JPH0996711A - Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin - Google Patents

Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin

Info

Publication number
JPH0996711A
JPH0996711A JP7255001A JP25500195A JPH0996711A JP H0996711 A JPH0996711 A JP H0996711A JP 7255001 A JP7255001 A JP 7255001A JP 25500195 A JP25500195 A JP 25500195A JP H0996711 A JPH0996711 A JP H0996711A
Authority
JP
Japan
Prior art keywords
synthetic resin
main body
polygon mirror
rotary polygon
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255001A
Other languages
Japanese (ja)
Inventor
Yuji Terai
雄司 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP7255001A priority Critical patent/JPH0996711A/en
Publication of JPH0996711A publication Critical patent/JPH0996711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary polyhedral mirror made of a synthetic resin which is improved in the flatness of reflection surfaces by making the temp. distribution on the reflection surfaces after parting from molds uniform and obviates the occurrence of unequal rotation by high-speed rotation. SOLUTION: The upper surface of a body 51 having flanks 516 which becomes the reflection surfaces is projectingly provided with a placing section 53 which is specified in the size of a height direction nearly to 10% of the plate thickness of the body and to nearly 5mm in the spacing between the external shape line thereof and the external shape line of the body. The placing section 53 is cooled in the state of bringing this section into contact with the surface of the flat plate in a cooling stage. The flanks 516 which are the reflection surfaces are rested in the air without coming into contact with any point in the cooling and, therefore, the temp. fall state to the height direction of the flanks is made uniform and the degree of shrinkage of the resin is made uniform. The flat plate on which the synthetic resin member formed by molding is placed and which cools this member is otherwise projectingly provided with a projection for placement to avert the contact of the flanks which are the reflection surfaces and to make the temp. fall state uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は入射光を回転偏向走
査させるための合成樹脂製の回転多面鏡、および回転多
面鏡の製造方法に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary polygon mirror made of synthetic resin for rotationally deflecting and scanning incident light and a method for manufacturing the rotary polygon mirror.

【0002】[0002]

【従来の技術】特開昭63−304225号公報、特開
平7−180429号公報に、回転多面鏡の反射面の平
面度の向上に関する先行技術が開示されている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 63-304225 and Japanese Unexamined Patent Publication No. 7-180429 disclose prior arts for improving the flatness of a reflecting surface of a rotary polygon mirror.

【0003】[0003]

【発明が解決しようとする課題】従来の合成樹脂製回転
多面鏡は、図14,15に示すように、取付け基準面1
0あるいは取付け端面13を、反射面15の端部より垂
直に延長した平坦な面で形成していた。あるいは、図1
6に示すように、回転軸挿入穴20と多角反射面部分2
1を板体23で連結し、かつ補強のためのボス部25を
形成していた。これらの多面鏡はヒケ等を防止し、平面
度を向上させる構成であった。そして、これは同時にス
キャナーへの回転負荷を軽減するための軽量化を狙った
ものであるが、特に後者は、高速回転時の遠心力に耐え
られないという問題点があった。さらに、金型内で室温
まで除冷するなどの特殊な場合を除いて、成形離型後の
放置状態において、前者の合成樹脂製回転多面鏡におい
ては反射面15となる側面端部が直接、何らかに接触す
ることになった。このため、接触部分と、接触していな
い部分(空気中に放置された状態)とでは熱伝導による
冷却速度に差が生じた。この、部分的な樹脂の冷却速度
の相違により樹脂の収縮の速度が異なる現象が生じ、収
縮の不均一は反射面の平面度の悪化の要因となってい
た。また、後者の合成樹脂製回転多面鏡は反射面部分2
1の板厚が連結板体23を有する部分bとない部分aと
では違うので、やはり反射面部分21の冷却速度に差が
生じ、樹脂の収縮速度、および温度分布が変化し、反射
面の平面度に悪影響を及ぼした。
The conventional rotary polygon mirror made of synthetic resin has a mounting reference plane 1 as shown in FIGS.
0 or the mounting end surface 13 is formed as a flat surface extending vertically from the end of the reflecting surface 15. Alternatively, FIG.
As shown in FIG. 6, the rotary shaft insertion hole 20 and the polygonal reflection surface portion 2
1 are connected by the plate body 23, and the boss portion 25 for reinforcement is formed. These polygonal mirrors were configured to prevent sink marks and improve flatness. At the same time, this is aimed at weight reduction for reducing the rotational load on the scanner, but in particular, the latter has a problem that it cannot withstand centrifugal force during high-speed rotation. Further, except in special cases such as cooling to room temperature in the mold, in the left state after molding and releasing, in the former rotary polygonal mirror made of synthetic resin, the side surface end which becomes the reflecting surface 15 is directly I got in touch with something. For this reason, there was a difference in the cooling rate due to heat conduction between the contact portion and the non-contact portion (state left in the air). Due to this partial difference in the cooling rate of the resin, a phenomenon in which the rate of resin shrinkage varies, and the uneven shrinkage has been a factor of deteriorating the flatness of the reflecting surface. Further, the latter rotary polygon mirror made of synthetic resin has a reflective surface portion 2
Since the plate thickness of No. 1 is different between the portion b having the connecting plate body 23 and the portion a not having the connecting plate body 23, the cooling rate of the reflection surface portion 21 also has a difference, the contraction rate of the resin and the temperature distribution change, and The flatness was adversely affected.

