用いた。凹面鏡により、従来
の集光系に比べほぼ1/60の積算時間で分光測定が可
能である。また、従来は表面形状と発光強度を同時に測
定するという際、ある波長範囲の光しか検出しておら
ず、いろいろな波長範囲の光強度を測定する場合、集光
系が一つしかないため、まず一つの波長範囲を測定しそ
の後波長範囲を変え測定しなければならない。これは測
定に時間がかかり、熱ドリフトの影響が大きくなる。そ
こで多数の光ファイバを設け、各光ファイバによる測定
波長範囲を変えておくことにより、表面形状と多数の波
長範囲の光強度が同時に測定できることになり、測定時
間の短縮や熱ドリフトの軽減が可能となる。
When a sample having a complicated composition or structure is measured by the conventional SPM, only the surface shape is measured.
This is because the substance on the sample surface cannot be identified by SPM. In recent years, the phenomenon of light emission from STM has been reported, and by detecting and analyzing this light, the possibility of identifying substances on the sample surface has emerged. Since the emitted light is extremely weak, even if a photodetector with the highest sensitivity is used, an integration time of about 10 minutes is required. During that time, the probe must be stopped at the place where you want to measure the sample. No. Therefore, since the sample and the SPM device have a thermal drift, the positional relationship between the probe and the sample is constantly changed, and the longer the integration time is, the lower the position resolution is. Conventionally, since a lens or a fiber is used as a condensing system, the solid angle of condensing is small (up to about 0.1 sr), and only about 1/60 of the emitted light can be collected, and the integration time becomes long. is there. Therefore, by collecting the emitted light as much as possible, the integration time can be shortened and the positional resolution can be expected to be improved. Therefore, in order to collect the emitted light as much as possible and shorten the integration time and improve the position resolution, a concave mirror was used in the light-collecting system. With the concave mirror, spectrometry can be performed with an integration time of about 1/60 of that of a conventional light collecting system. Also, conventionally, when simultaneously measuring the surface shape and the emission intensity, only light in a certain wavelength range is detected, and when measuring the light intensity in various wavelength ranges, there is only one condensing system, First, one wavelength range must be measured, and then the wavelength range must be changed and measured. This takes time to measure and the effect of thermal drift increases. Therefore, by providing a large number of optical fibers and changing the measurement wavelength range for each optical fiber, the surface shape and the light intensity in a large number of wavelength ranges can be measured simultaneously, reducing the measurement time and reducing thermal drift. Becomes

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1は本発明による走査型プローブ顕微鏡
を用いた発光現象の説明図である。ここではSTMとA
FMを用いた例を挙げた。(a)はSTMを用いた場合
(b)はAFMを用いた場合である。1はSTM探針、2
は導伝性試料、3は試料と探針の間に電圧を印加するた
めの電圧源、4はAFM探針、5は導伝性試料上の絶縁
膜である。探針先端の矢印は試料に注入される電子の軌
跡を表わし、波線の矢印は放出される光を表わしてい
る。発光させるには試料に電子を打ち込む必要があるた
め、STMでは表面に導伝性を持つ試料のみ測定可能で
ある。AFMは、内部に導伝性があるが表面に数十nm
程度の絶縁膜が存在するため、STMでは探針が接触し
て試料を破壊してしまう場合に使用される。またAFM
の探針は通常絶縁体物質で作られているが、本発明で使
用するAFM探針は導伝性物質で作られていなければな
らない。図に示すように試料に電子や正孔を注入するこ
とにより、光が放出される。
(Embodiment 1) FIG. 1 is an explanatory diagram of a light emission phenomenon using a scanning probe microscope according to the present invention. Here, STM and A
An example using FM has been described. (A) When STM is used
(b) is a case where AFM is used. 1 is an STM probe, 2
Is a conductive sample, 3 is a voltage source for applying a voltage between the sample and the probe, 4 is an AFM probe, and 5 is an insulating film on the conductive sample. The arrow at the tip of the probe represents the trajectory of the electrons injected into the sample, and the dashed arrow represents the emitted light. In order to emit light, electrons need to be injected into the sample. Therefore, STM can measure only a sample having conductivity on the surface. AFM has conductivity inside but tens of nm on the surface.
STM is used when the probe comes into contact with the sample and breaks the sample because of the existence of the insulating film of a certain degree. Also AFM
Are usually made of an insulating material, but the AFM tip used in the present invention must be made of a conductive material. As shown in the figure, light is emitted by injecting electrons or holes into the sample.

