JPH0995678A - Removal of aluminum chloride from oil product of waste plastic - Google Patents

Removal of aluminum chloride from oil product of waste plastic

Info

Publication number
JPH0995678A
JPH0995678A JP27710895A JP27710895A JPH0995678A JP H0995678 A JPH0995678 A JP H0995678A JP 27710895 A JP27710895 A JP 27710895A JP 27710895 A JP27710895 A JP 27710895A JP H0995678 A JPH0995678 A JP H0995678A
Authority
JP
Japan
Prior art keywords
waste plastic
oil
tank
product
aluminum chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27710895A
Other languages
Japanese (ja)
Inventor
Hideo Nishiyama
秀雄 西山
Nobuyuki Mikata
信行 三方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27710895A priority Critical patent/JPH0995678A/en
Publication of JPH0995678A publication Critical patent/JPH0995678A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide the subject removing method capable of efficiently and easily removing harmful aluminum chloride contaminating inevitably in producing an oil product of waste plastics. SOLUTION: An oil product from waste plastics is first obtained by passing the thermal decomposition product of waste plastic materials through a dehydrochlorination tank packed with alumina particles to conduct a dehydrochlorination treatment followed by catalytic decomposition of the resultant thermal decomposition product by a zeolite-based catalyst. Next, the oil product is mixedly agitated with water or an alkaline solution such as an aqueous calcium hydroxide solution followed by, in the succeeding process, separation of the oil product from an aqueous aluminum chloride solution or separation of the oil product from a solution containing chloride(s) and aluminum compound(s).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は廃棄されたプラスチ
ック材を油化処理して得られる廃プラスチック油化生成
物からの塩化アルミニウムの除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing aluminum chloride from waste plastic oil products obtained by oil treatment of discarded plastic materials.

【0002】[0002]

【従来の技術】近年、環境保護、および資源保護の見地
から、廃棄される高分子量のプラスチック材(以下廃プ
ラスチック材という)よりガソリン、軽油、及び灯油等
の低分子量の廃プラスチック油化生成物を抽出して、こ
れを有効資源として利用しようという動きが進んでい
る。しかし、このような油化処理に際しては、廃プラス
チック材中にポリ塩化ビニル等の有機塩素化合物に由来
する塩素を含有しているため、廃プラスチック材を加熱
溶融し又は、反応させる際に多量の塩化水素ガスが発生
する。このため、廃プラスチック材を溶融処理して得ら
れる気化状態の熱分解生成物(以下熱分解油という)を
ゼオライト系触媒等を用いて接触分解して低沸点のガソ
リン、灯油、軽油等の廃プラスチック油化生成物を製造
しようとする時には、この塩化水素により、接触分解に
使用するゼオライトを主体とした触媒(以下ゼオライト
系触媒という)の触媒活性を低下させる要因となる。ま
た、このような塩素化合物が最終製品であるガソリン、
灯油、軽油等の廃プラスチック油化生成物に塩素化合物
として残留した場合には、燃焼時における燃焼ガスの腐
蝕性が増すと共に、燃焼特性その他の品質を大幅に劣化
させる。
2. Description of the Related Art In recent years, from the standpoint of environmental protection and resource protection, waste plastic oil products of low molecular weight such as gasoline, light oil, and kerosene are used rather than high molecular weight plastic materials to be discarded (hereinafter referred to as waste plastic materials). Is being extracted and used as an effective resource. However, in such an oil treatment, since the waste plastic material contains chlorine derived from an organic chlorine compound such as polyvinyl chloride, a large amount of the waste plastic material is melted by heating or reacted. Hydrogen chloride gas is generated. Therefore, the vaporized thermal decomposition product (hereinafter referred to as thermal decomposition oil) obtained by melting the waste plastic material is catalytically decomposed by using a zeolite catalyst or the like, and the low boiling point gasoline, kerosene, gas oil, etc. are discarded. When producing a plastic oil product, this hydrogen chloride becomes a factor that reduces the catalytic activity of the catalyst mainly composed of zeolite used for catalytic cracking (hereinafter referred to as zeolite catalyst). In addition, gasoline, which is the final product of such chlorine compounds,
When chlorine compounds remain in waste plastic oil products such as kerosene and light oil, the corrosiveness of the combustion gas at the time of combustion increases, and the combustion characteristics and other qualities deteriorate significantly.

