JPH0998086A - Gas cell type atomic oscillator - Google Patents

Gas cell type atomic oscillator

Info

Publication number
JPH0998086A
JPH0998086A JP27672995A JP27672995A JPH0998086A JP H0998086 A JPH0998086 A JP H0998086A JP 27672995 A JP27672995 A JP 27672995A JP 27672995 A JP27672995 A JP 27672995A JP H0998086 A JPH0998086 A JP H0998086A
Authority
JP
Japan
Prior art keywords
frequency
gas cell
atmospheric pressure
microwave
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27672995A
Other languages
Japanese (ja)
Other versions
JP3545113B2 (en
Inventor
Yuji Ouchi
裕司 大内
Hirohiko Suga
弘彦 菅
Takayuki Imamura
隆之 今村
Masao Uehara
正朗 植原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP27672995A priority Critical patent/JP3545113B2/en
Publication of JPH0998086A publication Critical patent/JPH0998086A/en
Application granted granted Critical
Publication of JP3545113B2 publication Critical patent/JP3545113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a gas cell type atomic oscillator where degradation in stability of the frequency due to the variance of the air pressure is suppressed. SOLUTION: The frequency of a standard frequency signal generated in a frequency signal generation part 3 by utilizing the light and microwave double resonance in a double resonance part 2 of the microwave, which is generated in a microwave generation circuit 4 based on the standard frequency signal generated by the frequency signal generation part 3, and exciting light from an exciting light source part 1 is stabilized. At this time, air pressure is measured by an air pressure measurer 6, and a correction signal corresponding to the measured value is sent from a correction signal generation circuit 7 to a controller 8, and the controller 8 controls at least one of a current supply device 5 and the microwave generation circuit 4 based on the correction signal to suppress the variance of the frequency due to the variance of air pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、小型で構造が簡単
ではあるが高い周波数安定度が得られるガスセル型原子
発振器に係り、特に、大気圧の変動による共鳴周波数の
変動を抑えて、周波数安定度を更に高めたガスセル型原
子発振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas cell type atomic oscillator which is compact and has a simple structure, but can obtain high frequency stability, and more particularly, it suppresses fluctuations in resonance frequency due to fluctuations in atmospheric pressure to stabilize frequency. The present invention relates to a gas cell type atomic oscillator having a higher degree.

【0002】[0002]

【従来の技術】ガスセル型原子発振器は、原子固有の共
鳴周波数を周波数基準として発振周波数を安定化させる
極めて安定度の高い発振器である。現在実用化されてい
るものには、例えば、ガスセルに封入する原子としてル
ビジウムを用いたガスセル型ルビジウム原子発振器があ
り、周波数の2次標準器として、通信、放送、航法、G
PS衛星等多岐にわたる分野に利用されている。
2. Description of the Related Art A gas cell type atomic oscillator is an oscillator having a very high stability which stabilizes an oscillation frequency with a resonance frequency peculiar to an atom as a frequency reference. Currently in practical use is, for example, a gas cell type rubidium atomic oscillator that uses rubidium as atoms to be enclosed in a gas cell, and is used as a secondary frequency standard for communication, broadcasting, navigation, G
It is used in various fields such as PS satellites.

【0003】図9は従来のガスセル型原子発振器の基本
構成図である。図9を参照して従来技術を説明する。従
来のガスセル型原子発振器は、励起光源部1、二重共鳴
部2、電流供給装置5、信号処理制御装置31、電圧制
御水晶発振器32及び周波数合成・逓倍回路4で構成さ
れている。励起光源部1は励起光を出力する。
FIG. 9 is a basic configuration diagram of a conventional gas cell type atomic oscillator. A conventional technique will be described with reference to FIG. The conventional gas cell type atomic oscillator includes an excitation light source unit 1, a double resonance unit 2, a current supply device 5, a signal processing control device 31, a voltage control crystal oscillator 32, and a frequency synthesis / multiplication circuit 4. The excitation light source unit 1 outputs excitation light.

【0004】二重共鳴部2については、図10に示す構
成図を参照し説明する。二重共鳴部2は、ガスセル21
を内蔵したマイクロ波空洞共振器22と、その外側にガ
スセル21の全長にわたり安定な直流平行磁場を発生す
る静磁場コイル27と、加熱・恒温化する恒温ヒータ2
6と、外部磁場変動を除去する複数の磁気シールド槽2
5とから構成されている。二重共鳴部2の中央に位置す
るマイクロ波空洞共振器22は、アルカリ金属原子を封
入したガスセル21と、励起光を採り入れる励起光入力
窓28と、励起光入力窓28と対極する位置にガスセル
21を透過した光を受光しその光強度を電気信号強度に
変換して出力する光電変換素子23と、マイクロ波励振
用アンテナ24とを備えている。なお、通常ガスセル2
1内には二重共鳴の共鳴スペクトル幅を狭くするため、
緩衝気体として不活性ガスをアルカリ金属原子と共に封
入する。
The double resonance section 2 will be described with reference to the configuration diagram shown in FIG. The double resonance part 2 includes a gas cell 21.
A microwave cavity resonator 22 having a built-in capacitor, a static magnetic field coil 27 for generating a stable DC parallel magnetic field over the entire length of the gas cell 21, and a constant temperature heater 2 for heating and constant temperature outside thereof.
6 and a plurality of magnetic shield tanks 2 for removing fluctuations in the external magnetic field
And 5. The microwave cavity resonator 22 located at the center of the double resonance part 2 includes a gas cell 21 in which an alkali metal atom is enclosed, an excitation light input window 28 for introducing excitation light, and a gas cell at a position opposite to the excitation light input window 28. It is provided with a photoelectric conversion element 23 that receives the light transmitted through 21 and converts the light intensity into an electric signal intensity and outputs it, and a microwave excitation antenna 24. In addition, the normal gas cell 2
In order to narrow the resonance spectrum width of double resonance within 1,
An inert gas is filled as a buffer gas together with the alkali metal atoms.

【0005】電流供給装置5は二重共鳴部2のコイル2
7に一定の電流を供給する。その電流値は電流供給装置
5内部で設定する。信号処理制御装置31は二重共鳴部
2からの信号を受けて、その信号に応じた制御信号を出
力する。電圧制御水晶発振器32は標準周波数信号(周
波数f1 )を出力する。周波数合成・逓倍回路4は前記
標準周波数信号を基に周波数の合成、逓倍を行って、マ
イクロ波を出力する。該マイクロ波の周波数は周波数合
成・逓倍回路4内のスイッチの設定で決まる。
The current supply device 5 is a coil 2 of the double resonance part 2.
Supply a constant current to 7. The current value is set inside the current supply device 5. The signal processing control device 31 receives a signal from the double resonance unit 2 and outputs a control signal corresponding to the signal. The voltage controlled crystal oscillator 32 outputs a standard frequency signal (frequency f1). The frequency synthesis / multiplication circuit 4 synthesizes and multiplies frequencies based on the standard frequency signal, and outputs a microwave. The frequency of the microwave is determined by the setting of the switch in the frequency synthesis / multiplication circuit 4.