【0012】図2は本発明による従来の集光系(a)と凹
面鏡を用いた集光系(b)である。6はレンズ、7は光フ
ァイバ、8は凹面鏡、9は分光器、10は光検出器、1
1は探針駆動用の圧電素子である。(a)の波線の矢印
は光が放出される様子を表わし、(b)の実線の矢印は
集光される様子を表わしている。ここではSTMを用い
た例を示した。また、凹面鏡は試料の上部をすべて覆う
ようになっている。従来の集光系はレンズや光ファイバ
を使ったものであり、集光立体角はせいぜい最大0.1
sr であるため、放出される光の1/60程度を集光
しているにすぎない。凹面鏡を使うことにより集光立体
角はほぼ2πsrとなり、放出される光をほぼ全部集め
ることが可能となる。この方法で集光の妨げとなるのは
試料とSTM探針を駆動させるための圧電素子であるた
め、可能な限り試料と圧電素子を小さくする必要があ
る。また、凹面鏡で集めた光を直接分光器に導入してい
るが、凹面鏡で平行光にして最終的にレンズで集光して
もよい。どちらの集光方法を採用するかは、どのような
分光器と凹面鏡を組み合わせるかに依存する。
FIG. 2 shows a conventional light collecting system (a) according to the present invention and a light collecting system (b) using a concave mirror. 6 is a lens, 7 is an optical fiber, 8 is a concave mirror, 9 is a spectroscope, 10 is a photodetector, 1
Reference numeral 1 denotes a piezoelectric element for driving the probe. The dashed arrow in (a) indicates how light is emitted, and the solid arrow in (b) indicates how light is collected. Here, an example using STM is shown. The concave mirror covers the entire top of the sample. The conventional condensing system uses a lens or an optical fiber, and the solid angle of condensing is at most 0.1 at the maximum.
Since it is sr, it only focuses about 1/60 of the emitted light. By using a concave mirror, the solid angle of light collection becomes approximately 2πsr, and almost all emitted light can be collected. In this method, it is the piezoelectric element for driving the sample and the STM probe that hinders the light collection. Therefore, it is necessary to make the sample and the piezoelectric element as small as possible. Although the light collected by the concave mirror is directly introduced into the spectroscope, it may be converted into parallel light by the concave mirror and finally condensed by a lens. Which converging method is used depends on what spectroscope and concave mirror are combined.

【0013】図3は本発明による多数の異なる波長範囲
で光強度を測定する方法である。ここでは二つの波長範
囲を測定する例をあげた。12は光フィルタである。凹
面鏡が存在するため、レンズを集光系として使用するこ
とはできないので、2本の光ファイバを探針先端に近づ
け光を光ファイバ内に導く。光ファイバと光検出器の間
に光フィルタを設け、測定したい波長範囲の光だけを光
検出器に導入する。
FIG. 3 is a method for measuring light intensity in a number of different wavelength ranges according to the present invention. Here, an example of measuring two wavelength ranges has been described. Reference numeral 12 denotes an optical filter. Since there is a concave mirror, the lens cannot be used as a light condensing system. Therefore, two optical fibers are brought close to the tip of the probe to guide light into the optical fibers. An optical filter is provided between the optical fiber and the photodetector, and only light in a wavelength range to be measured is introduced into the photodetector.