【0004】近年、複写機やレーザービームプリンタの
高解像度化に伴い、回転多面鏡の反射面はより高精度化
が要求されている。同時にこの回転多面鏡を合成樹脂製
とすることで、従来の金属製回転多面鏡に対し、大幅な
製造コストの低減を行うことが期待されている。また、
回転多面鏡の精度は直接プリント画質に影響するため、
超精密な精度を要求され、特に、反射面の平面度の精度
確保は重要な課題であった。この回転多面鏡を合成樹脂
で製造する場合、一般的には成形時の製品は高い金型温
度(ガラス転移点近傍)から離型によって、常温の空気
中にさらされる。その後、製品をストックしておくため
に、トレイ等の上に置かれる。このトレイ上に載置され
た状態においても製品は樹脂の冷却に伴う収縮が行われ
ている。しかしこの離型後の製品収縮を均一に行い、反
射面の平面度を良好なものとするためには、少なくとも
離型後の反射面の温度分布を均一にする必要がある。し
かし、トレイ等に載置して冷却時において、反射面が直
接トレイに接する、あるいは板厚の相違等により反射面
の温度が不均一になる。この冷却の不均一は、樹脂の収
縮速度を部分的に異ならせ、結果として収縮速度が場所
によって変化し反射面の平面度に悪影響を及ぼした。
In recent years, as the resolution of copying machines and laser beam printers has increased, there has been a demand for higher precision in the reflecting surface of the rotary polygon mirror. At the same time, by making this rotary polygon mirror made of synthetic resin, it is expected that the manufacturing cost will be significantly reduced as compared with the conventional metal rotary polygon mirror. Also,
Since the accuracy of the rotating polygon mirror directly affects the print quality,
Ultra-precision precision is required, and ensuring the precision of the flatness of the reflecting surface is an important issue. When this rotary polygon mirror is manufactured from synthetic resin, the product during molding is generally exposed to air at room temperature by releasing from a high mold temperature (near the glass transition point). After that, the product is placed on a tray or the like so as to be stocked. Even when the product is placed on this tray, the product shrinks as the resin cools. However, in order to uniformly shrink the product after releasing the mold and to improve the flatness of the reflecting surface, at least the temperature distribution of the reflecting surface after the releasing must be uniform. However, when placed on a tray or the like and cooled, the temperature of the reflection surface becomes non-uniform due to the reflection surface being in direct contact with the tray, the difference in plate thickness, or the like. This non-uniform cooling caused the shrinkage speed of the resin to be partially different, and as a result, the shrinkage speed changed depending on the location and adversely affected the flatness of the reflecting surface.

【0005】本発明は、この離型後の反射面の温度分布
を均一とすることにより、反射面の平面度を良好とし、
かつ高速回転に対しての回転むらのない合成樹脂製回転
多面鏡の製造方法、および、良品質を備えた合成樹脂製
回転多面鏡を提供する。
According to the present invention, the flatness of the reflecting surface is improved by making the temperature distribution of the reflecting surface after releasing the mold uniform,
Provided is a method for manufacturing a synthetic resin rotary polygonal mirror having no rotational unevenness even at high speed rotation, and a synthetic resin rotary polygonal mirror having good quality.

【0006】[0006]

【課題を解決するための手段】本発明の合成樹脂製回転
多面鏡の製造方法は、回転軸の嵌合孔を有し、外周面に
形成される複数個の反射面となる側面を有する本体と、
本体の軸方向の端面より軸方向に突出すると共に、回転
軸の嵌合孔に直交する端面を有する載置部を備えた回転
多面体を合成樹脂材料を成形加工して形成する成形加工
工程と、成形加工された合成樹脂部材を本体から突出す
る載置部の端面を平板上に載置して本体の反射面となる
側面を平板面から載置部の厚さ寸法離して合成樹脂部材
の温度を規定の温度まで下降させる冷却工程と、反射面
となる側面に被膜して反射面を形成する蒸着工程とを基
本的に具備する。
A method of manufacturing a rotary polygon mirror made of synthetic resin according to the present invention has a main body having a fitting hole for a rotary shaft and a plurality of side surfaces serving as reflecting surfaces formed on an outer peripheral surface. When,
A molding process that projects in the axial direction from the axial end face of the main body and that forms a rotary polyhedron with a mounting portion having an end face that is orthogonal to the fitting hole of the rotary shaft by molding the synthetic resin material. The end surface of the mounting part that projects the molded synthetic resin member from the main body is mounted on a flat plate, and the side surface that is the reflection surface of the main body is separated from the flat plate surface by the thickness dimension of the mounting part, and the temperature of the synthetic resin member Basically, a cooling step of lowering the temperature to a prescribed temperature and a vapor deposition step of forming a reflective surface by coating on the side surface to be the reflective surface.

【0007】さらに、成形加工した合成樹脂部材の載置
部の厚さ寸法の本体の厚さ寸法に対する割合は、10%
前後とする、あるいは載置部の外形線と本体の外形線と
の間隔はほぼ5mm程度とする構成を具備してもよい。ま
た、冷却工程の合成樹脂部材の放置板は合成樹脂部材を
載置する載置突起を突設し、合成樹脂部材は載置突起上
に載置され冷却される構成、載置突起に冷却機構を連結
する構成を具備してもよい。
Furthermore, the ratio of the thickness of the mounting portion of the molded synthetic resin member to the thickness of the main body is 10%.
A configuration may be provided such that the front and rear or the interval between the outline of the mounting portion and the outline of the main body is approximately 5 mm. In addition, the leaving plate of the synthetic resin member in the cooling step is provided with a mounting protrusion for mounting the synthetic resin member, and the synthetic resin member is mounted and cooled on the mounting protrusion, and the mounting protrusion has a cooling mechanism. May be connected.

【0008】本発明の合成樹脂製回転多面鏡は回転軸の
嵌合孔を有し、外周面に形成される複数個の反射面を備
えた本体と、本体の反射面の軸方向の端面より軸方向に
突出する載置部(載置部の厚さ寸法の本体の厚さ寸法に
対する割合は、10%前後、載置部の外形線と本体の外
形線との間隔はほぼ5mm程度とする)とを有し、載置部
の端面を回転軸の嵌合孔に直交する平面とする構成を具
備する。
A rotary polygon mirror made of synthetic resin according to the present invention comprises a main body having a plurality of reflecting surfaces formed on an outer peripheral surface thereof, having a fitting hole for a rotary shaft, and an axial end surface of the reflecting surfaces of the main body. A mounting portion protruding in the axial direction (the ratio of the thickness of the mounting portion to the thickness of the main body is about 10%, and the distance between the outline of the mounting portion and the outline of the main body is about 5 mm. ) And the end surface of the mounting portion is a plane orthogonal to the fitting hole of the rotating shaft.

