JPH0996668A - Gps receiver - Google Patents

Gps receiver

Info

Publication number
JPH0996668A
JPH0996668A JP25233795A JP25233795A JPH0996668A JP H0996668 A JPH0996668 A JP H0996668A JP 25233795 A JP25233795 A JP 25233795A JP 25233795 A JP25233795 A JP 25233795A JP H0996668 A JPH0996668 A JP H0996668A
Authority
JP
Japan
Prior art keywords
satellite
estimated reception
weight
reception position
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25233795A
Other languages
Japanese (ja)
Inventor
Takeshi Okada
田 毅 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25233795A priority Critical patent/JPH0996668A/en
Publication of JPH0996668A publication Critical patent/JPH0996668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the effect of error when error or noise inherent to each satellite is present in the position or a pseudo distance of satellite. SOLUTION: The GPS receiver comprises a pseudo distance bias calculating means 17 for determining the difference between the previous pseudo distance and the distance between an estimated receiving position and the previous position of satellite, a means 18 for calculating the angle of elevation when a current satellite is observed from a current or previous estimated receiving position, and a means 19 for calculating the propagation delay of ionospheric layer or atmospheric layer. The GPS receiver further comprises a means 16 for calculating the weight by method of least squares from the pseudo distance bias, angle of elevation, propaqation delay and the accuracy information of satellite carried on the navigation message, and a means 15 for determining an estimated receiving position closer to the true receiving position than previously estimated receiving position through combination of the weight calculated by the weight calculating means 16 and the method of least squares.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数のGPS(グロー
バル・ポジショニング・システム)人工衛星からの信号
電波を受信して解読することによって自分の位置を求め
るGPS受信装置に関するもので、例えば自動車や船舶
の現在位置を地球上の絶対位置として求めたい場合に広
く利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GPS receiving apparatus for determining its own position by receiving and decoding signal radio waves from a plurality of GPS (Global Positioning System) artificial satellites. It is widely used when it is desired to obtain the current position of a ship as an absolute position on the earth.

【0002】[0002]

【従来の技術】以下、図面を参照しながら、従来のGP
S受信装置の一例について説明する。図2は従来のGP
S受信装置の概略図を示すものである。図2において、
1は検波手段、2は衛星データ解析手段、3は疑似距離
残差算出手段、4は方向余弦行列計算手段、5は推定受
信位置計算手段である。
2. Description of the Related Art A conventional GP will now be described with reference to the drawings.
An example of the S receiver will be described. Figure 2 is the conventional GP
It is a schematic diagram of an S receiver. In FIG.
Reference numeral 1 is detection means, 2 is satellite data analysis means, 3 is pseudorange residual calculation means, 4 is direction cosine matrix calculation means, and 5 is estimated reception position calculation means.

【0003】以上のように構成された従来のGPS受信
装置について、以下その動作を説明する。各GPS人工
衛星の電波は、例えばL1(1575.42Hz)の搬
送波に載せて送られるが、衛星固有のC/AあるいはP
コードと呼ばれる疑似雑音符号(Pseudo Random Noi
se)で位相変調され、また衛星及び利用者の移動により
ドップラーシフトされて周波数誤差を含んでいるという
特徴がある。そこで、検波手段1は、各衛星のPRN符
号拡散された電波について、逆拡散処理と、周波数と位
相合わせ処理によって各衛星の信号電波を復調し、デー
タ信号を取り出す。
The operation of the conventional GPS receiver having the above structure will be described below. The radio waves of each GPS satellite are transmitted by being carried on a carrier wave of L1 (1575.42 Hz), for example.
Pseudo Random Noi called a code
se) is phase-modulated, and is characterized by including frequency error due to Doppler shift due to movement of satellite and user. Therefore, the detection means 1 demodulates the signal radio wave of each satellite by the despreading process and the frequency and phase matching process for the PRN code spread radio wave of each satellite, and extracts the data signal.

【0004】衛星データ解析手段2は、検波手段1で検
波された信号データから航法メッセージを組み立てて、
以降の推定受信位置計算に有用な情報を取り出す。例え
ば、メッセージに含まれる軌道情報やステータス情報か
ら衛星の位置や衛星の精度情報を求めたり、信号送信時
刻とその送信時刻が刻まれたメッセージが受信装置に届
いた時刻から伝搬時間を求め、その伝搬時間に光速を乗
じることによって、現在の衛星位置と受信位置との間の
距離と推測される距離、すなわち疑似距離を計算する。
The satellite data analysis means 2 assembles a navigation message from the signal data detected by the detection means 1,
Information useful for the subsequent calculation of the estimated reception position is extracted. For example, the satellite position and satellite accuracy information is obtained from the orbit information and status information included in the message, or the propagation time is obtained from the time when the message with the signal transmission time and its transmission time arrives at the receiving device. By multiplying the propagation time by the speed of light, the distance estimated to be the distance between the current satellite position and the reception position, that is, the pseudo distance is calculated.