【0006】以上のように構成された従来のガスセル型
原子発振器の動作を説明する。電圧制御水晶発振器32
の出力f1 を周波数合成・逓倍回路4にて周波数の合
成、逓倍をして、ガスセル21に封入されている原子の
共鳴周波数f2 に近いマイクロ波周波数N×f1 を発生
させる。このマイクロ波周波数にて二重共鳴部2を励振
し、かつ励起光源部1から二重共鳴部2へ励起光を照射
して、後述する二重共鳴現象を起こさせる。二重共鳴部
2からは、加えるマイクロ波周波数と共鳴周波数との周
波数差(N×f1 −f2 )の情報を含んだ信号が出力さ
れる。信号処理制御装置31にて前記信号から周波数情
報を抽出し、周波数差がゼロになるように電圧制御水晶
発振器32の発振周波数を制御する。この電圧制御水晶
発振器32の出力周波数f1 を標準周波数出力として取
り出し、利用する。
The operation of the conventional gas cell type atomic oscillator configured as described above will be described. Voltage controlled crystal oscillator 32
The output f1 of the above is synthesized and multiplied by the frequency synthesis / multiplication circuit 4 to generate a microwave frequency N × f1 close to the resonance frequency f2 of the atoms enclosed in the gas cell 21. The double resonance section 2 is excited at this microwave frequency, and the excitation light source section 1 irradiates the double resonance section 2 with excitation light to cause a double resonance phenomenon described later. The double resonance section 2 outputs a signal containing information on the frequency difference (N.times.f1 -f2) between the applied microwave frequency and the resonance frequency. The signal processing controller 31 extracts frequency information from the signal and controls the oscillation frequency of the voltage controlled crystal oscillator 32 so that the frequency difference becomes zero. The output frequency f1 of the voltage controlled crystal oscillator 32 is taken out as a standard frequency output and used.

【0007】ここで、光・マイクロ波二重共鳴現象につ
いて、図11に示すルビジウム原子のエネルギー準位の
3準位原子系モデルを例にとり説明する。図11におい
て、熱平衡状態におけるルビジウム原子は、基底準位
(5S1/2)の2つの超微細準位(F=1,F=2)に
等分に分布している〔図11(a)〕。このとき、ある
一定波長の共鳴光(励起光)をルビジウム原子に照射す
ると、基底準位の高い超微細準位(5S1/2 ,F=2)
にあるルビジウム原子は変化を受けないが、低い超微細
準位(5S1/2 ,F=1)にあるルビジウム原子は励起
光の光エネルギーを吸収して、励起準位(5P3/2 )に
光ポンピングされる。励起準位(5P3/2 )にポンピン
グされたルビジウム原子は、エネルギーを自然放出し
て、基底準位(5S1/2 )の2つの超微細準位(F=
1,F=2)に等確率で落ちる。励起光を照射し続ける
ことによりこの過程が繰り返され、ルビジウム原子のほ
とんどが基底準位の高い超微細準位(5S1/2 ,F=
2)に集められ、反転分布の状態となる〔図11
(b)〕。この状態でルビジウム原子固有の共鳴周波数
に近い高周波磁場(マイクロ波)を加えると、共振振動
を受けてエネルギーを放出し、基底準位の低い超微細準
位(5S1/2 ,F=1)に誘導放出される〔図11
(c)〕。低い準位の原子は励起光により、再度励起準
位へと光ポンピングされるが、マイクロ波による高周波
磁場が共鳴周波数からずれると、誘導放出される原子の
数が減り、その結果として低い準位(5S1/2 ,F=
1)の原子の数は減り、その結果光ポンピングされる原
子の数が減り、励起光の吸収量が減る。したがって、ガ
スセルを透過した光(透過光)レベルを光電変換素子で
観測し、透過光レベルが常に最小(すなわち、励起光の
吸収が最大)となるようにマイクロ波周波数を制御する
ことにより、原子固有の共鳴周波数が持つ極めて安定な
周波数が移乗した標準周波数を得ることができる。
Here, the optical / microwave double resonance phenomenon will be described by taking the three-level atomic system model of the energy level of the rubidium atom shown in FIG. 11 as an example. In FIG. 11, the rubidium atoms in the thermal equilibrium state are equally distributed in two hyperfine levels (F = 1, F = 2) of the ground level (5S1 / 2) [FIG. 11 (a)]. . At this time, when the rubidium atom is irradiated with resonance light (excitation light) having a certain constant wavelength, the hyperfine level with a high ground level (5S1 / 2, F = 2)
The rubidium atom at is not changed, but the rubidium atom at the lower hyperfine level (5S1 / 2, F = 1) absorbs the optical energy of the excitation light and emits light at the excitation level (5P3 / 2). Pumped. The rubidium atom pumped to the excitation level (5P3 / 2) spontaneously emits energy, and two hyperfine levels (F = F = S) of the ground level (5S1 / 2) are emitted.
1, F = 2) with equal probability. This process is repeated by continuing to irradiate excitation light, and most of rubidium atoms have hyperfine levels with high ground levels (5S1 / 2, F =
2), and the state of population inversion appears [Fig. 11
(B)]. When a high-frequency magnetic field (microwave) close to the resonance frequency of the rubidium atom is applied in this state, energy is emitted upon receipt of resonance vibration, and the hyperfine level (5S1 / 2, F = 1) with a low ground level is released. Stimulated emission [Fig. 11
(C)]. The low-level atoms are optically pumped to the excitation levels again by the excitation light, but when the microwave high-frequency magnetic field deviates from the resonance frequency, the number of stimulated emission atoms decreases, and as a result, the low-level atoms decrease. (5S1 / 2, F =
The number of atoms in 1) is reduced, and as a result, the number of atoms optically pumped is reduced, and the absorption amount of excitation light is reduced. Therefore, by observing the level of light transmitted through the gas cell (transmitted light) with a photoelectric conversion element and controlling the microwave frequency so that the level of transmitted light is always minimum (that is, absorption of excitation light is maximum), It is possible to obtain a standard frequency obtained by transferring an extremely stable frequency having a natural resonance frequency.

【0008】近年、半導体技術の進歩により半導体レー
ザ(Laser Diode:以下、LDという。)が実用化さ
れ、ガスセル型原子発振器の励起光源として使用される
ようになってきた。LDを使用する以前は、従来の励起
光源は、キャリアガスと共に原子を封入したランプセル
を高周波励振して放電させ、所望波長を含む幅広いスペ
クトラムを持った放電光を励起光としたランプ励起方式
を用いていた。LDは、その動作(注入)電流、動作温
度を制御することによって発振波長を精密に制御するこ
とができ、コヒーレントな単一スペクトラムである励起
光が得られるため、高効率な原子のポンピングが可能と
なり、周波数安定度がランプ励起方式よりも一桁向上し
た。
In recent years, a semiconductor laser (Laser Diode: hereinafter referred to as LD) has been put into practical use due to the progress of semiconductor technology, and has come to be used as an excitation light source of a gas cell type atomic oscillator. Before using the LD, a conventional excitation light source uses a lamp excitation method in which a lamp cell in which atoms are enclosed together with a carrier gas is excited by high frequency to discharge, and discharge light having a wide spectrum including a desired wavelength is used as excitation light. Was there. The LD can precisely control the oscillation wavelength by controlling the operating (injection) current and operating temperature, and can obtain highly coherent excitation light with a single spectrum, which enables highly efficient atom pumping. The frequency stability was improved by an order of magnitude compared to the lamp excitation method.

【0009】そこで、ランプ励起方式においては、励起
光源側の要因が大きいため、加熱・恒温化する恒温ヒー
タ26を用いて温度を一定に制御しておけばその総合性
能に問題とならなかった、ガスセル21の内圧変動によ
って原子の共鳴周波数が変化する、圧力シフトの影響が
顕在化してきた。温度変動に起因するガスセル21の内
圧変動に対しては、ガスセル21を包含するマイクロ波
空洞共振器22の温度制御を更に高精密・高安定化する
ことと、金属ガスと共に封入する複数の緩衝気体の種類
とその圧力を加減すること等を行って、共鳴周波数の安
定化を図っている。ここまで、が従来の技術である。
Therefore, in the lamp excitation system, since the factors on the excitation light source side are large, if the temperature is controlled to be constant by using the constant temperature heater 26 for heating and constant temperature, there is no problem in the overall performance. The influence of pressure shift, in which the resonance frequency of atoms changes due to fluctuations in the internal pressure of the gas cell 21, has become apparent. For the internal pressure fluctuation of the gas cell 21 caused by the temperature fluctuation, further precise and highly stable temperature control of the microwave cavity resonator 22 including the gas cell 21 and a plurality of buffer gases enclosed together with the metal gas. The resonance frequency is stabilized by adjusting the type and pressure of each type. Up to this point is the conventional technique.