【0009】[0009]

【発明の実施の形態】以下に本発明の具体的な実施の形
態を図面により説明する。 第1の実施の形態 図1は回転多面鏡の斜視図、図2は側面図である。回転
多面体50は合成樹脂体で形成した多角形状の外形を有
する本体51と、本体の上部の本体と相似形状の載置部
53とを一体に形成し、中心部分には回転軸の嵌合孔5
5が穿孔されている。本体51はロータに取り付ける取
付基準面512と、取付基準面512の反対面である取
付端面514を平行に配設し、取付基準面512と取付
端面514とを連結する両面に垂直な反射面となる側面
516を形成している。図示の本体51は八面体となっ
ている。本体51の板厚を寸法Hとする。載置部53は
本体51の形状とほぼ相似形をなし、その高さ寸法をh
とする。ここで、載置部53の高さ寸法hは本体51の
板厚寸法Hのほぼ10%前後を満足する範囲であるよう
に形成する。この本体51の板厚寸法Hと載置部53の
高さ寸法hは、回転多面体50の全体の肉厚バランスを
左右すると共に、反射面の平面度の精度を左右する。例
えば、本体51の板厚寸法Hが4.4mmのとき、載置部
53の高さ寸法hを0.4mm前後として設定する。ま
た、本体51に対して載置部53の配設位置は、本体5
1の外形線(反射面となる側面516の端縁)と載置部
53の外形線との間隔fをほぼ5mmとする。例えば本体
51の最長幅寸法Rを34mmとしたとき、載置部53の
最長幅寸法rはほぼ24mmとする。このように構成する
回転多面体50の側面516を鏡面加工して反射面51
6Kとし、回転多面鏡500とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a perspective view of a rotary polygon mirror, and FIG. 2 is a side view. The rotating polyhedron 50 integrally includes a main body 51 having a polygonal outer shape formed of a synthetic resin body and a mounting portion 53 having a similar shape to the main body at the upper portion of the main body. 5
5 are perforated. The main body 51 has a mounting reference surface 512 to be mounted on the rotor and a mounting end surface 514 opposite to the mounting reference surface 512 arranged in parallel, and has a reflection surface perpendicular to both surfaces connecting the mounting reference surface 512 and the mounting end surface 514. The side surface 516 is formed. The illustrated main body 51 is an octahedron. The plate thickness of the main body 51 is set to H. The mounting portion 53 has a shape substantially similar to the shape of the main body 51, and its height dimension is h
And Here, the height dimension h of the mounting portion 53 is formed so as to be within a range satisfying approximately 10% of the plate thickness dimension H of the main body 51. The plate thickness dimension H of the main body 51 and the height dimension h of the mounting portion 53 influence the thickness balance of the entire rotary polyhedron 50 and the flatness accuracy of the reflecting surface. For example, when the plate thickness dimension H of the main body 51 is 4.4 mm, the height dimension h of the mounting portion 53 is set to about 0.4 mm. Further, the placement position of the mounting portion 53 with respect to the main body 51 is determined by
The distance f between the outline of No. 1 (the edge of the side surface 516 serving as the reflecting surface) and the outline of the mounting portion 53 is set to approximately 5 mm. For example, when the longest width dimension R of the main body 51 is 34 mm, the longest width dimension r of the mounting portion 53 is approximately 24 mm. The side surface 516 of the rotating polyhedron 50 configured as described above is mirror-finished to form a reflection surface 51.
6K, and the rotating polygon mirror 500.

【0010】次に、合成樹脂製回転多面鏡のスキャナー
モータへの取付けを説明する(図3参照)。スキャナー
モータの回転軸70を回転多面鏡500の嵌合孔55に
嵌合させ、ハウジング43に軸受45を介して回転自在
に取り付けられている受け台座40に回転多面鏡500
の取付け基準面512を載せる。載置部53の上は板バ
ネ47で押圧している。ここで符号41はプリント基板
を示す。このように、スキャナーモータに取付けられた
回転多面鏡500は上面を押さえるバネ47と受け台座
40に挾持されて、回転し、反射面516Kで光を反射
するよう構成される。
Next, attachment of the synthetic resin rotary polygon mirror to the scanner motor will be described (see FIG. 3). The rotary shaft 70 of the scanner motor is fitted into the fitting hole 55 of the rotary polygon mirror 500, and the rotary polygon mirror 500 is mounted on the pedestal 40 rotatably attached to the housing 43 via the bearing 45.
Mount the mounting reference surface 512 of. The top of the mounting portion 53 is pressed by the leaf spring 47. Here, reference numeral 41 indicates a printed circuit board. As described above, the rotary polygon mirror 500 attached to the scanner motor is held between the spring 47 that presses the upper surface and the receiving pedestal 40, rotates, and reflects light at the reflecting surface 516K.

【0011】次に、合成樹脂製回転多面鏡500の製造
方法を説明する。 成形加工工程 金型内に溶融合成樹脂材料を射出して、八角形状の本体
51と本体51と相似形状の載置部53とを有する合成
樹脂部材(回転多面体)50を形成する。
Next, a method of manufacturing the rotary polygon mirror 500 made of synthetic resin will be described. Molding Step A molten synthetic resin material is injected into a mold to form a synthetic resin member (rotary polyhedron) 50 having an octagonal main body 51 and a mounting portion 53 having a similar shape to the main body 51.