【0014】図4は本発明によるSPMを用いた微小部
光物性測定装置の全体図である。
FIG. 4 is an overall view of an optical property measuring apparatus for minute parts using SPM according to the present invention.

【0015】13は試料が置かれる雰囲気槽、14は雰
囲気制御装置、15は凹面鏡により集光された光を雰囲
気槽から取り出すための集光された光に対して透明な物
質で作られた窓である。凹面鏡で集光し、同時に平行光
にして雰囲気槽の窓を通して雰囲気槽の外に光を取り出
し、レンズにより光を絞り分光器に入射させる。ここで
凹面鏡で集めた光をそのまま分光器に導入せず平行光に
するのは、窓を通して光を雰囲気槽の外に取り出さなけ
ればならないため、窓に光を平行に入射させないと光が
発散や反射を起こし、光強度が弱まるためである。ま
た、16は光ファイバを探針先端に近づけるため、雰囲
気槽の外から光ファイバを動かす駆動機構である。この
装置により、試料表面の形状測定と光の分光測定および
発光強度測定が同時にできるため、測定時間の短縮や熱
ドリフトの影響の低減を達成することができる。
Reference numeral 13 denotes an atmosphere tank in which a sample is placed, 14 denotes an atmosphere control device, and 15 denotes a window made of a substance transparent to the condensed light for taking out the light condensed by the concave mirror from the atmosphere tank. It is. The light is condensed by a concave mirror and converted into parallel light at the same time. The light is taken out of the atmosphere tank through the window of the atmosphere tank, and the light is made incident on the diaphragm spectroscope by the lens. Here, the light collected by the concave mirror is converted into parallel light without being directly introduced into the spectroscope because the light must be taken out of the atmosphere tank through the window, and if the light is not made incident parallel to the window, the light may diverge. This is because reflection occurs and the light intensity decreases. Reference numeral 16 denotes a drive mechanism for moving the optical fiber from outside the atmosphere tank in order to bring the optical fiber closer to the tip of the probe. With this device, the measurement of the shape of the sample surface, the spectroscopic measurement of light, and the measurement of emission intensity can be performed at the same time, so that the measurement time can be reduced and the influence of thermal drift can be reduced.

【0016】図5は発光の試料印加電圧依存性を行うた
め、試料印加電圧の制御の様子を示したものである。試
料印加電圧を変え、発光スペクトル測定や光強度測定と
いった発光測定をすることは試料の評価に必要なことで
ある。しかし熱ドリフトが存在するため、探針を停止し
ある電圧で積算時間を十分にかけて発光測定を行い、終
了後、次の電圧で発光測定をするという測定方法を採用
すると、探針の試料に対する位置が大きく変化する。し
たがって最初の発光測定結果と最後の発光測定結果は、
異なる試料位置での測定結果となってしまい、得られた
測定結果を比較することができない。そこで図5のよう
な試料印加電圧にし、これに同期させて光検出器などの
制御を行い、熱ドリフトの影響を平均化する。つまり一
度に発光測定をせず、短い積算時間で測定し、得られる
測定結果をあとで積算するのである。最初に発光測定を
する電圧に試料印加電圧V1を設定し、その電圧での発
光測定を行う。a秒間の発光測定後、そのデータを取り
込み次の電圧V2にして同様に発光測定をする。最後の
電圧V4での発光測定を終了したb秒後、最初の電圧V
1に戻り発光測定を繰り返す。このように何回か繰り返
した後、同じ電圧での発光測定結果を積算すればよい。
この方法により各試料印加電圧に対する発光測定結果に
は、熱ドリフトの影響が平均的に含まれているため、結
果の比較が可能となるのである。発光の解析に必要な積
算時間をx秒とし、一周期内での特定の電圧保持時間を
a秒とすれば、繰り返し回数はx/a回となる。
FIG. 5 shows how the voltage applied to the sample is controlled in order to make the light emission depend on the voltage applied to the sample. It is necessary to evaluate the sample by changing the voltage applied to the sample and performing emission measurement such as emission spectrum measurement and light intensity measurement. However, due to the thermal drift, if the probe is stopped, the luminescence measurement is performed with sufficient integration time at a certain voltage, and the luminescence measurement is performed at the next voltage after the end, the position of the probe with respect to the sample is reduced. Changes greatly. Therefore, the first luminescence measurement result and the last luminescence measurement result are
Measurement results are obtained at different sample positions, and the obtained measurement results cannot be compared. Therefore, the voltage applied to the sample is set as shown in FIG. 5, and the control of the photodetector and the like is performed in synchronization with the voltage, and the influence of the thermal drift is averaged. That is, the light emission is not measured at once, but is measured in a short integration time, and the obtained measurement results are integrated later. First, the sample application voltage V1 is set to the voltage at which the luminescence is measured, and the luminescence is measured at that voltage. After the light emission measurement for a second, the data is taken in and the next voltage V2 is set, and the light emission measurement is performed similarly. After b seconds from the end of the light emission measurement at the last voltage V4, the first voltage V4
Return to 1 and repeat the luminescence measurement. After repeating the process several times in this manner, the light emission measurement results at the same voltage may be integrated.
With this method, the light emission measurement results for each sample applied voltage include the effects of thermal drift on average, so that the results can be compared. If the integration time required for the light emission analysis is x seconds and the specific voltage holding time in one cycle is a second, the number of repetitions is x / a.