【0010】[0010]

【発明が解決しようとする課題】ところが、温度制御を
更に高精密・高安定化してもなお共鳴周波数の変動があ
ることが判明してきた。発明者等は、圧力シフトの要因
の検討の中で、ガスセル型原子発振器が置かれた部屋の
温度、湿度及び気圧の変動と共鳴周波数の変動との関係
を調査した。調査は、発振器の出力周波数データ並びに
測定室内の気温、気圧及び湿度の周囲環境データの経時
変化を記録し、周波数データと周囲環境要素との重回帰
分析を行うこととし、それぞれの相関係数を求めて評価
することとした。
However, it has been found that the resonance frequency still fluctuates even if the temperature control is made more precise and highly stable. The inventors investigated the relationship between the fluctuation of the temperature, the humidity and the atmospheric pressure of the room in which the gas cell type atomic oscillator is placed and the fluctuation of the resonance frequency in the examination of the factors of the pressure shift. In the survey, we recorded the output frequency data of the oscillator and the ambient temperature data of ambient temperature, atmospheric pressure and humidity in the measurement room, and performed a multiple regression analysis of the frequency data and ambient environmental factors. It was decided to seek and evaluate.

【0011】データは読み取り誤差を無くすためにパー
ソナルコンピュータによる自動測定とし、時間間隔10
0秒ごとにデータを記録し、約1ヶ月半の長期測定を行
った。また、発振器の出力周波数の変動は、ある基準値
との位相比較法で測定を行ったが、周波数の基準には水
素メーザ原子発振器を用いた。水素メーザ原子発振器の
周波数安定度性能は、2標本分散を時間領域における周
波数安定度尺度と定義したアラン分散の尺度にて、τ≦
(10の4乗)sec では、σy (τ)=3×(10のマ
イナス13乗)/τ+4×(10のマイナス14乗)/
√(τ)+8.5×(10のマイナス16乗)、また
(10の4乗)<τ≦(10の5乗)secでは、σy
(τ)≦3.5×(10のマイナス15乗)であり、周
波数基準として十分な性能を有している。
The data is automatically measured by a personal computer in order to eliminate reading errors, and the time interval is 10
Data was recorded every 0 seconds and long-term measurement was performed for about one and a half months. The fluctuation of the output frequency of the oscillator was measured by the phase comparison method with a certain reference value, and the hydrogen maser atomic oscillator was used as the frequency reference. The frequency stability performance of the hydrogen maser atomic oscillator is given by τ ≤ on the scale of Alan dispersion in which the two-sample dispersion is defined as the frequency stability scale in the time domain.
At (10 4) sec, σ y (τ) = 3 × (10 -13) / τ + 4 × (10 -14) /
√ (τ) + 8.5 × (10 to the 16th power), or (10 to the 4th power) <τ ≦ (10 to the 5th power) sec, σy
(Τ) ≦ 3.5 × (10 −15), which is sufficient performance as a frequency reference.

【0012】重回帰分析の結果は、出力周波数と気圧と
の相関係数がほぼ0.8と大きく、湿度との相関係数は
0.2以下、温度との相関は0.3程度であり、前述の
周波数安定度劣化が気圧の影響による可能性が高まっ
た。気圧の変化量に対する共鳴周波数変化量は、+1mH
z/hPa 程度以下であった。そこで、出力周波数と気圧と
の関係に絞って更に調査をすることとし、簡易真空槽を
用いて、槽内に二重共鳴部を配置し、ロータリーポンプ
にて槽内を10hPa ずつ減圧したときの気圧データとガ
スセル型原子発振器の出力周波数データを記録し相関を
調べたところ、その変化率及び方向性が長期データと一
致した。
As a result of the multiple regression analysis, the correlation coefficient between the output frequency and the atmospheric pressure is as large as about 0.8, the correlation coefficient with the humidity is 0.2 or less, and the correlation with the temperature is about 0.3. , The possibility of the above-mentioned frequency stability deterioration due to the influence of atmospheric pressure has increased. Resonance frequency change for atmospheric pressure change is +1 mH
It was less than z / hPa. Therefore, we decided to investigate further by focusing on the relationship between the output frequency and atmospheric pressure, using a simple vacuum tank, arranging the double resonance part in the tank, and depressurizing the tank by 10 hPa by the rotary pump. When the atmospheric pressure data and the output frequency data of the gas cell type atomic oscillator were recorded and the correlation was investigated, the rate of change and the directionality were in agreement with the long-term data.

【0013】次に気圧変動が二重共鳴部のどの場所に影
響を与えるかについて考察すると、機械的強度が弱い箇
所はガスセルが最も有力であり、ガスセルが気圧による
影響で歪が生じたときのセル容積の変化量及びそれから
生じる周波数変化量をシミュレートした結果、前述の測
定結果による変化率と一致した。特に両端面が平板な円
筒形状である場合に、平板の中央部にたわみが生じ、平
板と円筒との接続部に歪が生じることがわかった。
Next, considering where in the double resonance portion the atmospheric pressure fluctuation affects, the gas cell is most effective at a place where the mechanical strength is weak, and when the gas cell is distorted by the influence of the atmospheric pressure. As a result of simulating the amount of change in cell volume and the amount of change in frequency resulting therefrom, the rate of change was in agreement with the above-mentioned measurement result. In particular, it was found that when both end surfaces were flat and cylindrical, the center of the flat plate was bent and the joint between the flat plate and the cylinder was distorted.

【0014】以上のことより、気圧の変動により二重共
鳴部内のガスセルに歪が生じ、ガスセルの内圧力が変化
し、緩衝気体の圧力シフトが生じることから、結果とし
て共鳴周波数が変化することが確認された。この発明の
目的は、前述の問題点を解決し、気圧の変動による周波
数安定度の劣化を抑えたガスセル型原子発振器を提供す
ることである。
From the above, the gas cell in the double resonance portion is distorted due to the change of atmospheric pressure, the internal pressure of the gas cell is changed, and the pressure shift of the buffer gas is generated, so that the resonance frequency may be changed. confirmed. An object of the present invention is to solve the above-mentioned problems and to provide a gas cell type atomic oscillator in which deterioration of frequency stability due to fluctuation of atmospheric pressure is suppressed.

【0015】[0015]

【課題を解決するための手段】気圧変動によりガスセル
の内部圧力が変動し、その結果、共鳴周波数が変動する
が、その変動量については実験的に確認できる。そこ
で、本発明のガスセル型原子発振器は、外気の圧力(ガ
スセルの外側の気圧)を測定する気圧測定器を備えるこ
ととし、該気圧測定器の測定値に基づいて共鳴周波数変
動量を補正することとした。
Means for Solving the Problems The internal pressure of the gas cell fluctuates due to atmospheric pressure fluctuation, and as a result, the resonance frequency fluctuates, but the fluctuation amount can be confirmed experimentally. Therefore, the gas cell type atomic oscillator of the present invention is provided with an atmospheric pressure measuring device that measures the pressure of the outside air (atmospheric pressure outside the gas cell), and corrects the resonance frequency fluctuation amount based on the measurement value of the atmospheric pressure measuring device. And