【0012】冷却工程 成形品である、回転多面体50を金型から取りだし、回
転多面体の載置部53を下面として、平板、例えばガラ
ス平板100上に放置して、冷却する。放置時間は約6
時間程度とする。図4には合成樹脂体を上述のように載
置した場合の冷却状態の概念図を示している。この図に
よると、回転多面体50は反射面となる側面516の温
度分布が高さ方向Hに一定(均一)となっていると考え
られる。それに対して、図5に示すように、従来の回転
多面体10の反射面となる側面15aの温度分布は、回
転多面体10の板厚方向(高さ方向H)に温度が高くな
っていると考えられる。すなわち、従来の回転多面体1
0は直接ガラス等の平板100面に離型直後の高温の状
態で放置するため、平板100に接触する低い部分は冷
却速度が早く、平板100から距離が離れるに従って、
冷却速度が遅くなっている。
Cooling Step A rotary polyhedron 50, which is a molded product, is taken out of the mold and left on a flat plate, for example, a glass flat plate 100, with the rotary polyhedron mounting portion 53 as the lower surface, and cooled. About 6 hours
It is about time. FIG. 4 shows a conceptual diagram of a cooling state when the synthetic resin body is mounted as described above. According to this figure, it is considered that the temperature distribution of the side surface 516, which is the reflecting surface, of the rotating polyhedron 50 is constant (uniform) in the height direction H. On the other hand, as shown in FIG. 5, it is considered that the temperature distribution of the side surface 15a serving as the reflection surface of the conventional rotating polyhedron 10 is higher in the plate thickness direction (height direction H) of the rotating polyhedron 10. To be That is, the conventional rotating polyhedron 1
0 is left on the surface of the flat plate 100 such as glass directly in the high temperature state immediately after the mold release, so that the cooling rate is low in the low portion in contact with the flat plate 100, and as the distance from the flat plate 100 increases,
Cooling rate is slow.

【0013】この実施の形態による回転多面体50は、
離型後の放置状態において、本体51が平板100に直
接接触せずに、載置面53を介して平板100上に置か
れるので、反射面となる側面516は何物にも接触する
ことなく空気中に放置される。よって、反射面となる側
面516の温度降下率が高さ方向に均一となり、側面5
16の温度分布、樹脂の冷却が均一となる。
The rotating polyhedron 50 according to this embodiment is
Since the main body 51 is placed on the flat plate 100 via the placement surface 53 without directly contacting the flat plate 100 in the state after being released from the mold, the side surface 516 serving as a reflection surface does not contact anything. Left in the air. Therefore, the temperature drop rate of the side surface 516 serving as the reflection surface becomes uniform in the height direction, and the side surface 5
The temperature distribution of 16 and the resin cooling are uniform.

【0014】ここで、本体51の厚さ寸法と載置部53
の厚さ寸法の割合に対する鏡面の平面度を測定した。そ
の結果を図6のグラフに示す。このグラフは縦軸に鏡面
の平面度(単位λ・1λ=0.6328μm)を表し、
横軸に本体の厚さ寸法に対する載置部の厚さ寸法の割合
(%)を表している。サンプルA,B,C,D,Eは本
体および載置部を六面体とした回転多面体を各々3個形
成し、各サンプルの各面における平面度の平均を記号表
示し、さらにサンプル毎の平均値を直線で表示してい
る。ここで、サンプルAは載置部を凹設した場合、サン
プルBは載置部を形成せず、本体を直接平板上に載置し
て冷却した場合、サンプルCは載置部の厚さ寸法を本体
の厚さ寸法の6.25%とした場合、サンプルDは載置
部の厚さ寸法を本体の厚さ寸法の21.25%とした場
合、サンプルEは載置部の厚さ寸法を本体の厚さ寸法の
23.75%とした場合であって、載置部を平板上に載
置して冷却した状態での鏡面の平面度である。
Here, the thickness dimension of the main body 51 and the mounting portion 53
The flatness of the mirror surface with respect to the ratio of the thickness dimension was measured. The result is shown in the graph of FIG. In this graph, the vertical axis represents the flatness of the mirror surface (unit λ · 1λ = 0.6328 μm),
The horizontal axis represents the ratio (%) of the thickness dimension of the mounting portion to the thickness dimension of the main body. Samples A, B, C, D, and E each have three rotating polyhedra each having a hexahedron as a main body and a mounting portion, and the average flatness of each surface of each sample is displayed as a symbol. Is displayed as a straight line. Here, in the case of the sample A having a recessed mounting portion, in the case of sample B not having the mounting portion formed thereon and when the main body is directly mounted on a flat plate and cooled, the sample C has a thickness dimension of the mounting portion. Is 6.25% of the thickness of the main body, Sample D is 21.25% of the thickness of the main body when sample thickness is 21.25%, and Sample E is the thickness of the mounting portion. Is 23.75% of the thickness of the main body, and is the flatness of the mirror surface in a state where the mounting portion is mounted on a flat plate and cooled.

【0015】このグラフをみると、サンプルC,サンプ
ルDが平面度が良好となる結果を示している。すなわ
ち、載置部53の厚さ寸法が本体51の厚さ寸法に対し
て6.25%から21.25%の範囲に形成し、載置部
53を平板上に載置して冷却することにより、鏡面とな
る側面の冷却温度の均一化が達成されることがわかる。
しかし、載置部53の厚さ寸法を大きくすると、回転多
面体の中心部と側部との全体の厚さのバランスがわるく
なり、かつ板厚の厚い中心部分の冷却が均一とならな
い。このような観点から、この実施例における回転多面
体50は載置部53の板厚を本体の板厚の10%前後と
している。
Looking at this graph, it is shown that Sample C and Sample D have good flatness. That is, the thickness dimension of the placing portion 53 is formed in the range of 6.25% to 21.25% with respect to the thickness dimension of the main body 51, and the placing portion 53 is placed on a flat plate and cooled. As a result, it can be seen that the cooling temperature on the side surface to be the mirror surface is made uniform.
However, when the thickness of the mounting portion 53 is increased, the total thickness of the central portion and the side portions of the rotating polyhedron becomes unbalanced, and the central portion having a large plate thickness is not uniformly cooled. From this point of view, in the rotary polyhedron 50 in this embodiment, the plate thickness of the mounting portion 53 is set to about 10% of the plate thickness of the main body.