【0005】次に疑似距離残差算出手段3によって、衛
星データ解析手段2で得られた疑似距離と前回あるいは
バックアップメモリから読み込んだ推定受信位置と現在
の衛星位置との間の距離との差である疑似距離残差を求
め、方向余弦行列計算手段4によって、n個(n>3)
の各衛星位置の推定受信位置に対する方向余弦ベクトル
からなる4*nの方向余弦行列Hnを求める。
Next, the pseudorange residual calculation means 3 calculates the difference between the pseudorange obtained by the satellite data analysis means 2 and the distance between the estimated reception position read last time or from the backup memory and the current satellite position. A certain pseudorange residual is obtained, and n (n> 3) is obtained by the direction cosine matrix calculation means 4.
Then, a 4 * n direction cosine matrix Hn consisting of direction cosine vectors for the estimated reception position of each satellite position is calculated.

【0006】次に、推定受信位置計算手段5により、n
個の衛星について上記疑似距離残差算出手段3から得ら
れた疑似距離残差ベクトルPDと、方向余弦行列計算手
段4から求められた方向余弦行列とから、前回の推定受
信位置Xo(X:3次元の位置ベクトル)と現在の推定
受信位置Xnとの差分dXを求める。実際には各疑似距
離に等しく含まれる誤差であるクロックバイアスをdX
と同時に求めるため、未知数は4個となる。n=4であ
れば方向余弦行列の逆行列に上記疑似距離残差ベクトル
を乗じることにより位置差分dXを求めることができる
が、一般に、受信できる衛星は4個以上になることが有
り得る。その際は、もちろん、方向余弦行列の逆行列は
存在しない故、通常には解くことができない。そこで、
n個の中から4個を何らかの基準で選ぶか、あるいは、
最小2乗解は存在するので、式(1)のように最小2乗
法によって解くことになる。 dX=(HT ・H)-1T ・PD …………(1)
Next, the estimated reception position calculation means 5 makes n
From the pseudorange residual vector PD obtained from the pseudorange residual calculating means 3 and the direction cosine matrix obtained from the direction cosine matrix calculating means 4 for each satellite, the previous estimated reception position Xo (X: 3: The difference dX between the dimensional position vector) and the current estimated reception position Xn is obtained. Actually, the clock bias, which is an error included in each pseudo distance, is equal to dX.
Since it is obtained at the same time, there are four unknowns. If n = 4, the position difference dX can be obtained by multiplying the inverse matrix of the direction cosine matrix by the pseudorange residual vector, but generally, the number of satellites that can be received may be four or more. In that case, of course, since the inverse matrix of the direction cosine matrix does not exist, it cannot be normally solved. Therefore,
Choose 4 out of n by some standard, or
Since there is a least-squares solution, it will be solved by the least-squares method as shown in equation (1). dX = (H T · H) −1 H T · PD ………… (1)

【0007】最小2乗法は、疑似距離残差ベクトルに含
まれる雑音あるいは誤差の2乗を最小とするように解が
決まるので、雑音や誤差がのりやすいGPS測位では特
に有効である。そこで、従来の推定受信位置計算手段5
でも最小2乗法を用いて、推定受信位置を計算するもの
が多々有る。
The least-squares method is particularly effective in GPS positioning in which noise and errors are likely to occur because the solution is determined so as to minimize the square of noise or errors contained in the pseudorange residual vector. Therefore, the conventional estimated reception position calculation means 5
However, there are many methods that use the least squares method to calculate the estimated reception position.

【0008】位置差分dXが求まれば、現在の推定受信
位置Xnは、 Xn=Xo+dX …………(2) のように求めることができる。
Once the position difference dX is obtained, the current estimated reception position Xn can be obtained as follows: Xn = Xo + dX (2)

【0009】以上の方法によって、複数の衛星から受信
された信号電波を用いて、推定受信位置を求めることが
できる。
With the above method, the estimated reception position can be obtained using the signal radio waves received from a plurality of satellites.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ような構成だけでは、衛星位置計算、疑似距離に、含ま
れる衛星固有の誤差、雑音の影響により、最小2乗法で
あっても、その過程で必要な逆行列演算が不安定とな
り、解の精度が悪化することがあった。
However, with the above configuration alone, even if the least-squares method is used in the process due to the effects of satellite position calculation, satellite-specific errors included in the pseudorange, and noise. The required inverse matrix operation became unstable, and the accuracy of the solution sometimes deteriorated.