【0016】すなわち、アルカリ金属原子を封入したガ
スセル及び該ガスセルに磁場を発生させるコイルを内蔵
した二重共鳴部と、前記コイルのための電流供給装置
と、前記アルカリ金属原子の励起光を発生する励起光源
部と、前記二重共鳴部からの出力信号を受け該出力信号
に応じた周波数信号を発生する周波数信号発生部と、前
記周波数信号を受けて前記アルカリ金属原子の共鳴マイ
クロ波を発生するマイクロ波発生回路とを備えたガスセ
ル型原子発振器において、前記励起光源部は半導体レー
ザでなり、更に、前記ガスセルの周りの気圧を測定し、
その気圧値に応じた信号を出力する気圧測定器と、該気
圧測定器から出力される信号を受けて、測定された気圧
値に対応する補正信号を出力する補正信号発生回路と、
該補正信号を受けて前記コイルの電流及び前記共鳴マイ
クロ波の周波数のうち少なくとも一方を制御する制御装
置とを備えている。そして、前記電流供給装置及びマイ
クロ波発生回路の少なくとも一方は前記制御装置で制御
可能になっている。
That is, a double resonance part containing a gas cell containing alkali metal atoms and a coil for generating a magnetic field in the gas cell, a current supply device for the coil, and generating excitation light for the alkali metal atoms. An excitation light source unit, a frequency signal generation unit that receives an output signal from the double resonance unit and generates a frequency signal corresponding to the output signal, and a resonance microwave of the alkali metal atom that receives the frequency signal. In a gas cell type atomic oscillator having a microwave generation circuit, the excitation light source unit is a semiconductor laser, further, measuring the atmospheric pressure around the gas cell,
An atmospheric pressure measuring device which outputs a signal corresponding to the atmospheric pressure value, a correction signal generating circuit which receives a signal output from the atmospheric pressure measuring device and outputs a correction signal corresponding to the measured atmospheric pressure value,
A control device that receives the correction signal and controls at least one of the current of the coil and the frequency of the resonant microwave. At least one of the current supply device and the microwave generation circuit can be controlled by the control device.

【0017】[0017]

【発明の実施の形態】本発明の第一の実施の形態を図2
に示す。第一の実施の形態のガスセル型原子発振器は、
アルカリ金属原子を封入したガスセル21及び該ガスセ
ル21に磁場を発生させるコイル27を内蔵した二重共
鳴部2と、前記コイル27のための電流供給装置5と、
半導体レーザでなり前記アルカリ金属原子の励起光を発
生する励起光源部1と、前記二重共鳴部2からの出力信
号を受け該出力信号に応じた周波数信号を発生する周波
数信号発生部3(信号処理制御装置31+電圧制御水晶
発振器32)と、前記周波数信号を受けて前記アルカリ
金属原子の共鳴マイクロ波を発生するマイクロ波発生回
路(周波数合成・逓倍回路)4と、前記ガスセルの周り
の気圧を測定し、その気圧値に応じた信号を出力する気
圧測定器6と、該気圧測定器6から出力される信号を受
けて、測定された気圧値に対応する補正信号を出力する
補正信号発生回路7と、該補正信号を受けて前記共鳴マ
イクロ波の周波数を制御する制御装置8とを備え、か
つ、前記マイクロ波発生回路(周波数合成・逓倍回路)
4内の逓倍の倍率が外部からの信号によって変えられる
ようになっている。マイクロ波発生回路(周波数合成・
逓倍回路)4は、例えば図3のような構成になってお
り、従来は図中の可変分周器41,42のM1 ,M2 を
ディップスイッチ等で所定の値に設定して用いていた
が、本発明の第一の実施の形態においては、前記M1 ,
M2 を前記ディップスイッチのON,OFFでつくる
“1”,“0”信号の代わりに制御装置8のCPUから
の“1”,“0”信号によって設定している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a first embodiment of the present invention.
Shown in The gas cell type atomic oscillator of the first embodiment is
A gas cell 21 in which alkali metal atoms are enclosed, a double resonance part 2 having a coil 27 for generating a magnetic field in the gas cell 21, and a current supply device 5 for the coil 27,
A pumping light source unit 1 made of a semiconductor laser for generating pumping light of the alkali metal atom, and a frequency signal generating unit 3 for receiving an output signal from the double resonance unit 2 and generating a frequency signal according to the output signal (signal A process control device 31 + a voltage controlled crystal oscillator 32), a microwave generation circuit (frequency synthesis / multiplication circuit) 4 for generating the resonance microwave of the alkali metal atom in response to the frequency signal, and an atmospheric pressure around the gas cell. An atmospheric pressure measuring device 6 that measures and outputs a signal corresponding to the atmospheric pressure value, and a correction signal generation circuit that receives a signal output from the atmospheric pressure measuring device 6 and outputs a correction signal corresponding to the measured atmospheric pressure value 7 and a control device 8 for controlling the frequency of the resonance microwave by receiving the correction signal, and the microwave generation circuit (frequency synthesis / multiplication circuit)
The multiplication factor in 4 can be changed by a signal from the outside. Microwave generator (frequency synthesis,
The multiplier circuit 4 has, for example, a configuration as shown in FIG. 3, and conventionally, M1 and M2 of the variable frequency dividers 41 and 42 in the figure are used after being set to a predetermined value by a dip switch or the like. In the first embodiment of the present invention, the M1,
M2 is set by "1" and "0" signals from the CPU of the controller 8 instead of the "1" and "0" signals generated by turning on and off the dip switch.

【0018】第一の実施の形態のガスセル型原子発振器
では、前記アルカリ金属原子に前記共鳴光と共鳴マイク
ロ波とを照射して、光・マイクロ波二重共鳴を起こさ
せ、その際に生じる共鳴周波数に基づいて標準周波数信
号の周波数を制御して出力するところは従来と同じであ
るが、気圧測定器で気圧を測定し、その測定値に対応す
る補正信号を補正信号発生回路から制御装置へ送り、該
制御装置は前記補正信号に基づいてマイクロ波発生回路
を制御して周波数の制御に気圧の変動が影響を及ぼさな
いようにしている。マイクロ波発生回路は、制御装置の
制御を受けて、標準周波数信号(周波数f1 )に基づく
マイクロ波周波数n1 ・f1 に、補正信号に基づく周波
数Δfの補正をしたマイクロ波(周波数n2 ・f1 )を
二重共鳴部に送る。気圧の測定値と周波数Δfとの関係
はあらかじめ求められており、n1 ・f1 をΔfだけ補
正するためのn2 の値もあらかじめ求められている。二
重共鳴部のガスセルは外部の気圧の変化により、ガスセ
ルが変形し、その内容積が変化して、ガスセル内部の気
圧が変化し、その結果共鳴周波数が変化しているが、そ
の共鳴周波数の変化分は前記周波数Δfに相当するか
ら、共鳴周波数がn1 ・f1 からn2 ・f1 に変化して
いるにもかかわらず、標準周波数信号は周波数f1 のま
まで安定化される。すなわち、気圧の変動が標準周波数
信号の周波数f1 に影響を及ぼさない。
In the gas cell type atomic oscillator according to the first embodiment, the alkali metal atoms are irradiated with the resonance light and the resonance microwave to cause optical / microwave double resonance, and the resonance generated at that time is generated. The frequency of the standard frequency signal is controlled and output based on the frequency, which is the same as the conventional method, but the atmospheric pressure is measured by the atmospheric pressure measuring instrument, and the correction signal corresponding to the measured value is sent from the correction signal generating circuit to the control device. The control device controls the microwave generation circuit based on the correction signal so that the fluctuation of atmospheric pressure does not influence the frequency control. Under the control of the control device, the microwave generation circuit applies the microwave (frequency n2.f1) corrected to the microwave frequency n1.f1 based on the standard frequency signal (frequency f1) to the frequency .DELTA.f based on the correction signal. Send to the double resonance section. The relationship between the measured value of atmospheric pressure and the frequency .DELTA.f is obtained in advance, and the value of n2 for correcting n1.f1 by .DELTA.f is also obtained in advance. In the gas cell of the double resonance part, the gas cell is deformed by the change of the external atmospheric pressure, the internal volume of the gas cell is changed, the internal pressure of the gas cell is changed, and the resonance frequency is changed as a result. Since the change corresponds to the frequency .DELTA.f, the standard frequency signal is stabilized at the frequency f1 even though the resonance frequency changes from n1.f1 to n2.f1. That is, the fluctuation of the atmospheric pressure does not affect the frequency f1 of the standard frequency signal.