【0016】蒸着加工工程 冷却した回転多面体50の反射面となる側面516に金
属被膜を蒸着形成する。反射面となる側面516は反射
面となり、例えばレーザ光を偏光反射する。以上説明し
たように、この実施の形態による回転多面鏡は離型後の
反射面となる側面の温度分布を均一として、樹脂収縮を
均一化し、反射面の平面度を良好とした良品質な合成樹
脂製多面鏡となる。また、回転中心部分の肉厚を厚く、
他の部分の肉厚を薄く形成し、例えば、反射面となる側
面に対して中心部分の凸部を側面の厚さの10%程度と
して均一としているので、全体の肉厚バランスがよく、
高速回転による回転むらの発生がない。
Vapor Deposition Process Step A metal coating film is vapor deposited on the side surface 516 of the cooled rotating polyhedron 50 which serves as a reflection surface. The side surface 516 serving as a reflecting surface serves as a reflecting surface and reflects, for example, laser light with polarization. As described above, the rotary polygon mirror according to this embodiment has a uniform temperature distribution on the side surface to be the reflecting surface after release, uniform resin shrinkage, and good flatness of the reflecting surface. It becomes a resin polygon mirror. Also, increase the thickness of the center of rotation,
Since the thickness of the other portion is thinly formed, and for example, the convex portion of the central portion is made uniform to about 10% of the thickness of the side surface with respect to the side surface to be the reflection surface, the overall thickness balance is good,
No uneven rotation occurs due to high speed rotation.

【0017】上記の外、回転多面鏡として、以下の形状
が形成できる。 (A) 本体51の両面に載置面に相当する凸面を形成
する。……図7参照 本体51の取付基準面512に基準面側凸面53A、取
付端面514側に取付端面側凸面530Aを形成する。
この回転多面体50Aは離型後の放置をどちらの凸面を
載置面としてもよい。 (B) 載置面を台形状とする。……図8、図9、図1
0参照 本体51Bの取付端面側に、台形状の載置面53Bを形
成する。台形状の載置面53Bは回転軸の嵌合孔55に
直交する載置部530Bと、本体51B端縁と載置部5
30B端縁とを連結する傾斜側面531Bとよりなり、
本体51B端縁と載置部530B端縁との間隔はほぼ5
mm程度とする。また、この形状においても図10に示す
ように、本体51Cの両面に第1の載置部53C、第2
の載置部530Cを形成することができる。 (C) 載置面を円形状とする、……図11参照 本体51Dの上面に形成する載置面53Dは、回転軸の
嵌合孔55を同心とする円形状としている。このように
構成する回転多面体50Dは金型の構成が簡単となる。 以上説明した回転多面体の形状は、バランス良く高速回
転させるために、製品として対称性を維持しなければな
らない。故に、いずれの形状も回転軸の嵌合孔を中心に
放射状に広がる形状としている。
In addition to the above, the following shapes can be formed as the rotary polygon mirror. (A) A convex surface corresponding to a mounting surface is formed on both surfaces of the main body 51. ...... Refer to FIG. 7. A reference surface side convex surface 53A is formed on the mounting reference surface 512 of the main body 51, and a mounting end surface side convex surface 530A is formed on the mounting end surface 514 side.
In this rotary polyhedron 50A, either convex surface may be used as the mounting surface when left standing after the mold is released. (B) The mounting surface has a trapezoidal shape. ... Figures 8, 9, and 1
Reference 0 A trapezoidal mounting surface 53B is formed on the mounting end surface side of the main body 51B. The trapezoidal mounting surface 53B includes a mounting portion 530B orthogonal to the fitting hole 55 of the rotary shaft, an end of the main body 51B, and the mounting portion 5.
It is composed of an inclined side surface 531B connecting the 30B end edge,
The distance between the edge of the main body 51B and the edge of the mounting portion 530B is approximately 5
mm. Also in this shape, as shown in FIG. 10, the first mounting portion 53C and the second mounting portion 53C are provided on both surfaces of the main body 51C.
The mounting portion 530C can be formed. (C) The mounting surface is circular, see FIG. 11. The mounting surface 53D formed on the upper surface of the main body 51D is circular with the fitting hole 55 of the rotating shaft being concentric. The rotary polyhedron 50D thus configured has a simple mold configuration. The shape of the rotating polyhedron described above must maintain symmetry as a product in order to rotate at a high speed with good balance. Therefore, any shape is a shape that spreads radially around the fitting hole of the rotating shaft.

【0018】第2の実施の形態 この実施の形態は、回転多面鏡の形状を換えることな
く、冷却工程による合成樹脂材の収縮を均一とし、反射
面の平面度の精度を上げる構成となっている。この形態
による回転多面鏡の製造方法を説明する(図12参
照)。 成形加工工程 金型内に溶融合成樹脂材料を射出して、厚さ寸法Hの板
厚を有する合成樹脂部材(回転多面体)60を形成す
る。
Second Embodiment In this embodiment, the contraction of the synthetic resin material during the cooling process is made uniform without changing the shape of the rotary polygon mirror, and the flatness of the reflecting surface is improved. There is. A method of manufacturing the rotary polygon mirror according to this mode will be described (see FIG. 12). Molding Step A molten synthetic resin material is injected into a mold to form a synthetic resin member (rotary polyhedron) 60 having a plate thickness of thickness H.