【0011】また、その悪化を回避するために、衛星ご
とに影響を変えられるように重みをつけて最小2乗法を
行なう方法も従来からあったが、その重みを決める要因
が航法メッセージに含まれる衛星の信頼度や、電離層、
大気層の遅延情報のみというように情報量が少なく、効
果のある重み付けをすることが困難であった。
Further, in order to avoid the deterioration, there has been a method of performing the least squares method by giving a weight so that the influence can be changed for each satellite, but a factor that determines the weight is included in the navigation message. Satellite reliability, ionosphere,
Since the amount of information is small, such as only the delay information of the atmospheric layer, it was difficult to perform effective weighting.

【0012】本発明は、このような従来の問題を解決す
るものであり、精度の高い推定受信位置を得ることので
きGPS受信装置を提供することを目的とする。
[0012] The present invention solves such a conventional problem, and an object of the present invention is to provide a GPS receiver capable of obtaining an estimated reception position with high accuracy.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明のGPS受信装置は、衛星固有の誤差の影響
をキャンセルできるように、疑似距離バイアス、衛星の
精度情報、仰角、電波伝搬遅延から最小2乗法の重みを
計算する重み計算手段を備えたものである。
In order to achieve the above object, the GPS receiver of the present invention uses a pseudorange bias, satellite accuracy information, elevation angle, and radio wave propagation so as to cancel the influence of errors peculiar to the satellite. It is provided with a weight calculation means for calculating the weight of the least square method from the delay.

【0014】[0014]

【作用】したがって発明によれば、重み計算とその重み
をかけた最小2乗法で解を求めることによって、重みの
有効性を高め、精度の高い推定受信位置を得ることがで
きる。
Therefore, according to the present invention, by calculating the weight and obtaining the solution by the least squares method by multiplying the weight, the effectiveness of the weight can be enhanced and an estimated reception position with high accuracy can be obtained.

【0015】[0015]

【実施例】以下、本発明の請求項1記載のGPS受信装
置の一実施例について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the GPS receiver according to claim 1 of the present invention will be described below with reference to the drawings.

【0016】図1は、本実施例におけるGPS受信装置
の概略構成を示すものである。図1において、11は検
波手段、12は衛星データ解析手段、13は疑似距離残
差算出手段、14は方向余弦行列計算手段、15は推定
受信位置計算手段、16は重み計算手段、17は疑似距
離バイアス計算手段、18は仰角計算手段、19は電波
伝搬遅延手段である。
FIG. 1 shows a schematic configuration of the GPS receiver in this embodiment. In FIG. 1, 11 is detection means, 12 is satellite data analysis means, 13 is pseudo-range residual calculation means, 14 is direction cosine matrix calculation means, 15 is estimated reception position calculation means, 16 is weight calculation means, and 17 is pseudo. Distance bias calculation means, 18 is an elevation angle calculation means, and 19 is a radio wave propagation delay means.

【0017】検波手段11、データ解析手段12、疑似
距離残差算出手段13、方向余弦行列計算手段14につ
いては、従来例で説明したものと同じなので重複した説
明は省略する。
The detection means 11, the data analysis means 12, the pseudo distance residual calculation means 13, and the direction cosine matrix calculation means 14 are the same as those described in the conventional example, and therefore their duplicated description will be omitted.

【0018】本実施例では、疑似距離バイアス計算手段
17で、前回の最小2乗法で求めた推定受信位置と前回
の衛星iの位置との間の距離と前回の疑似距離との差で
ある疑似距離バイアスPRBiを求める。この疑似距離
バイアスPRBiは、前回の最小2乗解に対して該当す
る衛星iの疑似距離に含まれる誤差を表す。よって、こ
のPRBiが小さければ小さいほどその衛星に対する信
頼度が高いことを意味している。
In this embodiment, the pseudo distance bias calculating means 17 is a difference between the distance between the previous estimated receiving position obtained by the least squares method and the previous position of the satellite i and the pseudo distance of the previous time. The distance bias PRBi is calculated. This pseudorange bias PRBi represents the error included in the pseudorange of the satellite i corresponding to the previous least squares solution. Therefore, the smaller the PRBi, the higher the reliability of the satellite.

【0019】また、仰角計算手段18は、衛星iを現在
あるいは前回の推定受信位置から仰いで見たときの仰角
ELiを計算する。この仰角ELiが低いほど、一般に
は水平方向の位置精度が上がる。それは、例えば、衛星
の1つとして地球を考えるとわかりやすい。すなわち、
衛星を中心として半径を疑似距離とした球と地球表面と
の交点は理想的には一点で交わるが、疑似距離に含まれ
る誤差があれば一点で交わらない。その誤差の交点の精
度悪化に対する影響は明らかに仰角が低い方が低い。よ
って、このELiが小さければ小さいほど、その衛星に
対する信頼度が高いことを意味する。
Further, the elevation angle calculating means 18 calculates the elevation angle ELi when the satellite i is looked up from the current or previous estimated reception position. Generally, the lower the elevation angle ELi, the higher the positional accuracy in the horizontal direction. It is easy to understand, for example, if we consider the earth as one of the satellites. That is,
Ideally, the point of intersection between the sphere centered on the satellite and the radius of the pseudorange and the surface of the earth intersect at one point, but if there is an error included in the pseudorange, they do not intersect at one point. The effect of the intersection point of the error on the deterioration of accuracy is obviously lower when the elevation angle is lower. Therefore, the smaller the ELi, the higher the reliability for the satellite.