【0003】廃プラスチック材を油化処理する際に熱分
解槽で発生する熱分解油中の塩化水素を除去するため
に、例えば特願平5−196544号に記載されている
ように、熱分解油中の塩化水素分を除くための脱塩化水
素槽を設けて、塩化水素を吸着等により除去する方法が
知られている。
In order to remove the hydrogen chloride in the pyrolysis oil generated in the pyrolysis tank during the oil treatment of the waste plastic material, for example, as described in Japanese Patent Application No. 5-196544, A method is known in which a dehydrochlorination tank for removing hydrogen chloride in oil is provided and hydrogen chloride is removed by adsorption or the like.

【0004】図3はこのような脱塩化水素槽を備えた廃
プラスチック油化処理設備の一例であり、以下同図を用
いて廃プラスチック材の油化処理方法について説明す
る。小片に破砕されて廃プラスチック受槽30に一時貯
留された廃プラスチック材はコンベア31で熱媒油循環
加熱炉32から供給される熱媒によって内部が約300
℃に加熱された押出機33内に搬送され、ここで液状に
加熱混練されて約350℃に加熱されて原料混合槽34
に搬入される。そして、原料混合槽34、及び押出機3
3で発生する塩化水素ガス等含む熱分解油ベーパーは原
料混合槽34の上部から塩酸中和塔35に導入され、こ
こで水酸化ナトリウム(NaOH)水溶液等を散布して
中和した後、処理後の排気ガスをファン47を介して系
外に廃棄するようになっている。
FIG. 3 shows an example of a waste plastic oiling treatment facility equipped with such a dehydrochlorination tank. A method for oiling a waste plastic material will be described below with reference to FIG. The waste plastic material crushed into small pieces and temporarily stored in the waste plastic receiving tank 30 has about 300 inside due to the heat medium supplied from the heat medium oil circulation heating furnace 32 on the conveyor 31.
The mixture is conveyed into the extruder 33 heated to ℃, where it is heated and kneaded into a liquid state and heated to about 350 ° C.
Be delivered to. Then, the raw material mixing tank 34 and the extruder 3
Pyrolysis oil vapor containing hydrogen chloride gas generated in 3 is introduced into the hydrochloric acid neutralization tower 35 from the upper part of the raw material mixing tank 34, where sodium hydroxide (NaOH) aqueous solution or the like is sprayed for neutralization, and then treated. The exhaust gas after that is discarded to the outside of the system via the fan 47.

【0005】前記溶融した廃プラスチック材は原料混合
槽34の下部から熱分解槽36の上部に移送され、この
熱分解槽36内で溶融した廃プラスチック材を熱分解し
て、低分子量の熱分解油ベーパーを生成する処理が行わ
れる。熱分解槽36は、熱分解槽36と熱分解油循環加
熱炉37との間を循環する熱分解油の顕熱により加熱さ
れるようになっている。そして、熱分解槽36では溶融
した廃プラスチック材と高温の熱分解油とが接触するこ
とにより溶融した廃プラスチック材が熱分解して、廃プ
ラスチック油化生成物が生成すると共に、熱分解油の蒸
気(ベーパー)が熱分解槽36の上部を通って脱塩化水
素槽40へ移送される。
The melted waste plastic material is transferred from the lower part of the raw material mixing tank 34 to the upper part of the thermal decomposition tank 36, and the melted waste plastic material is thermally decomposed in the thermal decomposition tank 36 to have a low molecular weight thermal decomposition. A process for producing oil vapor is performed. The thermal decomposition tank 36 is heated by the sensible heat of the thermal decomposition oil circulating between the thermal decomposition tank 36 and the thermal decomposition oil circulation heating furnace 37. Then, in the thermal decomposition tank 36, the molten waste plastic material and the high-temperature thermal decomposition oil are brought into contact with each other, so that the molten waste plastic material is thermally decomposed to generate a waste plastic oil product, and Steam (vapor) is transferred to the dehydrochlorination tank 40 through the upper portion of the thermal decomposition tank 36.