【0019】冷却工程 成形品、回転多面体60を金型から取りだし、放置板2
00上に載置する。放置板200は成形品を載せる載置
突部250を複数個配設している。載置突部250は断
面円形の突起であって、その大きさは第1の形態で説明
した回転多面体に対する載置面の大きさに準ずる。例え
ば、載置突起250の直径r1は回転多面体60を載置
したとき、回転多面体60の外縁部がほぼ寸法f1突出
する大きさとする。ここで、寸法f1は第1の形態で説
明した回転多面体の本体の外形と載置面との差寸法fと
等しい寸法、ほぼ5mm程度とする。放置板200は、例
えばガラス板等で形成する。この放置板200上に回転
多面体250を放置(約6時間程度)して、冷却する。
この実施の形態による回転多面体60においても、離型
後の放置状態において、回転多面体60の反射面となる
側面65部分が放置板200に直接接触せずに、載置突
起250を介して放置板200上に置かれるので、反射
面となる側面65は何物にも接触することなく空気中に
放置される。よって、反射面となる側面65の板厚方向
への温度降下率が均一となり、温度分布、樹脂の冷却、
および収縮が均一となる。また、載置突起250から突
出する回転多面体60の側面部分の寸法f1は寸法fと
同様ほぼ5mm程度としているので、長時間放置しても、
回転多面体が形状変形を起こすことがない。
Cooling Step The molded product and the rotating polyhedron 60 are taken out from the mold and left on the plate 2.
Place it on 00. The standing plate 200 has a plurality of mounting protrusions 250 on which molded articles are placed. The mounting protrusion 250 is a protrusion having a circular cross section, and the size thereof conforms to the size of the mounting surface for the rotating polyhedron described in the first embodiment. For example, the diameter r 1 of the mounting projection 250 is set such that the outer edge portion of the rotary polyhedron 60 projects substantially by the dimension f 1 when the rotary polyhedron 60 is mounted. Here, the dimension f 1 is equal to the difference dimension f between the outer shape of the body of the rotating polyhedron and the mounting surface described in the first embodiment, which is about 5 mm. The standing plate 200 is formed of, for example, a glass plate or the like. The rotating polyhedron 250 is left on the standing plate 200 (about 6 hours) and cooled.
Also in the rotating polyhedron 60 according to this embodiment, the side surface 65 portion that is the reflecting surface of the rotating polyhedron 60 does not directly contact the standing plate 200 in the standing state after release from the mold, and the standing plate is placed via the mounting projection 250. Since it is placed on 200, the side surface 65 serving as a reflecting surface is left in the air without contacting anything. Therefore, the temperature drop rate in the plate thickness direction of the side surface 65 serving as the reflection surface becomes uniform, and the temperature distribution, the resin cooling,
And the shrinkage becomes uniform. Further, since the dimension f 1 of the side surface portion of the rotary polyhedron 60 protruding from the mounting protrusion 250 is set to about 5 mm like the dimension f, even if it is left for a long time,
The rotating polyhedron does not deform.

【0020】蒸着加工工程 冷却した回転多面体60の反射面となる側面65に金属
被膜を蒸着形成する。側面65は反射面となり、例えば
レーザ光を偏光反射する。以上説明したように、この実
施の形態による回転多面鏡は離型後の反射面となる側面
の温度分布を均一とし、樹脂収縮が均一となるので、反
射面の平面度を良好とした良品質な合成樹脂製多面鏡と
なる。また、多面体の回転軸の嵌合孔に直交する肉厚を
均一としているので、バランス良く高速回転させること
ができる。さらに、放置板の載置突起は回転多面体に対
して所定の大きさを有しているので、長時間放置して
も、載置突起からはみ出して突出する回転多面体の側面
部分が形状変形を起こすことがない。
Vapor Deposition Process Step A metal coating film is vapor-deposited on the side surface 65 of the cooled rotating polyhedron 60 which serves as a reflection surface. The side surface 65 serves as a reflecting surface and reflects, for example, the laser light by polarization. As described above, the rotary polygon mirror according to this embodiment has a uniform temperature distribution on the side surface that becomes the reflecting surface after release, and the resin shrinkage is uniform, so that the flatness of the reflecting surface is good. It becomes a polygonal mirror made of various synthetic resins. Moreover, since the thickness orthogonal to the fitting hole of the rotating shaft of the polyhedron is made uniform, it is possible to rotate at high speed with good balance. Further, since the mounting projection of the leaving plate has a predetermined size with respect to the rotating polyhedron, even if it is left for a long time, the side surface portion of the rotating polyhedron protruding beyond the mounting projection causes shape deformation. Never.

【0021】その他、放置板270の他の例を図13に
示す。この図に示す放置板270に形成する載置突起2
75は冷却機能を備えている。放置板270の載置突起
275は中空形状となっており、外部に配設する送風装
置等の温度調節手段と連結管277により連結されてい
る。例えば、放置する室温が23℃のとき、成形機から
取りだした直後の成形品(回転多面体)60はガラス転
移点近傍の非常に高温である。このため、載置突起27
5に接触している回転多面体60の接触部分62と空気
に触れている部分64とでは温度差が生じる。この冷却
の温度差により樹脂は収縮差を生じ、この収縮差が反射
面となる側面部分に影響を及ぼす可能性がある。そこ
で、温度調節手段を稼働させ、例えば冷却空気を載置突
起275内に送風することにより、接触部62と非接触
部64の温度を調節する。載置突起275をこのように
構成することにより、回転多面体60の部分による温度
差をなくし、樹脂収縮を全体に均一とすることができ、
熱収縮による影響のない、側面(反射面)の平面精度の
高い成形品を得ることができる。
FIG. 13 shows another example of the leaving plate 270. The mounting protrusion 2 formed on the leaving plate 270 shown in this figure
75 has a cooling function. The placing protrusion 275 of the standing plate 270 has a hollow shape and is connected to a temperature adjusting means such as an air blower arranged outside by a connecting pipe 277. For example, when the room temperature to be left is 23 ° C., the molded product (rotary polyhedron) 60 immediately after being taken out from the molding machine has a very high temperature near the glass transition point. Therefore, the mounting protrusion 27
There is a temperature difference between the contact portion 62 of the rotating polyhedron 60 that is in contact with 5 and the portion 64 that is in contact with air. The resin causes a difference in shrinkage due to the difference in cooling temperature, and this difference in shrinkage may affect the side surface portion serving as the reflecting surface. Therefore, the temperature of the contact portion 62 and the non-contact portion 64 is adjusted by operating the temperature adjusting means and blowing cooling air into the mounting protrusion 275, for example. By configuring the mounting protrusion 275 in this way, it is possible to eliminate the temperature difference due to the portion of the rotating polyhedron 60 and to make the resin shrinkage uniform throughout.
It is possible to obtain a molded article having a high side surface (reflection surface) precision without being affected by heat shrinkage.

【0022】以上説明したように、本発明の構成によ
り、離型後の放置状態において、反射面を何かに接する
ことなく空気中にさらすことで、反射面となる側面近傍
での温度分布を均一にすることが可能になる。この結果
樹脂の冷却を均一に行うことができ、反射面の平面度を
向上させることができる。
As described above, according to the structure of the present invention, when the reflecting surface is left in the air after being released from the mold without being in contact with anything, the temperature distribution in the vicinity of the side surface to be the reflecting surface is improved. It becomes possible to make it uniform. As a result, the resin can be cooled uniformly and the flatness of the reflecting surface can be improved.