【0020】次に電波伝搬遅延手段19は、衛星データ
解析手段12で解析した航法メッセージから取り出した
電離層遅延情報と仰角計算手段18で求めた衛星iの仰
角から電離層による伝搬遅延を求め、また、あらかじめ
用意したテーブルあるいは近似式から仰角の値に応じて
大気層等による伝搬遅延を求める。電離層による伝搬遅
延と大気層等による伝搬遅延とを加えた遅延量をその衛
星iについての電波伝搬遅延DLiとして出力する。こ
の遅延DLiは、単独測位である限り、近似式でしかあ
りえず、精度は期待できないことが多い。そこで、この
DLiが小さいほど、一般にはその衛星iの情報の信頼
度は高い。
Next, the radio wave propagation delay means 19 obtains the propagation delay due to the ionosphere from the ionospheric delay information extracted from the navigation message analyzed by the satellite data analysis means 12 and the elevation angle of the satellite i obtained by the elevation angle calculation means 18, and Propagation delay due to the atmospheric layer is calculated according to the elevation value from a table prepared in advance or an approximate expression. The delay amount obtained by adding the propagation delay due to the ionosphere and the propagation delay due to the atmosphere layer is output as the radio wave propagation delay DLi for the satellite i. This delay DLi can only be an approximate expression as long as it is a single positioning, and accuracy cannot be expected in many cases. Therefore, the smaller the DLi, the higher the reliability of the information of the satellite i in general.

【0021】さらに、衛星データ解析手段12で解析し
た航法メッセージからは、衛星自体が通知する精度情報
ACCi(精度:accuracyと呼ばれている)を知ること
ができるが、衛星のデータを信用すれば、ACCiも小
さいほどその衛星iの情報の信頼度は高い。
Further, from the navigation message analyzed by the satellite data analyzing means 12, the accuracy information ACCi (called accuracy) called by the satellite itself can be known, but if the data of the satellite is trusted, , ACCi is smaller, the reliability of the information of the satellite i is higher.

【0022】さて、重み計算手段16は、各衛星iにつ
いて、疑似距離バイアス計算手段17で求めた疑似距離
バイアスPRBi、仰角計算手段18で求めた仰角EL
i、電波伝搬遅延手段19で求めた電波伝搬遅延DL
i、そして精度情報ACCiを使い、各データの特徴を
ふまえながら、重みWiを計算する。
The weight calculation means 16 calculates the pseudo range bias PRBi calculated by the pseudo range bias calculation means 17 and the elevation angle EL calculated by the elevation angle calculation means 18 for each satellite i.
i, the radio wave propagation delay DL obtained by the radio wave propagation delay means 19
i and the accuracy information ACCi are used to calculate the weight Wi while considering the characteristics of each data.

【0023】推定受信位置計算手段15は、その重み計
算手段16で計算した重みWiと疑似距離残差算出手段
13から求めた疑似距離残差ベクトルPDと、方向余弦
行列計算手段14から求められた方向余弦行列とから、
前回の推定受信位置Xo(X:3次元の位置ベクトル)
と現在の推定受信位置Xnとの差分dxを最小2乗法に
よって求める。最小2乗法で解く理由は従来例で述べた
通りである。
The estimated reception position calculation means 15 is calculated by the weight Wi calculated by the weight calculation means 16, the pseudo distance residual vector PD calculated by the pseudo distance residual calculation means 13, and the direction cosine matrix calculation means 14. From the direction cosine matrix and
Previous estimated reception position Xo (X: three-dimensional position vector)
The difference dx between the current estimated reception position Xn and the current estimated reception position Xn is obtained by the method of least squares. The reason for solving by the method of least squares is as described in the conventional example.

【0024】重み計算手段16としては、請求項2記載
の重み計算手段を用いれば良いし、推定受信位置計算手
段15としては、請求項3記載の推定受信位置計算手段
を用いれば良い。
The weight calculating means 16 may be the weight calculating means described in claim 2, and the estimated receiving position calculating means 15 may be the estimated receiving position calculating means described in claim 3.