【0017】(実施例2)STMを使った方法について
述べてきたが、AFMを用いて発光測定を行う場合につ
いて述べる。17はAFMの探針である。実施例1で述
べたSTMを使う発光測定方法では、試料表面に10n
m以上の厚さの絶縁体膜が存在する場合、STMの探針
とその絶縁体膜が接触し、探針と絶縁体膜が破壊される
ため測定不可能になる。このような試料の場合、AFM
を使うことにより発光測定が可能となる。AFMはもと
もと探針と試料とを接触させて表面形状を測定し、ま
た、このとき接触の力をnN〜pNというごく弱い力に
制御するため、探針と試料の破壊が避けられる。このA
FMの技術を使い、絶縁体膜が表面に存在する試料の発
光測定を行う。導伝性物質で作られたAFM探針と試料
との間に印加する電圧を、STMで採用した電圧より高
めにする。具体的にはSTMではせいぜい最大2.30
V であるのに対し、AFMでは最大数百Vを印加す
る。この印加する電圧は、絶縁体膜の種類や厚さに依存
するため、最適な値を選ばなければならない。高い電圧
を印加することにより、絶縁体膜中を電子が通過できる
ようになり試料に電子が打ち込まれ、光が放出されるの
である。この光はSTMの場合と同様な装置で集光や検
出可能である。
(Embodiment 2) Although the method using the STM has been described, the case where the light emission is measured using the AFM will be described. Reference numeral 17 denotes an AFM probe. In the luminescence measurement method using the STM described in Example 1, 10 n
When an insulator film having a thickness of m or more exists, the STM probe and the insulator film come into contact with each other, and the probe and the insulator film are destroyed, so that measurement becomes impossible. For such a sample, AFM
The use of makes it possible to measure luminescence. The AFM originally measures the surface shape by bringing the probe and the sample into contact with each other, and at this time, controls the contact force to a very weak force of nN to pN, thereby avoiding destruction of the probe and the sample. This A
Using the FM technique, the luminescence of a sample having an insulating film on the surface is measured. The voltage applied between the AFM probe made of a conductive material and the sample is set higher than the voltage adopted in the STM. Specifically, STM is at most 2.30
In contrast, the AFM applies a maximum of several hundred volts. Since the applied voltage depends on the type and thickness of the insulator film, an optimum value must be selected. By applying a high voltage, electrons can pass through the insulator film, the electrons are injected into the sample, and light is emitted. This light can be collected and detected by the same device as in the case of the STM.