【0019】次に、本発明の第二の実施の形態を図4に
示す。第二の実施の形態のガスセル型原子発振器は、ア
ルカリ金属原子を封入したガスセル21及び該ガスセル
21に磁場を発生させるコイル27を内蔵した二重共鳴
部2と、前記コイル27のための電流供給装置5と、半
導体レーザで成り前記アルカリ金属原子の励起光を発生
する励起光源部1と、前記二重共鳴部2からの出力信号
を受け該出力信号に応じた周波数信号を発生する周波数
信号発生部3(信号処理制御装置31+電圧制御水晶発
振器32)と、前記周波数信号を受けて前記アルカリ金
属原子の共鳴マイクロ波を発生するマイクロ波発生回路
(周波数合成・逓倍回路)4と、前記ガスセルの周りの
気圧を測定し、その気圧値に応じた信号を出力する気圧
測定器6と、該気圧測定器6から出力される信号を受け
て、測定された気圧値に対応する補正信号を出力する補
正信号発生回路7と、該補正信号を受けて前記コイル2
7のための電流を制御する制御装置8とを備え、かつ、
前記電流供給装置5が供給する電流が外部からの信号に
よって変えられるようになっている。前記電流供給装置
5は、従来はコイル27による磁場の強さが変化しない
ように一定の電流を供給するような制御を行っていた
が、本発明の第二の実施の形態では、制御装置8が前記
補正信号に応じて供給する電流を前記一定の電流に加え
て二重共鳴部2のコイル27に供給するようになってい
る。
Next, FIG. 4 shows a second embodiment of the present invention. The gas cell type atomic oscillator of the second embodiment includes a gas cell 21 in which an alkali metal atom is enclosed and a double resonance part 2 having a coil 27 for generating a magnetic field in the gas cell 21, and a current supply for the coil 27. A device 5, an excitation light source unit 1 which is composed of a semiconductor laser and generates excitation light of the alkali metal atoms, and a frequency signal generator which receives an output signal from the double resonance unit 2 and generates a frequency signal corresponding to the output signal. Part 3 (signal processing control device 31 + voltage control crystal oscillator 32), microwave generation circuit (frequency synthesis / multiplication circuit) 4 for receiving the frequency signal and generating the resonance microwave of the alkali metal atom, and the gas cell An atmospheric pressure measuring device 6 that measures the atmospheric pressure around it and outputs a signal corresponding to the atmospheric pressure value, and a signal output from the atmospheric pressure measuring device 6 are received to obtain the measured atmospheric pressure value. A correction signal generating circuit 7 for outputting a response to the correction signal, the coil 2 receives the correction signal
A controller 8 for controlling the current for 7 and,
The current supplied by the current supply device 5 can be changed by a signal from the outside. The current supply device 5 has conventionally been controlled to supply a constant current so that the strength of the magnetic field by the coil 27 does not change, but in the second embodiment of the present invention, the control device 8 is used. Is supplied to the coil 27 of the double resonance part 2 in addition to the constant current supplied according to the correction signal.

【0020】第二の実施の形態のガスセル型原子発振器
では、前記アルカリ金属原子に前記共鳴光と共鳴マイク
ロ波とを照射して、光・マイクロ波二重共鳴を起こさ
せ、その際に生じる共鳴周波数に基づいて標準周波数信
号の周波数を制御して出力するところは従来と同じであ
るが、気圧測定器6で気圧を測定し、その測定値に対応
する補正信号を補正信号発生回路7から制御装置8へ送
り、該補正信号に基づく補正用の電流を制御装置8から
電流供給装置5へ供給して周波数の制御に気圧の変動が
影響を及ぼさないようにしている。電流供給装置5は標
準となる気圧値のときに供給する電流値に補正信号に基
づく電流値Δiを加えた電流値の電流を二重共鳴部2の
コイル27に供給する。気圧の測定値と電流値Δiとの
関係はあらかじめ求められている。前述のように、外部
の気圧の変化により、共鳴周波数が変化しているが、そ
の共鳴周波数の変化分は前記コイル27に供給する電流
値が補正され直流平行磁場の強さが変化したことで打ち
消され、結果として共鳴周波数に変化はない。したがっ
て、気圧の変動が標準周波数信号の周波数f1 に影響を
及ぼさない。
In the gas cell type atomic oscillator of the second embodiment, the alkali metal atoms are irradiated with the resonance light and the resonance microwave to cause optical / microwave double resonance, and the resonance generated at that time is generated. Although the frequency of the standard frequency signal is controlled and output based on the frequency as in the conventional case, the atmospheric pressure is measured by the atmospheric pressure measuring device 6, and the correction signal corresponding to the measured value is controlled from the correction signal generating circuit 7. A current for correction based on the correction signal is sent to the device 8 and is supplied from the control device 8 to the current supply device 5 so that fluctuations in atmospheric pressure do not affect the frequency control. The current supply device 5 supplies to the coil 27 of the double resonance part 2 a current having a current value obtained by adding the current value Δi based on the correction signal to the current value supplied at the standard atmospheric pressure value. The relationship between the measured value of atmospheric pressure and the current value Δi is obtained in advance. As described above, the resonance frequency changes due to the change in the external atmospheric pressure. The change in the resonance frequency is due to the correction of the current value supplied to the coil 27 and the change in the strength of the DC parallel magnetic field. It is canceled and there is no change in the resonance frequency as a result. Therefore, the fluctuation of the atmospheric pressure does not affect the frequency f1 of the standard frequency signal.

【0021】[0021]