【0023】[0023]

【発明の効果】本発明の合成樹脂製回転多面鏡は反射鏡
面の平面精度の高い、良品な、かつ、高速回転の耐久性
の高い多面鏡となる。また、本発明の回転多面鏡の製造
方法は、成形品取出後の反射面となる側面が均一に空気
中にさらされるため、反射面となる側面の均一な冷却が
可能になる。さらに、冷却の不均一による樹脂収縮の不
均一を防止することができ、反射面の平面度の良好な樹
脂製回転多面鏡の製造が可能となる。
The rotary polygonal mirror made of synthetic resin of the present invention is a polygonal mirror having a reflecting mirror surface with high plane accuracy, good quality, and high-speed rotation and high durability. Further, in the method for manufacturing a rotary polygon mirror of the present invention, the side surface to be the reflecting surface after taking out the molded product is uniformly exposed to the air, so that the side surface to be the reflecting surface can be uniformly cooled. Furthermore, it is possible to prevent uneven resin shrinkage due to uneven cooling, and it is possible to manufacture a rotary polygon mirror made of resin with a good flatness of the reflecting surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】 合成樹脂製回転多面鏡の斜視図。FIG. 1 is a perspective view of a rotary polygon mirror made of synthetic resin.

【図2】 合成樹脂製回転多面鏡の側面図。FIG. 2 is a side view of a synthetic resin rotary polygon mirror.

【図3】 スキャナーモータに配設した回転多面鏡の断
面図。
FIG. 3 is a cross-sectional view of a rotary polygon mirror arranged on a scanner motor.

【図4】 回転多面体の載置状態を説明する説明図。FIG. 4 is an explanatory diagram illustrating a mounted state of a rotating polyhedron.

【図5】 従来の回転多面体の載置状態を説明する説明
図。
FIG. 5 is an explanatory view illustrating a mounting state of a conventional rotating polyhedron.

【図6】 本体の板厚に対する載置部の板厚の割合と平
面度との関係を表すグラフ。
FIG. 6 is a graph showing the relationship between the flatness and the ratio of the plate thickness of the mounting portion to the plate thickness of the main body.

【図7】 本発明による他の回転多面鏡の側面図。FIG. 7 is a side view of another rotary polygon mirror according to the present invention.

【図8】 本発明による他の回転多面鏡の斜面図。FIG. 8 is a perspective view of another rotary polygon mirror according to the present invention.

【図9】 本発明による他の回転多面鏡の側面図。FIG. 9 is a side view of another rotary polygon mirror according to the present invention.

【図10】 本発明による他の回転多面鏡の側面図。FIG. 10 is a side view of another rotary polygon mirror according to the present invention.

【図11】 本発明による他の回転多面鏡の斜視図。FIG. 11 is a perspective view of another rotary polygon mirror according to the present invention.

【図12】 本発明による他の形態の説明図。FIG. 12 is an explanatory diagram of another embodiment according to the present invention.

【図13】 本発明による他の形態の説明図。FIG. 13 is an explanatory diagram of another embodiment according to the present invention.

【図14】 従来の回転多面鏡の斜視図。FIG. 14 is a perspective view of a conventional rotary polygon mirror.

【図15】 従来の回転多面鏡の側面図。FIG. 15 is a side view of a conventional rotary polygon mirror.

【図16】 従来の回転多面鏡の側面図。FIG. 16 is a side view of a conventional rotary polygon mirror.

【符号の説明】[Explanation of symbols]