【0006】脱塩化水素槽40には生石灰(CaO)等
の粒子が塩化水素(HCl)との反応吸着剤として積層
充填されており、熱分解油ベーパー中の塩化水素が生石
灰と反応することにより、塩化カルシウム(CaC
2 )として充填層中に固定されるようになっており、
導入される熱分解油ベーパーの流れを均一化するための
整流材として、粒径が20〜40mmの無機質粒子の層
が配置されている。接触分解槽39では、前記熱分解油
ベーパーをゼオライト等の触媒に所定の圧力と温度で接
触させて所望の平均分子量を有するガソリン、軽油、灯
油等の廃プラスチック油化生成物(炭化水素油)に改質
する。
Particles of quick lime (CaO) or the like are stacked and packed in the dehydrochlorination tank 40 as a reaction adsorbent with hydrogen chloride (HCl), and hydrogen chloride in the pyrolysis oil vapor reacts with quick lime. , Calcium chloride (CaC
l 2 ) to be fixed in the packed bed,
A layer of inorganic particles having a particle size of 20 to 40 mm is arranged as a rectifying material for equalizing the flow of the pyrolysis oil vapor introduced. In the catalytic cracking tank 39, the thermally cracked oil vapor is brought into contact with a catalyst such as zeolite at a predetermined pressure and temperature, and a waste plastic oil product (hydrocarbon oil) such as gasoline, light oil, kerosene or the like having a desired average molecular weight is obtained. Reform to.

【0007】前記接触分解槽39によって更に低分子量
に分解された熱分解ガスは廃プラスチック油化生成物と
なって、熱交換器と同一構造の全縮器41によって冷却
され、ガソリン、灯油又は軽油等の油(廃プラスチック
油化生成物である全縮油)となって、全縮油受槽42に
一時貯留され、最終的には全縮油貯槽43に貯留され
る。一方、前記全縮器41によっても液化しなかったガ
スは、ファン44によって接触分解ガスホルダ45に送
られ、その一部は熱分解油循環加熱炉37及び熱媒油循
環加熱炉32の燃料とされ、その他は燃焼処理して煙突
46から大気中に放出されている。なお、接触分解ガス
ホルダ45に貯留されたガス成分中の液化部分は接触分
解槽39に戻され、接触分解槽39と接触分解ガスホル
ダ45との間を循環して、効率的な接触分解反応を維持
することができるようになっている。
The pyrolysis gas further decomposed into a low molecular weight by the catalytic cracking tank 39 becomes a waste plastic oil product, which is cooled by a total compressor 41 having the same structure as the heat exchanger, and is used as gasoline, kerosene or light oil. And the like (total condensed oil which is a waste plastic oil conversion product) and is temporarily stored in the total condensed oil receiving tank 42 and finally stored in the total condensed oil storage tank 43. On the other hand, the gas that has not been liquefied by the total compressor 41 is sent to the catalytic cracking gas holder 45 by the fan 44, and a part of the gas is used as fuel for the thermal cracking oil circulation heating furnace 37 and the heating medium oil circulation heating furnace 32. , Others are burned and released from the chimney 46 into the atmosphere. The liquefied portion of the gas component stored in the catalytic cracking gas holder 45 is returned to the catalytic cracking tank 39 and circulated between the catalytic cracking tank 39 and the catalytic cracking gas holder 45 to maintain an efficient catalytic cracking reaction. You can do it.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記脱
塩化水素槽の充填材としてアルミナを使用する方法で得
られるガソリン、灯油、軽油等の廃プラスチック油化生
成物中には、塩化水素と脱塩化水素槽の充填材のアルミ
ナ成分とが反応して生じる塩化アルミニウム(AlCl
3 、Al2 Cl6 )が含有されており、このままで使用
すると前記廃プラスチック油化生成物の品質特性を大き
く劣化させる要因となる。本発明はこのような事情に鑑
みてなされたもので、ポリ塩化ビニル等の有機塩素化合
物を含む廃プラスチック材を熱分解、及び接触分解によ
り処理して廃プラスチック油化生成物を製造する際に不
可避的に混入する塩化アルミニウムを効率的かつ、簡単
に除去することのできる廃プラスチック油化生成物から
の塩化アルミニウム除去方法を提供することを目的とす
る。
However, in the waste plastic oil products such as gasoline, kerosene, and light oil obtained by the method of using alumina as the filling material of the dehydrochlorination tank, hydrogen chloride and dechlorination are contained. Aluminum chloride (AlCl2) formed by the reaction with the alumina component of the filler in the hydrogen tank
3 , Al 2 Cl 6 ) is contained, and if it is used as it is, it will be a factor that greatly deteriorates the quality characteristics of the waste plastic oil product. The present invention has been made in view of such circumstances, and in producing a waste plastic oil product by treating a waste plastic material containing an organic chlorine compound such as polyvinyl chloride by thermal decomposition and catalytic decomposition. An object of the present invention is to provide a method for removing aluminum chloride from a waste plastic oil product, which can efficiently and easily remove aluminum chloride which is inevitably mixed.