【実施例】以下、本発明の実施例を図を用いて説明す
る。ここでは、本発明のポイントである気圧の変化に対
する補正について述べる。補正に関連しない部分の動作
等は従来と同じであり、発明の実施の形態の欄で触れた
ので省略する。図5は、第一の実施の形態の一実施例を
示す構成図である。気圧測定器6にて二重共鳴部2の周
囲の気圧を測定し、気圧が変動したときにその変動量を
電圧値△Vで出力する。これを受けて、前記補正信号発
生回路7と制御装置8とを兼ねた周波数変動量補正回路
9は、アナログ・デジタル変換器(A/D変換器)91
でデジタル信号に変換し、CPU92で電圧値△Vに対
応する共鳴周波数の変動量△f分が補正された周波数の
マイクロ波が周波数合成・逓倍回路4から出力されるよ
うに、周波数合成・逓倍回路4を制御する。周波数合成
・逓倍回路4は、発明の実施の形態の欄でも挙げた図3
のようになっており、マイクロ波の周波数の制御は周波
数合成・逓倍回路4のM1 ,M2 の設定をCPU92で
切り換えることにより行われる。前記M1 ,M2 はM1
=16384〜20556,M2 =803〜1848の
可変範囲となっており、マイクロ波の周波数fm =90
MHz ×76−〔{(90MHz ×M1 /N1 )/N3 +9
0MHz ×(M2 /N2 +1)}/N4 +90MHz 〕/N
5 =6834.686275MHz−(9.95×(10
のマイナス5乗)Hz)×(M1 +M2 ×4173)で、
設定分解能は0.1mHz ,周波数可変範囲は434Hzで
ある。この制御により、気圧が変化したときも、その気
圧の変化に見合うマイクロ波の周波数の補正がなされ、
標準周波数信号の周波数f1 に影響を与えない。気圧変
化に対する周波数変動量△fは、あらかじめ測定してお
く必要があるが、ガスセルが厚さ1mm程度の円筒状の場
合、実験的にガスセル型ルビジウム原子発振器で確認さ
れた値としては、+1hPa の気圧変化に対して約+0.
7mHz の共鳴周波数変化をもたらす。
Embodiments of the present invention will be described below with reference to the drawings. Here, correction for changes in atmospheric pressure, which is the point of the present invention, will be described. The operation and the like of the portion that is not related to the correction are the same as those of the related art, and have been described in the section of the embodiment of the invention, and therefore will be omitted. FIG. 5 is a configuration diagram illustrating an example of the first embodiment. The atmospheric pressure around the double resonance part 2 is measured by the atmospheric pressure measuring device 6, and when the atmospheric pressure fluctuates, the fluctuation amount is output as a voltage value ΔV. In response to this, the frequency fluctuation amount correction circuit 9 which also functions as the correction signal generation circuit 7 and the control device 8 is processed by the analog / digital converter (A / D converter) 91.
Is converted into a digital signal by the CPU 92, and the frequency synthesis / multiplication is performed so that the microwave of the frequency corrected by the CPU 92 for the variation Δf of the resonance frequency corresponding to the voltage value ΔV is output from the frequency synthesis / multiplication circuit 4. Control the circuit 4. The frequency synthesizer / multiplier circuit 4 is the same as that shown in the section of the embodiment of the invention.
The control of the microwave frequency is performed by switching the settings of M1 and M2 of the frequency synthesizer / multiplier circuit 4 by the CPU 92. M1 and M2 are M1
= 16384 to 20556, M2 = 803 to 1848, and the microwave frequency fm = 90.
MHz x 76-[{(90MHz x M1 / N1) / N3 + 9
0MHz x (M2 / N2 + 1)} / N4 + 90MHz] / N
5 = 6834686275MHz- (9.95x (10
Minus 5) Hz) x (M1 + M2 x 4173),
The setting resolution is 0.1 mHz and the variable frequency range is 434 Hz. By this control, even when the atmospheric pressure changes, the frequency of the microwave corresponding to the change in the atmospheric pressure is corrected,
It does not affect the frequency f1 of the standard frequency signal. The frequency fluctuation amount Δf with respect to the atmospheric pressure change needs to be measured in advance, but when the gas cell is cylindrical with a thickness of about 1 mm, the value confirmed experimentally by the gas cell type rubidium atomic oscillator is +1 hPa. About +0 for changes in atmospheric pressure.
It produces a resonance frequency change of 7 mHz.

【0022】大気圧(〜1100hPa )の絶対圧測定及
び気圧変動を精度良く測定するには、通常電気容量式
(ダイアフラム)弾性圧力計が用いられる。本実施例に
おいても、気圧測定器6として、前記圧力計を用いてい
る。その原理を図6を用いて簡単に説明すると、受圧要
素であるダイアフラム61と電極62にはそれぞれリー
ド線63,64がつながれており、さらにダイアフラム
61と電極62間は真空または参照圧力として一定量の
ガスが封入されている。この時、測定圧力側からある圧
力が加わるとダイアフラム面がたわみ、リード線間の容
量が変化する。この容量値を読み取り参照値と比較する
事により、気圧が測定できる。ダイアフラムの材料に
は、耐食性に強いステンレス鋼やセラミックなどが用い
られている。
In order to measure the absolute pressure of atmospheric pressure (up to 1100 hPa) and the fluctuation of atmospheric pressure with high accuracy, a capacitance (diaphragm) elastic pressure gauge is usually used. Also in this embodiment, the pressure gauge is used as the atmospheric pressure measuring device 6. The principle will be briefly described with reference to FIG. 6. Lead wires 63 and 64 are connected to a diaphragm 61 and an electrode 62, which are pressure-receiving elements, respectively, and a constant amount of vacuum or reference pressure is applied between the diaphragm 61 and the electrode 62. The gas of is enclosed. At this time, when a certain pressure is applied from the measurement pressure side, the diaphragm surface is bent and the capacitance between the lead wires changes. The atmospheric pressure can be measured by comparing this capacitance value with a read reference value. As a material for the diaphragm, stainless steel, ceramics, or the like having high corrosion resistance is used.

【0023】図7は、第二の実施の形態の一実施例を示
す構成図である。ガスセルに静磁場をかける理由として
は、前述した基底準位の超微細準位の中に更に磁気的副
準位が存在し、二重共鳴による共鳴線の数は例えば、ル
ビジウム原子の場合では7本、セシウム原子の場合では
15本存在する。かつ、共鳴線の周波数間隔は加える静
磁場の強さで決まり、その量は200〜700kHz/Oe
〔1Oeは約79A/m 〕程度である。原子発振器として利用
される共鳴線はこのうち1本だけなので、他の共鳴線と
分離する必要があり、そのためにある一定の静磁場をか
ける必要がある。また静磁場をかけるとゼーマン効果に
よる共鳴周波数シフトδf0 が生じ、その量は、ルビジ
ウム原子の場合δf0 =574×(H0 の2乗)〔Hz〕
(ただし、H0 は静磁場の強さであり単位は〔Oe〕であ
る。)、セシウム原子の場合δf0 =472×(H0 の
2乗)〔Hz〕である。そこで、このゼーマン効果を利用
して、気圧変動による共鳴周波数変動量を補正する。
FIG. 7 is a block diagram showing an example of the second embodiment. The reason for applying a static magnetic field to the gas cell is that there is a magnetic sublevel in the hyperfine level of the ground level described above, and the number of resonance lines due to double resonance is, for example, 7 in the case of a rubidium atom. There are 15 in the case of cesium atoms. Moreover, the frequency interval of resonance lines is determined by the strength of the static magnetic field applied, and the amount is 200-700 kHz / Oe.
[1 Oe is about 79 A / m 2]. Since only one resonance line is used as an atomic oscillator, it is necessary to separate it from other resonance lines, and a certain static magnetic field must be applied for that purpose. Further, when a static magnetic field is applied, a resonance frequency shift δf0 due to the Zeeman effect occurs, and the amount is δf0 = 574 × (H0 squared) [Hz] in the case of a rubidium atom.
(However, H0 is the strength of the static magnetic field and the unit is [Oe].) In the case of a cesium atom, δf0 = 472 × (H0 squared) [Hz]. Therefore, the Zeeman effect is used to correct the resonance frequency fluctuation amount due to the atmospheric pressure fluctuation.

【0024】図6の気圧測定器6にて二重共鳴部2周囲
の気圧を測定し、気圧が変動したときにその変動量を電
圧値△Vで出力する。これを受けて、前記補正信号発生
回路7と制御装置8を兼ねた周波数変動量補正回路9
は、アナログ・デジタル変換器(A/D変換器)91で
デジタル信号に変換し、CPU92で前記電圧値△Vに
対応する共鳴周波数のシフト分Δfを補正するのに必要
な電流を発生させるための電圧をデジタル・アナログ変
換器(D/A変換器)93に送り、アナログ信号に変換
して静磁場コイル電流値の補正分△Iを電流供給装置5
に送る。電流供給装置5は前記補正分△Iを加えた電流
を二重共鳴部2のコイル27に供給する。この制御によ
り、気圧の変化による共鳴周波数の変化分と、静磁場コ
イル電流の△Iの補正による共鳴周波数の変化分とが相
殺され、共鳴周波数は一定に維持される。したがって、
標準周波数信号の周波数f1 は気圧による影響を受けな
い。
The atmospheric pressure around the double resonance part 2 is measured by the atmospheric pressure measuring device 6 shown in FIG. 6, and when the atmospheric pressure changes, the amount of change is output as a voltage value ΔV. In response to this, the frequency fluctuation amount correction circuit 9 that also serves as the correction signal generation circuit 7 and the control device 8
Is to generate a current necessary to correct the shift amount Δf of the resonance frequency corresponding to the voltage value ΔV in the CPU 92 by converting the analog signal into a digital signal by the analog / digital converter (A / D converter) 91. Is sent to a digital / analog converter (D / A converter) 93, converted into an analog signal, and the correction amount ΔI of the static magnetic field coil current value is supplied to the current supply device 5.
Send to The current supply device 5 supplies the current added with the correction amount ΔI to the coil 27 of the double resonance section 2. By this control, the change in the resonance frequency due to the change in the atmospheric pressure and the change in the resonance frequency due to the correction of the static magnetic field coil current ΔI are offset, and the resonance frequency is maintained constant. Therefore,
The frequency f1 of the standard frequency signal is not affected by atmospheric pressure.