【0025】以上の構成を取ることによって、4つの情
報から重みを決めて重みの有効性を高め、精度の高い推
定受信位置を得ることができるGPS受信装置を実現す
ることができる。
By adopting the above configuration, it is possible to realize a GPS receiving device which can determine the weight from four pieces of information, enhance the effectiveness of the weight, and obtain an estimated reception position with high accuracy.

【0026】次に本発明の請求項2記載の重み計算手段
手段について説明する。衛星iについての疑似距離バイ
アスをPRBi、仰角をELi、電波伝搬遅延をDL
i、航法メッセージで通知される衛星の精度情報をAC
Ciとしたときには、それぞれ、上記実施例で述べたよ
うに、値が小さくなるほど、推定受信位置を求める際に
おいてその衛星についての信頼度が高くなる。
Next, the weight calculating means means according to claim 2 of the present invention will be described. The pseudorange bias for satellite i is PRBi, the elevation angle is ELi, and the radio wave propagation delay is DL.
i, AC accuracy information of the satellite notified by the navigation message
In the case of Ci, as described in the above embodiments, the smaller the value, the higher the reliability of the satellite in obtaining the estimated reception position.

【0027】そこで、ある衛星iの情報を推定受信位置
の計算に用いるときの重みWiは、何らかの調整係数
(正)を各々乗じた上記4つのデータの絶対値の和か、
あるいは、2乗和として、 Wi=a*|PRBi|+b*|ELi|+c*|DLi|+d*|ACCi| (a,b,c,dは正の定数) …………(3) あるいは、 Wi=a*PRBi2 +b*ELi2 +c*DLi2 +d*ACCi2 (a,b ,c,dは正の定数) …………(4) と計算する。
Therefore, the weight Wi when the information of a certain satellite i is used for the calculation of the estimated reception position is the sum of the absolute values of the above four data multiplied by some adjustment coefficient (positive), or
Alternatively, as the sum of squares, Wi = a * | PRBi | + b * | ELi | + c * | DLi | + d * | ACCi | (a, b, c, d are positive constants) (3) or , Wi = a * PRBi 2 + b * ELi 2 + c * DLi 2 + d * ACCi 2 (a, b, c, d is a positive constant) is calculated as ............ (4).

【0028】この重みは、推定受信位置を求める際にお
いてのその衛星についての信頼度が高いほど小さくなる
値で、最小2乗法に用いるときはその点に注意する。も
ちろん、重みとして上記Wiの逆数を改めてWiとすれ
ば、反対の特性を示すことは言うまでもない。
This weight is a value that decreases as the reliability of the satellite in obtaining the estimated reception position becomes higher, and care must be taken when using the least squares method. Needless to say, if the reciprocal of Wi is set to Wi again as a weight, the opposite characteristic is exhibited.

【0029】このように、本実施例の重み計算手段によ
れば、疑似距離バイアス、仰角、電波伝搬遅延、航法メ
ッセージで通知される衛星の精度情報を効果的に結合し
て、最小2乗法で精度良い推定受信位置を得るのに有効
に用いられる重みを計算することができる。
As described above, according to the weight calculating means of this embodiment, the pseudo range bias, the elevation angle, the radio wave propagation delay, and the accuracy information of the satellite notified by the navigation message are effectively combined, and the least square method is used. It is possible to calculate weights that are effectively used to obtain accurate estimated reception positions.

【0030】次に、本発明の請求項3記載の推定受信位
置計算手段について説明する。検波できている全ての衛
星について、重み計算手段16で求めた各衛星の重みW
iを対角に配置した重み行列をI、前回の推定受信位置
と現在の衛星iの位置との間の距離と疑似距離との差で
ある疑似距離残差PDiをn個まとめたベクトルをPD
とし、また、n個(n>3)の各衛星の推定受信位置に
対する方向余弦ベクトルからなる4*nの方向余弦行列
をHとしたときに、前回の推定受信位置Xo(X:3次
元の位置ベクトル)と現在の推定受信位置Xnとの差分
dxを、 dX=(Ht H+I)-1t ・PD …………(5) で求める。
Next, the estimated reception position calculation means according to claim 3 of the present invention will be described. The weight W of each satellite obtained by the weight calculation means 16 for all the detected satellites
A weight matrix in which i is diagonally arranged is I, and a vector in which n pseudo distance residuals PDi, which is the difference between the distance between the previous estimated reception position and the current position of the satellite i and the pseudo distance, are combined is PD.
Further, when H is a 4 * n direction cosine matrix consisting of direction cosine vectors for the estimated reception positions of n (n> 3) satellites, the previous estimated reception position Xo (X: three-dimensional The difference dx between the position vector) and the current estimated reception position Xn is calculated by dX = (H t H + I) −1 H t · PD (5).