【0018】[0018]

【発明の効果】本発明によれば、SPMを用いた発光測
定装置により、位置分解能よく試料表面の物質同定が可
能となる。
According to the present invention, it is possible to identify a substance on a sample surface with high positional resolution by using a luminescence measuring apparatus using SPM.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の走査型プローブ顕微鏡を
用いた発光現象の説明図。
FIG. 1 is an explanatory diagram of a light emission phenomenon using a scanning probe microscope according to a first embodiment of the present invention.

【図2】本発明の第1実施例のSPMを用いた微小部光
物性測定装置の説明図。
FIG. 2 is an explanatory diagram of a light physical property measuring device using SPM according to the first embodiment of the present invention.

【図3】本発明の第1実施例の多数の異なる波長範囲で
光強度を測定するための装置を設けた微小部光物性測定
装置の説明図。。
FIG. 3 is an explanatory diagram of a minute portion optical property measuring apparatus provided with an apparatus for measuring light intensity in a number of different wavelength ranges according to the first embodiment of the present invention. .

【図4】本発明の第1実施例のSPMを用いた微小部光
物性測定装置の説明図。
FIG. 4 is an explanatory view of a minute portion optical property measuring apparatus using the SPM according to the first embodiment of the present invention.

【図5】本発明の第1実施例の走査型プローブ顕微鏡を
用いた微小部光物性測定装置の説明図。
FIG. 5 is an explanatory view of a light physical property measuring device using a scanning probe microscope according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…STM探針、2…導伝性試料、3…電圧源、4…導
伝性AFM探針、5…絶縁体膜、6…レンズ、7…光フ
ァイバ、8…凹面鏡、9…分光器、10…光検出器、1
1…圧電素子、12…光フィルタ、13…雰囲気槽、1
4…雰囲気制御装置、15…窓。
DESCRIPTION OF SYMBOLS 1 ... STM probe, 2 ... conductive sample, 3 ... voltage source, 4 ... conductive AFM probe, 5 ... insulator film, 6 ... lens, 7 ... optical fiber, 8 ... concave mirror, 9 ... spectroscope 10, photodetector, 1
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric element, 12 ... Optical filter, 13 ... Atmosphere tank, 1
4 ... Atmosphere control device, 15 ... Window.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光を検出する光検出器を有し、走査型プロ
ーブ顕微鏡の探針より電子を物質に注入し、その探針先
端直下の物質より放出される光を検出することにより、
原子レベルの位置分解能で表面の物質同定や電子状態の
解明ができることを特徴とする微小部光物性測定装置。
A light detector that detects light, injects electrons into a substance from a probe of a scanning probe microscope, and detects light emitted from a substance immediately below the tip of the probe.
A microscopic optical property measurement device characterized by the ability to identify the surface material and clarify the electronic state with atomic-level positional resolution.
【請求項2】請求項1において、分光を行うための分光
器を備えた光検出器と特定の範囲の光の波長の強度を測
定するため、ある範囲の波長の光のみを通すフィルタを
備えた光検出器を持ち、分光と光強度測定が同時にでき
る微小部光物性測定装置。
2. A photodetector according to claim 1, further comprising a photodetector provided with a spectroscope for performing spectroscopy, and a filter for passing only light of a certain range of wavelengths for measuring the intensity of light of a specific range. Optical property measuring device for micro-parts, which has a light detector and can perform both spectroscopy and light intensity measurement at the same time.
【請求項3】請求項1において、分光器に入射させる光
の集光系に凹面鏡を使い、集光立体角を可能な限り大き
くする微小部光物性測定装置。
3. An optical property measuring apparatus according to claim 1, wherein a concave mirror is used as a condensing system for the light incident on the spectroscope, and the converging solid angle is made as large as possible.
【請求項4】請求項1において、熱ドリフトの影響を平
均化し、測定結果の相互比較を可能にするため、物質に
印加する電圧と光検出のタイミングを同期させる微小部
光物性測定装置。
4. The optical property measuring apparatus for minute parts according to claim 1, wherein the voltage applied to the substance and the timing of light detection are synchronized in order to average the effects of thermal drift and enable comparison of measurement results.
JP16555896A 1996-06-26 1996-06-26 Apparatus for measuring light physical-property of minute part Pending JPH1010139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16555896A JPH1010139A (en) 1996-06-26 1996-06-26 Apparatus for measuring light physical-property of minute part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16555896A JPH1010139A (en) 1996-06-26 1996-06-26 Apparatus for measuring light physical-property of minute part