【0009】[0009]

【課題を解決するための手段】前記目的に沿う請求項1
記載の廃プラスチック油化生成物からの塩化アルミニウ
ム除去方法は、廃プラスチック材の熱分解生成物をアル
ミナ粒子が配置された脱塩化水素槽に通過させて脱塩化
水素処理をした後、これをゼオライト系触媒により接触
分解して得られる廃プラスチック油化生成物からの塩化
アルミニウム除去方法であって、前記廃プラスチック油
化生成物を、水又は水酸化カルシウム水溶液等のアルカ
リ性溶液と混合撹拌した後、次工程で廃プラスチック油
化生成物と塩化アルミニウム水溶液、あるいは廃プラス
チック油化生成物と塩化物、アルミニウム化合物を含む
溶液とに分離する。
A method according to the above-mentioned object.
The method for removing aluminum chloride from the waste plastic oiled product is described in which the thermal decomposition product of the waste plastic material is passed through a dehydrochlorination tank in which alumina particles are placed to perform dehydrochlorination treatment, and then this is treated with zeolite. A method for removing aluminum chloride from a waste plastic oil product obtained by catalytic decomposition with a system catalyst, wherein the waste plastic oil product is mixed and stirred with water or an alkaline solution such as an aqueous solution of calcium hydroxide, In the next step, waste plastic oil product and aluminum chloride aqueous solution, or waste plastic oil product and solution containing chloride and aluminum compound are separated.

【0010】脱塩化水素槽は、装入される廃プラスチッ
ク材の熱分解生成物から塩化水素を除去する。これによ
り、後段のゼオライト系触媒を用いた接触分解に際し
て、その触媒活性が損なわれることなく維持される。混
合撹拌は、洗浄槽に装入される水又は、水酸化カルシウ
ム水溶液等のアルカリ性溶液と廃プラスチック油化生成
物との混合物を撹拌羽根により撹拌、混合して廃プラス
チック油化生成物の洗浄処理が行われる。前記混合物か
ら廃プラスチック油化生成物及び塩化アルミニウム水溶
液、あるいは塩化物、アルミニウム化合物を含む溶液を
分離する操作は、油水分離槽において、前記洗浄槽で洗
浄された処理物を静置することにより上下に分離させ、
所望の廃プラスチック油化生成物を得ることをいう。
The dehydrochlorination tank removes hydrogen chloride from the pyrolysis products of the waste plastic material to be charged. As a result, in the catalytic cracking using the zeolite-based catalyst in the latter stage, the catalytic activity is maintained without being impaired. The mixing and stirring is performed by washing water or a mixture of an alkaline solution such as an aqueous solution of calcium hydroxide and a waste plastic oil product with a stirring blade to mix and wash the waste plastic oil product. Is done. The operation of separating the waste plastic oil product and the aluminum chloride aqueous solution, or the solution containing chloride and aluminum compound from the mixture is performed by allowing the treated product washed in the washing tank to stand up and down in an oil / water separation tank. Separated into
Obtaining the desired waste plastic oil product.