【0031】位置差分dxが求まれば、前回の推定受信
位置Xo(X:3次元の位置ベクトル)、現在の推定受
信位置をXnとして、現在の推定受信位置Xnは、 Xn=Xo+dX …………(6) のように求めることができる。
When the position difference dx is obtained, the previous estimated reception position Xo (X: three-dimensional position vector) and the current estimated reception position are set as Xn, and the current estimated reception position Xn is Xn = Xo + dX .... … (6) can be obtained.

【0032】このように、本実施例の推定受信位置計算
手段によれば、Iの各成分がHの各成分に対して微小で
あれば、Ht H自体の逆行列が不安定な場合であっても
正則化する効果を有し、安定に解dXを求めることがで
きる。
As described above, according to the estimated reception position calculating means of the present embodiment, if each component of I is minute with respect to each component of H, the inverse matrix of H t H itself is unstable. Even if there is, it has the effect of regularization, and the solution dX can be stably obtained.

【0033】また、請求項1や請求項2で説明した重み
Wiを式(5)のように最小2乗法に取り込むことによ
って、各衛星の最終結果である推定受信位置への寄与度
を変えることができ、その結果として推定受信位置の精
度を高めることができる。
Further, the contribution to the estimated reception position which is the final result of each satellite is changed by incorporating the weight Wi described in claims 1 and 2 into the least squares method as shown in the equation (5). As a result, the accuracy of the estimated reception position can be improved.

【0034】[0034]

【発明の効果】以上のように、本発明のGPS受信装置
によれば、疑似距離バイアス、仰角、電波伝搬遅延、航
法メッセージで通知される衛星の精度情報から、各衛星
の推定受信位置精度に対する寄与度を示す重みを計算
し、最小2乗解として得られた推定受信位置の精度を高
めるGPS受信装置を提供することができる。
As described above, according to the GPS receiver of the present invention, the estimated receiving position accuracy of each satellite is calculated from the pseudo range bias, the elevation angle, the radio wave propagation delay, and the accuracy information of the satellite notified by the navigation message. It is possible to provide a GPS receiver that calculates the weight indicating the contribution and improves the accuracy of the estimated reception position obtained as the least squares solution.

【0035】また本発明の重み計算手段によれば、疑似
距離バイアス、仰角、電波伝搬遅延、航法メッセージで
通知される衛星の精度情報を効果的に結合して、最小2
乗法で精度良い推定受信位置を得るのに有効に用いられ
る重みを計算することができる。さらに、本発明の推定
受信位置計算手段によれば、重みWiを最小2乗法の中
に効果的に取り入れて各衛星の最終結果である推定受信
位置への寄与度を変えることができ、その結果として推
定受信位置の精度を高めることができる。
Further, according to the weight calculation means of the present invention, the pseudo range bias, the elevation angle, the radio wave propagation delay, and the accuracy information of the satellite notified by the navigation message are effectively combined to make a minimum of 2.
It is possible to calculate the weight effectively used for obtaining the accurate estimated reception position by the multiplication method. Further, according to the estimated reception position calculation means of the present invention, the weight Wi can be effectively incorporated into the least squares method to change the contribution to the estimated reception position which is the final result of each satellite. As a result, the accuracy of the estimated reception position can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるGPS受信装置の概
略構成を示すブロック図
FIG. 1 is a block diagram showing a schematic configuration of a GPS receiver according to an embodiment of the present invention.

【図2】従来のGPS受信装置の概略構成を示すブロッ
ク図
FIG. 2 is a block diagram showing a schematic configuration of a conventional GPS receiver.