Publications (1)

Publication Number Publication Date
JPH1010139A true JPH1010139A (en) 1998-01-16

Family

ID=15814650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16555896A Pending JPH1010139A (en) 1996-06-26 1996-06-26 Apparatus for measuring light physical-property of minute part

Country Status (1)

Country Link
JP (1) JPH1010139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311794A (en) * 1997-05-09 1998-11-24 Nippon Telegr & Teleph Corp <Ntt> Scanning type luminous microscope
WO2001027588A1 (en) * 1999-10-12 2001-04-19 Japan Science And Technology Corporation Scanning tunneling microscope light emitting/condensing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311794A (en) * 1997-05-09 1998-11-24 Nippon Telegr & Teleph Corp <Ntt> Scanning type luminous microscope
WO2001027588A1 (en) * 1999-10-12 2001-04-19 Japan Science And Technology Corporation Scanning tunneling microscope light emitting/condensing device
JP2001108598A (en) * 1999-10-12 2001-04-20 Japan Science & Technology Corp Scanning tunneling microscope emission converging apparatus
EP1221606A1 (en) * 1999-10-12 2002-07-10 Japan Science and Technology Corporation Scanning tunneling microscope light emitting/condensing device
EP1221606A4 (en) * 1999-10-12 2003-04-09 Japan Science & Tech Corp Scanning tunneling microscope light emitting/condensing device
US6746144B1 (en) 1999-10-12 2004-06-08 Japan Science And Technology Corporation Scanning tunneling microscope light emitting/condensing device

Similar Documents

Publication Publication Date Title
Blum et al. Understanding tip‐enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study
US6466309B1 (en) Method and apparatus for chemical and topographical microanalysis
US6265711B1 (en) Scanning probe microscope assembly and method for making spectrophotometric near-field optical and scanning measurements
JP2823970B2 (en) Near-field scanning optical microscope
WO2002068919A1 (en) Apertureless near-field scanning raman microscopy using reflection scattering geometry
JP6998469B2 (en) Electron beam device
US4259574A (en) Microanalysis by pulse laser emission spectroscopy
JPH073397B2 (en) Method and scanning tunneling microscope for investigating the dynamic process of a sample
US11867620B2 (en) Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption
JP2012524373A (en) Optical probing in electron microscopy
US5150043A (en) Apparatus and method for non-contact surface voltage probing by scanning photoelectron emission
JP2000180143A (en) Method and apparatus for measuring film thickness
JPH1010139A (en) Apparatus for measuring light physical-property of minute part
US5278406A (en) Apparatus for detecting information contained in electrons emitted from sample surface
Yayon et al. Excitonic emission in the presence of a two-dimensional electron gas: A microscopic view
JP3123514B2 (en) Semiconductor evaluation apparatus and evaluation method
JP2001144155A (en) Semiconductor analysis device and analysis method
JP2850856B2 (en) Interface analysis method
JP2012088283A (en) Probe type light measuring device, and light measuring method
US6198097B1 (en) Photocharge microscope
JP5262937B2 (en) Scanning probe photoelectron yield spectroscopy microscopy and scanning probe photoelectron yield spectroscopy microscope
US7148478B2 (en) Electrical measurements in samples
JPH1151945A (en) Interatomic force microscope with spectral analysis mechanism
JPH06317600A (en) Light emission scanning tunneling microscope and microscopic measurement
JPH11145233A (en) Evaluation of semiconductor element