【0011】[0011]

【作用】請求項1記載の廃プラスチック油化生成物から
の塩化アルミニウム除去方法においては、塩化水素を含
む廃プラスチック材の熱分解生成物が、脱塩化水素の際
にアルミナ成分と反応して塩化アルミニウムを生じる。
そして、塩化アルミニウムを含む廃プラスチック油化生
成物を、洗浄槽で水又は水酸化カルシウム水溶液等のア
ルカリ性溶液と混合撹拌することにより、水に対する溶
解度の大きい塩化アルミニウムが、水に溶解して廃プラ
スチック油化生成物の洗浄が行われる。また、水酸化カ
ルシウム水溶液等のアルカリ性溶液を使用した場合は該
混合液中で塩化アルミニウムとの中和反応等が起きるた
め、より良好な分離効率が得られる。さらに、洗浄処理
後の廃プラスチック油化組成物及び水からなる混合物
を、廃プラスチック油化生成物と塩化アルミニウム水溶
液又は塩化物を含む溶液、アルミニウム化合物を含む溶
液とに分離するので、廃プラスチック油化組成物から塩
化アルミニウムを容易に除去できる。なお、本発明にお
ける水としては、上水、工業用水等が良好であり、同じ
作用、効果を有する。
In the method for removing aluminum chloride from a waste plastic oil product according to claim 1, the thermal decomposition product of the waste plastic material containing hydrogen chloride reacts with the alumina component during dehydrochlorination to form a chloride. This produces aluminum.
Then, the waste plastic oil product containing aluminum chloride is mixed and stirred with water or an alkaline solution such as an aqueous solution of calcium hydroxide in a washing tank, so that aluminum chloride having a high solubility in water is dissolved in water to form waste plastic. The oiled product is washed. Further, when an alkaline solution such as an aqueous solution of calcium hydroxide is used, a neutralization reaction with aluminum chloride or the like occurs in the mixed solution, so that better separation efficiency can be obtained. Further, a mixture of the waste plastic oil composition and water after the washing treatment is separated into a waste plastic oil product and an aqueous solution of aluminum chloride or a solution containing a chloride, and a solution containing an aluminum compound. Aluminum chloride can be easily removed from the chemical composition. In addition, as water in the present invention, tap water, industrial water, and the like are good and have the same action and effect.

【0012】[0012]

【発明の効果】従って、請求項1記載の廃プラスチック
油化生成物からの塩化アルミニウム除去方法において
は、以下の〜に示すような効果を奏する。 廃プラスチック油化生成物から塩化アルミウムを除去
して、ガソリン、灯油、及び軽油等に要求される燃焼特
性、燃焼ガスの腐食性等の品質を維持できる。 アルミナ粒子等を脱塩化水素槽等に充填して、廃プラ
スチック材を油化する際に生成する塩化水素を塩化アル
ミニウムに転換する反応、又はアルミナを含むゼオライ
ト系触媒を用いた接触分解反応を、ゼオライト系触媒の
触媒活性の低下を考慮することなく積極的に行えるの
で、廃プラスチック油化生成物の生産効率を高水準に維
持して、かつ廃プラスチック油化処理を容易に行える。 塩化アルミニウムを除去するために高価な薬品類を必
要とせず、水又は水酸化カルシウム水溶液等のアルカリ
性溶液を洗浄液としているので、低コストでの洗浄処理
が可能であり、作業上の安全性が高いと共に、洗浄後の
水を回収してこれを循環させて用いることができるので
環境を汚染しにくい。 廃プラスチック油化生成物中に存在する塩化アルミニ
ウム以外のその他の固形分、不純物等を同時に除去する
ことができる。 廃プラスチック油化生成物の洗浄処理装置の構造を簡
単に構成でき、設備にかかる経費が少なく、かつメンテ
ナンスも容易である。
Therefore, in the method for removing aluminum chloride from the waste plastic oil product according to the first aspect, the following effects (1) to (4) are exhibited. By removing aluminum chloride from waste plastic oil products, it is possible to maintain qualities such as combustion characteristics required for gasoline, kerosene, and light oil, and corrosiveness of combustion gas. Alumina particles and the like are filled in a dehydrochlorination tank, etc., a reaction of converting hydrogen chloride generated when oiling a waste plastic material into aluminum chloride, or a catalytic cracking reaction using a zeolite-based catalyst containing alumina, Since it can be positively performed without considering the decrease in the catalytic activity of the zeolite-based catalyst, the production efficiency of the waste plastic oil product can be maintained at a high level, and the waste plastic oil process can be easily performed. No expensive chemicals are required to remove aluminum chloride, and water or an alkaline solution such as calcium hydroxide aqueous solution is used as a cleaning liquid, so cleaning processing can be performed at low cost, and work safety is high. At the same time, the water after washing can be collected and circulated for use, so that the environment is unlikely to be polluted. It is possible to simultaneously remove other solid components other than aluminum chloride, impurities and the like existing in the waste plastic oil product. The structure of the cleaning processing device for waste plastic oil products can be easily configured, the facility cost is low, and the maintenance is easy.