【符号の説明】 11 検波手段 12 衛星データ解析手段 13 疑似距離残差算出手段 14 方向余弦行列計算手段 15 推定受信位置計算手段 16 重み計算手段 17 疑似距離バイアス計算手段 18 仰角計算手段 19 電波伝搬遅延手段[Explanation of Codes] 11 Detection means 12 Satellite data analysis means 13 Pseudo distance residual calculation means 14 Directional cosine matrix calculation means 15 Estimated reception position calculation means 16 Weight calculation means 17 Pseudo distance bias calculation means 18 Elevation angle calculation means 19 Radio wave propagation delay means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のGPS人工衛星が送信する信号電
波を検波する検波手段と、検波したデータから航法メッ
セージを組み立てて、メッセージに含まれる時間情報か
ら信号電波が現在の受信位置に到達するまでの伝搬時間
とその時間を距離に換算した疑似距離を算出し、さらに
メッセージに含まれる軌道情報とステータス情報から衛
星の位置および衛星の精度情報を求める衛星データ解析
手段と、前記疑似距離と推定受信位置から疑似距離残差
を求める疑似距離残差算出手段と、n個(n>3)の各
衛星の推定受信位置に対する方向余弦ベクトルからなる
4*nの方向余弦行列Hnを求める方向余弦行列計算手
段とを有するGPS受信装置であって、前回の推定受信
位置と前回の衛星の位置との間の距離と前回の疑似距離
との差を求める疑似距離バイアス計算手段と、現在の衛
星を現在あるいは前回の推定受信位置から仰いで見たと
きの仰角を計算する仰角計算手段と、前記衛星データ解
析手段で得られた航法メッセージおよび前記仰角から電
離層や大気層等の電波伝搬遅延を計算する電波伝搬遅延
計算手段と、前記疑似距離バイアスと仰角と電波伝搬遅
延とデータ解析手段とから得られた衛星の精度情報を基
に、最小2乗法の重みを計算する重み計算手段と、前記
方向余弦行列Hnおよび疑似距離残差と重み計算手段で
計算された重みとから、最小2乗法により、以前の推定
受信位置より真の受信位置に近い推定受信位置を求める
推定受信位置計算手段とを有することを特徴とするGP
S受信装置。
1. A detection means for detecting signal radio waves transmitted by a plurality of GPS satellites, a navigation message is assembled from the detected data, and the time information contained in the message is used until the signal radio waves reach the current reception position. The satellite data analysis means for calculating the propagation time of the satellite and the pseudo distance obtained by converting the time into a distance, and further obtaining the satellite position and the satellite accuracy information from the orbit information and the status information included in the message, the pseudo distance and the estimated reception. Pseudo-range residual calculation means for obtaining pseudo-range residual from position and direction cosine matrix calculation for obtaining 4 * n direction cosine matrix Hn consisting of direction cosine vectors for estimated reception positions of n (n> 3) satellites A GPS receiving device having means for determining a difference between a previous estimated receiving position and a previous satellite position and a previous pseudo distance. Distance bias calculation means, elevation angle calculation means for calculating the elevation angle when the current satellite is looked up from the current or previous estimated reception position, the navigation message obtained by the satellite data analysis means and the ionosphere from the elevation angle. Based on the accuracy information of the satellite obtained from the radio wave propagation delay calculating means for calculating the radio wave propagation delay of the atmosphere layer, the pseudo range bias, the elevation angle, the radio wave propagation delay, and the data analyzing means, the least squares method weight is calculated. An estimated reception position closer to the true reception position than the previous estimated reception position is calculated by the least square method from the weight calculation means for calculation, the direction cosine matrix Hn and the pseudo distance residual, and the weight calculated by the weight calculation means. GP having an estimated reception position calculating means for obtaining
S receiver.
【請求項2】 重み計算手段が、衛星iについての疑似
距離バイアスをPRBi、仰角をELi、電波伝搬遅延
をDLi、航法メッセージで通知される衛星の精度情報
をACCiとしたときに、各衛星についての重みWi
を、 Wi=a*|PRBi|+b*|ELi|+c*|DL
i|+d*|ACCi|(a,b,c,dは正の定数)
あるいは、 Wi=a*PRBi2 +b*ELi2 +c*DLi2
d*ACCi2 (a,b,c,dは正の定数) と計算する請求項1記載のGPS受信装置。
2. When the weight calculation means sets PRBi as the pseudorange bias for satellite i, ELi as the elevation angle, DLi as the radio wave propagation delay, and ACCi as the accuracy information of the satellite notified by the navigation message, Weight Wi
Wi = a * | PRBi | + b * | ELi | + c * | DL
i | + d * | ACCi | (a, b, c, d are positive constants)
Alternatively, Wi = a * PRBi 2 + b * ELi 2 + c * DLi 2 +
The GPS receiver according to claim 1, wherein d * ACCi 2 (a, b, c, d are positive constants) is calculated.
【請求項3】 推定受信位置計算手段が、衛星iについ
ての重み計算手段で求めた重みWiを対角に配置した重
み行列をI、前回の推定受信位置と現在の衛星iの位置
との間の距離と疑似距離との差である疑似距離残差PD
iをn個まとめたベクトルをPDとし、また、n個(n
>3)の各衛星の推定受信位置に対する方向余弦ベクト
ルからなる4*nの方向余弦行列をHとしたときに、前
回の推定受信位置Xo(X:3次元の位置ベクトル)と
現在の推定受信位置Xnとの差分dxを、 dX=(Ht H+I)-1t ・PD で求め、前記dxから推定受信位置Xnを、 Xn=Xo+dX で求める請求項1記載のGPS受信装置。
3. The estimated reception position calculation means has a weight matrix in which the weights Wi obtained by the weight calculation means for the satellite i are diagonally arranged, and I is the distance between the previous estimated reception position and the current position of the satellite i. Pseudorange residual PD, which is the difference between the distance and the pseudorange
PD is a vector of n i, and n (n
> 3) When the 4 * n direction cosine matrix consisting of the direction cosine vector for the estimated reception position of each satellite is H, the previous estimated reception position Xo (X: three-dimensional position vector) and the current estimated reception position the difference dx between the position Xn, dX = (H t H + I) -1 H determined by t · PD, the estimated received position Xn from the dx, GPS receiving apparatus according to claim 1, obtained by Xn = Xo + dX.
JP25233795A 1995-09-29 1995-09-29 Gps receiver Pending JPH0996668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25233795A JPH0996668A (en) 1995-09-29 1995-09-29 Gps receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25233795A JPH0996668A (en) 1995-09-29 1995-09-29 Gps receiver