【0025】図8は、本発明の半導体レーザ励起方式に
よるガスセル型ルビジウム原子発振器で実際に得られた
周波数安定度特性、従来の半導体レーザ励起方式による
ガスセル型ルビジウム原子発振器の周波数安定度特性、
ランプ励起方式によるガスセル型ルビジウム原子発振器
の周波数安定度特性、及び高安定水晶発振器の周波数安
定度特性を示す図である。図8のグラフを用いて以下に
説明する。図8は2標本分散σy2(τ)を時間領域にお
ける周波数安定度尺度と定義したアラン分散の尺度を用
いおり、横軸は平均測定時間(τ[sec] )、縦軸は2標
本標準偏差(σy (τ))である。図中8−a線で示さ
れた部分が従来の半導体レーザ励起ガスセル型ルビジウ
ム原子発振器の特性をあらわしているが、平均時間:τ
=(10の4乗)〜(10の5乗)[sec] で安定度が劣
化していることが確認できる。また、8−a’線は気圧
データのアラン分散を計算し、さらに気圧データと周波
数データとの相関係数を乗じた、気圧変動による周波数
特性である。このことから、気圧の変動が発振器の安定
度に影響しているのがわかる。平均時間:τ=(10の
4乗)〜(10の5乗)[sec] の安定度が劣化している
部分は、本発明を適用することで8−b線で示されるよ
うに改善された。8−c線で示された部分はランプ励起
方式によるガスセル型ルビジウム原子発振器の特性、8
−d線で示された部分は高安定水晶発振器の特性であ
る。半導体レーザ励起ガスセル型ルビジウム原子発振器
の特性(8−a線)との比較のために載せた。従来の技
術の欄で述べたが、図8から分かるように、ランプ励起
方式によるガスセル型ルビジウム原子発振器では、特性
(8−c線)への気圧変動の影響は見られない。
FIG. 8 shows the frequency stability characteristics actually obtained by the gas cell type rubidium atomic oscillator by the semiconductor laser pumping method of the present invention, the frequency stability characteristics of the gas cell type rubidium atomic oscillator by the conventional semiconductor laser pumping method,
It is a figure which shows the frequency stability characteristic of the gas cell type rubidium atomic oscillator by a lamp excitation system, and the frequency stability characteristic of a highly stable crystal oscillator. This will be described below with reference to the graph of FIG. FIG. 8 uses the Allan variance scale in which the two-sample variance σy2 (τ) is defined as the frequency stability scale in the time domain, the horizontal axis represents the average measurement time (τ [sec]), and the vertical axis represents the two-sample standard deviation ( σy (τ)). The portion indicated by line 8-a in the figure shows the characteristics of the conventional semiconductor laser-excited gas cell type rubidium atomic oscillator, but the average time: τ
It can be confirmed that the stability is deteriorated in the range of = (10 4) to (10 5) [sec]. The 8-a ′ line is the frequency characteristic due to atmospheric pressure fluctuation, which is obtained by calculating the Allan variance of the atmospheric pressure data and further multiplying it by the correlation coefficient between the atmospheric pressure data and the frequency data. From this, it can be seen that the fluctuation of the atmospheric pressure affects the stability of the oscillator. Average time: τ = (10 4 power) to (10 5 power) [sec] The part where the stability is deteriorated is improved as shown by the line 8-b by applying the present invention. It was The portion indicated by 8-c line is the characteristic of the gas cell type rubidium atomic oscillator by the lamp excitation system,
The part indicated by -d line is the characteristic of the high stability crystal oscillator. It is included for comparison with the characteristics (8-a line) of a semiconductor laser-excited gas cell type rubidium atomic oscillator. As described in the section of the conventional technique, as can be seen from FIG. 8, in the gas cell type rubidium atomic oscillator by the lamp excitation system, the influence of atmospheric pressure variation on the characteristic (line 8-c) is not seen.

【0026】[0026]

【発明の効果】以上のように本発明のガスセル型原子発
振器では、気圧を測定して、その変動量に基づいて、コ
イルに供給する電流及び二重共鳴部に供給する共鳴マイ
クロ波の周波数の少なくとも一方を補正することとした
から、大気圧の変動による周波数安定度の劣化を抑えた
ガスセル型原子発振器を提供することができた。
As described above, in the gas cell type atomic oscillator of the present invention, the atmospheric pressure is measured, and the current supplied to the coil and the frequency of the resonance microwave supplied to the double resonance part are measured based on the fluctuation amount. Since at least one of them is corrected, it is possible to provide a gas cell type atomic oscillator that suppresses deterioration of frequency stability due to fluctuations in atmospheric pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガスセル型原子発振器の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a gas cell type atomic oscillator of the present invention.

【図2】本発明の第一の実施の形態の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a first exemplary embodiment of the present invention.

【図3】本発明の第一の実施の形態に用いる周波数合成
・逓倍回路の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a frequency synthesis / multiplication circuit used in the first embodiment of the present invention.

【図4】本発明の第二の実施の形態の構成を示す図であ
る。
FIG. 4 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図5】本発明の第一の実施の形態の一実施例の構成を
示す図である。
FIG. 5 is a diagram showing a configuration of an example of the first exemplary embodiment of the present invention.

【図6】気圧測定器の構成を示す図である。FIG. 6 is a diagram showing a configuration of an atmospheric pressure measuring device.

【図7】本発明の第二の実施の形態の一実施例の構成を
示す図である。
FIG. 7 is a diagram showing a configuration of an example of a second exemplary embodiment of the present invention.

【図8】本発明の半導体レーザ励起方式によるガスセル
型ルビジウム原子発振器で実際に得られた周波数安定度
特性、従来の半導体レーザ励起方式によるガスセル型ル
ビジウム原子発振器の周波数安定度特性、ランプ励起方
式によるガスセル型ルビジウム原子発振器の周波数安定
度特性、及び高安定水晶発振器の周波数安定度特性を示
す図である。
FIG. 8 shows frequency stability characteristics actually obtained by the gas cell type rubidium atomic oscillator according to the semiconductor laser pumping method of the present invention, frequency stability characteristics of the gas cell type rubidium atomic oscillator by the conventional semiconductor laser pumping method, and lamp pumping method. It is a figure which shows the frequency stability characteristic of a gas cell type rubidium atomic oscillator, and the frequency stability characteristic of a highly stable crystal oscillator.

【図9】従来のガスセル型原子発振器の構成を示す図で
ある。
FIG. 9 is a diagram showing a configuration of a conventional gas cell type atomic oscillator.

【図10】二重共鳴部の構成を示す図である。FIG. 10 is a diagram showing a configuration of a double resonance part.

【図11】原子の光・マイクロ波二重共鳴現象を説明す
るための図である。
FIG. 11 is a diagram for explaining an optical / microwave double resonance phenomenon of atoms.