50、60 合成樹脂体(回転多面体)、 51 本
体、 53 載置部、55 嵌合孔、 100 平板、
200 放置板、 250 載置突起、 500 回
転多面鏡、 516 反射面となる側面。
50, 60 synthetic resin body (rotary polyhedron), 51 main body, 53 mounting portion, 55 fitting hole, 100 flat plate,
200 standing plate, 250 mounting protrusion, 500 rotating polygon mirror, 516 side surface to be reflective surface.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 回転軸の嵌合孔を有し、外周面に形成さ
れる複数個の反射面を備えた回転多面鏡を、合成樹脂材
料を成形加工することによって製造する方法において、 反射面となる側面を有する本体と、本体の軸方向の端面
より軸方向に突出すると共に、回転軸の嵌合孔にほぼ直
交する端面を有する載置部を備えた合成樹脂部材を成形
加工する成形加工工程と、成形加工された合成樹脂部材
を本体から突出する載置部の端面を平板上に載置して合
成樹脂部材の温度を規定の温度まで下降させる冷却工程
と、反射面となる側面に反射面を形成する蒸着工程と、
を備え、冷却工程において平板上に載置される合成樹脂
部材は、本体の反射面となる側面を平板面から載置部の
厚さ寸法離した状態で冷却される合成樹脂製回転多面鏡
の製造方法。
1. A method for producing a rotary polygonal mirror having a plurality of reflecting surfaces formed on an outer peripheral surface thereof, which has a fitting hole for a rotating shaft, by molding a synthetic resin material. Molding process for molding a synthetic resin member having a main body having a side surface and a mounting portion projecting in the axial direction from the axial end surface of the main body and having an end surface substantially orthogonal to the fitting hole of the rotary shaft. Steps, a cooling step of placing the end surface of the mounting portion projecting the molded synthetic resin member from the main body on a flat plate to lower the temperature of the synthetic resin member to a specified temperature, and a side surface to be a reflecting surface. A vapor deposition step of forming a reflective surface,
In the cooling step, the synthetic resin member placed on the flat plate is a synthetic resin rotary polygonal mirror that is cooled in a state where the side surface to be the reflecting surface of the main body is separated from the flat plate surface by the thickness dimension of the placing portion. Production method.
【請求項2】 載置部の厚さ寸法の本体の厚さ寸法に対
する割合は、10%前後としてなる請求項1記載の合成
樹脂製回転多面鏡の製造方法。
2. The method for manufacturing a rotary polygon mirror made of synthetic resin according to claim 1, wherein the ratio of the thickness of the mounting portion to the thickness of the main body is about 10%.
【請求項3】 載置部の外形線と本体の外形線との間隔
はほぼ5mm程度としてなる請求項1記載の合成樹脂製回
転多面鏡の製造方法。
3. The method for manufacturing a rotary polygon mirror made of synthetic resin according to claim 1, wherein the interval between the outline of the mounting portion and the outline of the main body is approximately 5 mm.
【請求項4】 外周面に形成される複数個の反射面を備
えた回転多面鏡を合成樹脂材料を、成形加工することに
よって製造する方法において、 反射面となる側面を有する合成樹脂部材を成形加工する
成形加工工程と、成形加工された合成樹脂部材の側面が
放置板に接触しないように放置板上に載置して合成樹脂
部材の温度を規定の温度まで下降させる冷却工程と、を
備えてなる合成樹脂製回転多面鏡の製造方法。
4. A method of manufacturing a rotary polygon mirror having a plurality of reflecting surfaces formed on an outer peripheral surface by molding a synthetic resin material, wherein a synthetic resin member having a side surface to be a reflecting surface is molded. A molding step of processing and a cooling step of placing the molded synthetic resin member on the standing plate so that the side surface of the molded resin member does not contact the standing plate and lowering the temperature of the synthetic resin member to a specified temperature. A method for manufacturing a rotary polygon mirror made of synthetic resin.
【請求項5】 冷却工程の合成樹脂部材の放置板は、合
成樹脂部材の外形線よりほぼ5mm内側を支持できる大き
さを有する載置突起を突設し、合成樹脂部材は載置突起
上に載置され冷却される請求項4記載の合成樹脂製回転
多面鏡の製造方法。
5. The leaving plate of the synthetic resin member in the cooling step is provided with a mounting protrusion having a size capable of supporting approximately 5 mm inside the outline of the synthetic resin member, and the synthetic resin member is mounted on the mounting protrusion. The method for manufacturing a rotary polygon mirror made of synthetic resin according to claim 4, which is placed and cooled.
【請求項6】 放置板の載置突起は温度調節機構を有す
る請求項4記載の合成樹脂製回転多面鏡の製造方法。
6. The method for manufacturing a rotary polygon mirror made of synthetic resin according to claim 4, wherein the placing projection of the leaving plate has a temperature adjusting mechanism.
【請求項7】 回転軸の嵌合孔を有し、外周面に形成さ
れる複数個の反射面を備えた本体と、本体の反射面の軸
方向の端縁より軸方向に突出する載置部を有し、載置部
の端面は回転軸の嵌合孔に直交する平面とする合成樹脂
製回転多面鏡。
7. A main body having a plurality of reflecting surfaces formed on an outer peripheral surface thereof, which has a fitting hole for a rotary shaft, and a mounting body which projects in an axial direction from an axial edge of the reflecting surface of the main body. A rotary polygon mirror made of synthetic resin having a portion, and the end surface of the mounting portion is a plane orthogonal to the fitting hole of the rotating shaft.
【請求項8】 載置部の厚さ寸法の本体の厚さ寸法に対
する割合は、10%前後としてなる請求項7記載の合成
樹脂製回転多面鏡。
8. The rotary polygon mirror made of synthetic resin according to claim 7, wherein the ratio of the thickness of the mounting portion to the thickness of the main body is about 10%.
【請求項9】 載置部の外形線と本体の外形線との間隔
はほぼ5mm程度としてなる請求項7記載の合成樹脂製回
転多面鏡。
9. The rotary polygon mirror made of synthetic resin according to claim 7, wherein the interval between the outline of the mounting portion and the outline of the main body is approximately 5 mm.
JP7255001A 1995-10-02 1995-10-02 Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin Pending JPH0996711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255001A JPH0996711A (en) 1995-10-02 1995-10-02 Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255001A JPH0996711A (en) 1995-10-02 1995-10-02 Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin

Publications (1)

Publication Number Publication Date
JPH0996711A true JPH0996711A (en) 1997-04-08

Family

ID=17272829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255001A Pending JPH0996711A (en) 1995-10-02 1995-10-02 Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH0996711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679801B2 (en) 2006-09-14 2010-03-16 Ricoh Company, Ltd. Optical deflector, method of manufacturing optical deflector, optical scanning apparatus, and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679801B2 (en) 2006-09-14 2010-03-16 Ricoh Company, Ltd. Optical deflector, method of manufacturing optical deflector, optical scanning apparatus, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP3060912B2 (en) Rotating polygon mirror and manufacturing method thereof
JPH0996711A (en) Rotary polyhedral mirror made of synthetic resin and production of rotary polyhedral mirror made of synthetic resin
US5517365A (en) Polygonal mirror
CN216595588U (en) Laser radar multi-surface rotating prism
JPH0677106B2 (en) Polygon mirror
JP2003156601A (en) Optical small-size lens
JP2000329908A (en) Plastic molded goods
US5561545A (en) Rotary polygon mirror
JPS6348511A (en) Motor for optical scanner
JPH1164775A (en) Rotary polygon mirror, metallic mold for the mirror and glass press molding method for the mirror
JPH0572494A (en) Rotary polygon mirror made of plastic and its manufacture
US5938342A (en) Semi-spherical bearing
JP2973616B2 (en) Rotating polygon mirror
JPH08234131A (en) Rotary polygon mirror
JP2535088Y2 (en) Rotating polygon mirror
JP6221769B2 (en) Lens unit manufacturing method
JPH05307149A (en) Rotary deflecting element and optical scanning device using the same
JPH02262105A (en) Rotary polyhedral mirror and production thereof
JPH10325937A (en) Injection molding of polygon mirror and method for preventing shake at its rotation
JPH08148312A (en) Insulating shaft with flat face for rotary electronic device
JPH05116186A (en) Balance adjusting molding die
JP2024062808A (en) Lens and lens manufacturing method
JPS63100417A (en) Optical scanner deflector
JPH0463315A (en) Polygonal mirror, its manufacture and laser printer
JPH0318810A (en) Polygon motor