Publications (1)

Publication Number Publication Date
JPH0996668A true JPH0996668A (en) 1997-04-08

Family

ID=17235875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25233795A Pending JPH0996668A (en) 1995-09-29 1995-09-29 Gps receiver

Country Status (1)

Country Link
JP (1) JPH0996668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508501A (en) * 2001-11-02 2005-03-31 クゥアルコム・インコーポレイテッド Reliability index for parameter estimates accounting for cumulative error
JP2006017604A (en) * 2004-07-02 2006-01-19 Japan Radio Co Ltd Satellite signal receiving device
JP2012083136A (en) * 2010-10-07 2012-04-26 Oki Electric Ind Co Ltd Bias error estimation apparatus, bias error estimation method and position estimation apparatus
JP2013534623A (en) * 2010-06-14 2013-09-05 ユニヴァーシタ’デグリ ステュディ ディ ローマ “ラ サピエンツァ” Global Navigation Satellite System-System for measuring seismic motion or vibration of structures based on GNSS and / or pseudo satellites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508501A (en) * 2001-11-02 2005-03-31 クゥアルコム・インコーポレイテッド Reliability index for parameter estimates accounting for cumulative error
JP2012013706A (en) * 2001-11-02 2012-01-19 Qualcomm Inc Reliability index for parameter estimation value occupying cumulative error
JP2006017604A (en) * 2004-07-02 2006-01-19 Japan Radio Co Ltd Satellite signal receiving device
JP2013534623A (en) * 2010-06-14 2013-09-05 ユニヴァーシタ’デグリ ステュディ ディ ローマ “ラ サピエンツァ” Global Navigation Satellite System-System for measuring seismic motion or vibration of structures based on GNSS and / or pseudo satellites
JP2012083136A (en) * 2010-10-07 2012-04-26 Oki Electric Ind Co Ltd Bias error estimation apparatus, bias error estimation method and position estimation apparatus

Similar Documents

Publication Publication Date Title
Langley Dilution of precision
US5451964A (en) Method and system for resolving double difference GPS carrier phase integer ambiguity utilizing decentralized Kalman filters
Groves et al. A portfolio approach to NLOS and multipath mitigation in dense urban areas
US7741994B2 (en) Ionospheric error prediction and correction in satellite positioning systems
JP3408593B2 (en) Method and apparatus for estimating satellite position in satellite based navigation system
JP3361863B2 (en) Method and apparatus for improving position estimation accuracy in satellite-based navigation systems
EP1678516B1 (en) Method for using three gps frequencies to resolve carrier-phase integer ambiguities
WO2004011957A1 (en) Method and apparatus for navigation using instantaneous doppler measurements from satellites
EP1660903A2 (en) Method for receiver autonomous integrity monitoring and fault detection and elimination
JPH06213993A (en) Method and apparatus for decision of vehicle by using navigation system based on satellite
Suzuki et al. Rotating GNSS antennas: Simultaneous LOS and NLOS multipath mitigation
US5774831A (en) System for improving average accuracy of signals from global positioning system by using a neural network to obtain signal correction values
KR100721517B1 (en) Apparatus and method for determining a position of mobile terminal equipment
US10830898B2 (en) Method and apparatus applicable to positioning in NLOS environment
JP2010539452A (en) Independent altitude measurements in satellite positioning systems.
JP2008039691A (en) Carrier-wave phase type position measuring instrument
Serrano Carrier-phase multipath mitigation in RTK-based GNSS dual-antenna systems
US7499710B2 (en) Integrity monitoring for geo-location systems
JP5566599B2 (en) Navigation system having a device for detecting inaccuracy
JPH0996668A (en) Gps receiver
RU2253128C1 (en) Method for determination of object relative coordinates with survey to arbitrary point of space and system for its realization
Uaratanawong et al. Optimization technique for pseudorange multipath mitigation using different signal selection methods
Harvey Development of a precision pointing system using an integrated multi-sensor approach
Yang et al. Real-time kinematic GPS positioning for centimeter level ocean surface monitoring
Luo et al. Mathematical models for GPS positioning