【符号の説明】[Explanation of symbols]

1 励起光源部 2 二重共鳴部 3 周波数信号発生部 4 マイクロ波発生回路(周波数合成・逓倍回路) 5 電流供給装置 6 気圧測定器 7 補正信号発生回路 8 制御装置 9 周波数変動量補正回路 21 ガスセル 22 マイクロ波空洞共振器 23 光電変換素子 24 マイクロ波励振用アンテナ 25 磁気シールド槽 26 恒温ヒータ 27 コイル(静磁場コイル) 28 励起光入力窓 31 信号処理装置 32 電圧制御水晶発振器 41 可変分周器 42 可変分周器 61 ダイアフラム 62 電極 63 リード線 64 リード線 91 アナログ・デジタル変換器(A/D変換器) 92 CPU 93 デジタル・アナログ変換器(D/A変換器) 1 Excitation Light Source Section 2 Double Resonance Section 3 Frequency Signal Generation Section 4 Microwave Generation Circuit (Frequency Synthesis / Multiplication Circuit) 5 Current Supply Device 6 Atmospheric Pressure Measuring Instrument 7 Correction Signal Generation Circuit 8 Control Device 9 Frequency Fluctuation Correction Circuit 21 Gas Cell 22 Microwave Cavity Resonator 23 Photoelectric Conversion Element 24 Microwave Excitation Antenna 25 Magnetic Shield Tank 26 Constant Temperature Heater 27 Coil (Static Magnetic Field Coil) 28 Excitation Light Input Window 31 Signal Processor 32 Voltage Controlled Crystal Oscillator 41 Variable Frequency Divider 42 Variable frequency divider 61 Diaphragm 62 Electrode 63 Lead wire 64 Lead wire 91 Analog / digital converter (A / D converter) 92 CPU 93 Digital / analog converter (D / A converter)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植原 正朗 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Masao Uehara 5-10-10 Minamiazabu, Minato-ku, Tokyo Anritsu Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属原子を封入したガスセル
(21)及び該ガスセルに磁場を発生させるコイル(2
7)を内蔵した二重共鳴部(2)と、前記コイルのため
の電流供給装置(5)と、前記アルカリ金属原子の励起
光を発生する励起光源部(1)と、前記二重共鳴部から
の出力信号を受け該出力信号に応じた周波数信号を発生
する周波数信号発生部(3)と、前記周波数信号を受け
て前記アルカリ金属原子の共鳴マイクロ波を発生するマ
イクロ波発生回路(4)とを備えたガスセル型原子発振
器において、 前記励起光源部は半導体レーザでなり、更に、前記ガス
セルの周りの気圧を測定し、その気圧値に応じた信号を
出力する気圧測定器(6)と、該気圧測定器から出力さ
れる信号を受けて、測定された気圧値に対応する補正信
号を出力する補正信号発生回路(7)と、該補正信号を
受けて前記コイルの電流及び前記共鳴マイクロ波の周波
数のうち少なくとも一方を制御する制御装置(8)とを
備え、かつ、前記電流供給装置及びマイクロ波発生回路
の少なくとも一方は前記制御装置で制御可能になってい
ることを特徴とするガスセル型原子発振器。 【0001】
1. A gas cell (21) containing an alkali metal atom and a coil (2) for generating a magnetic field in the gas cell.
7) built-in double resonance part (2), current supply device (5) for the coil, excitation light source part (1) for generating excitation light of the alkali metal atom, and double resonance part A frequency signal generator (3) for receiving a frequency signal corresponding to the output signal and a microwave generation circuit (4) for receiving the frequency signal and generating a resonance microwave of the alkali metal atom. In a gas cell type atomic oscillator comprising: an excitation light source unit made of a semiconductor laser; and an atmospheric pressure measuring device (6) for measuring an atmospheric pressure around the gas cell and outputting a signal according to the atmospheric pressure value, A correction signal generation circuit (7) for receiving a signal output from the atmospheric pressure measuring device and outputting a correction signal corresponding to the measured atmospheric pressure value, and a current for the coil and the resonance microwave receiving the correction signal. Of the frequency A gas cell type atomic oscillator, comprising: a control device (8) for controlling at least one of them, and at least one of the current supply device and the microwave generation circuit is controllable by the control device. [0001]
JP27672995A 1995-09-30 1995-09-30 Gas cell type atomic oscillator Expired - Fee Related JP3545113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27672995A JP3545113B2 (en) 1995-09-30 1995-09-30 Gas cell type atomic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27672995A JP3545113B2 (en) 1995-09-30 1995-09-30 Gas cell type atomic oscillator

Publications (2)

Publication Number Publication Date
JPH0998086A true JPH0998086A (en) 1997-04-08
JP3545113B2 JP3545113B2 (en) 2004-07-21

Family

ID=17573533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27672995A Expired - Fee Related JP3545113B2 (en) 1995-09-30 1995-09-30 Gas cell type atomic oscillator

Country Status (1)

Country Link
JP (1) JP3545113B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506173A (en) * 1999-08-09 2003-02-18 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー High-pressure polarizer for hyperpolarizing nuclear spins of rare gases
JP2014165508A (en) * 2013-02-21 2014-09-08 Seiko Epson Corp Oscillation device, electronic apparatus and mobile body
US9276595B2 (en) 2013-10-15 2016-03-01 Seiko Epson Corporation Quantum interference device, atomic oscillator, electronic apparatus, and moving object
US10333537B2 (en) 2016-12-20 2019-06-25 Seiko Epson Corporation Atomic oscillator and a method of generating atomic oscillation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506173A (en) * 1999-08-09 2003-02-18 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー High-pressure polarizer for hyperpolarizing nuclear spins of rare gases
JP4719392B2 (en) * 1999-08-09 2011-07-06 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー High pressure polariser for hyperpolarizing nuclear spin of noble gases
JP2014165508A (en) * 2013-02-21 2014-09-08 Seiko Epson Corp Oscillation device, electronic apparatus and mobile body
US9276595B2 (en) 2013-10-15 2016-03-01 Seiko Epson Corporation Quantum interference device, atomic oscillator, electronic apparatus, and moving object
US10333537B2 (en) 2016-12-20 2019-06-25 Seiko Epson Corporation Atomic oscillator and a method of generating atomic oscillation

Also Published As

Publication number Publication date
JP3545113B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US6831522B2 (en) Method of minimizing the short-term frequency instability of laser-pumped atomic clocks
Wallard Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour
Telle et al. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements
US6806784B2 (en) Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel
US3593189A (en) Frequency stabilization system
US9019027B2 (en) Oscillation device
JP2012195932A (en) Oscillation device
US20050062552A1 (en) Light stabilization for an optically excitable atomic medium
US10432205B2 (en) Quantum interference device, atomic oscillator, and electronic apparatus
JP6753232B2 (en) Atomic oscillators, electronics and mobiles
JP3545113B2 (en) Gas cell type atomic oscillator
JPH10284772A (en) Atomic oscillator
Bluyssen et al. Pulsed operation of an optically pumped far-infrared molecular laser
JP3631410B2 (en) Gas cell type atomic oscillator
Micalizio et al. Pulsed optically pumped Rb clock
Howe et al. A small, passively operated hydrogen maser
JPH0955657A (en) Rubidium atom oscillator
US4853935A (en) Frequency stabilization of gas lasers
RU2352038C1 (en) Method of stabilisation of laser emission frequency
JP2627504B2 (en) Frequency control system for cavity resonator
JP3172777B2 (en) Atomic oscillator
Minguzzi et al. Optoacoustic detection of Doppler-free two-photon resonances in the v2 bands of NH3
Kobtsev et al. Combined cw single-frequency ring dye/Ti: sapphire laser
Taha et al. Lainé et a
Schweda et al. Performance demonstration of the on-board active hydrogen maser for the ACES space mission of ESA

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Effective date: 20040407

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110416

LAPS Cancellation because of no payment of annual fees