【0013】[0013]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに図1は本発明の一実施の形態
に係る廃プラスチック油化生成物からの塩化アルミニウ
ム除去方法に適用する塩化アルミニウム除去装置の構成
図、図2は同廃プラスチック油化処理設備の構成図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. Here, FIG. 1 is a block diagram of an aluminum chloride removing apparatus applied to a method for removing aluminum chloride from waste plastic oil products according to an embodiment of the present invention, and FIG. 2 is a block diagram of the same waste plastic oil processing equipment. Is.

【0014】本発明の一実施の形態に係る廃プラスチッ
ク油化生成物からの塩化アルミニウム除去方法を適用し
た廃プラスチック材油化処理設備10及び塩化アルミニ
ウム除去装置21は、図1に示すように構成されてい
る。そして塩化アルミニウム除去装置21は廃プラスチ
ック油化処理設備10から供給される廃プラスチック油
化生成物(以下生成油ともいう)を貯蔵する生成油貯槽
22と、生成油貯槽22から供給される生成油と水又は
水酸化カルシウム水溶液等のアルカリ性溶液との混合物
をモーター23を用いて撹拌羽根24を回転させて洗浄
する洗浄槽25と、洗浄槽25からの処理液を生成油と
洗浄液とに分離する油水分離槽26、及び油水分離槽2
6で分離された洗浄液を一時貯蔵して洗浄槽25に供給
する洗浄液貯槽27とを有する。
A waste plastic material oilification treatment facility 10 and an aluminum chloride removal apparatus 21 to which the method for removing aluminum chloride from a waste plastic oil product according to one embodiment of the present invention is applied are configured as shown in FIG. Has been done. The aluminum chloride removing device 21 stores a produced oil storage tank 22 for storing a waste plastic oil production product (hereinafter also referred to as produced oil) supplied from the waste plastic oil treatment plant 10, and a produced oil supplied from the produced oil storage tank 22. And a washing tank 25 for washing a mixture of water or an alkaline solution such as an aqueous solution of calcium hydroxide by rotating a stirring blade 24 using a motor 23, and a treatment liquid from the washing tank 25 is separated into a produced oil and a washing liquid. Oil-water separation tank 26 and oil-water separation tank 2
The cleaning liquid storage tank 27 temporarily stores the cleaning liquid separated in 6 and supplies the cleaning liquid to the cleaning tank 25.

【0015】さらに、廃プラスチック油化処理設備10
は図2に示すように剪断又は破砕された廃プラスチック
材を加熱しつつ混練、溶融する押出機11と、該押出機
11から排出されるほぼ溶融状態にある廃プラスチック
材を熱分解槽13から還流する高温の熱分解油と共に混
合してさらに溶融する原料混合槽12と、該原料混合槽
12で溶融された廃プラスチック材の融液を原料混合槽
12の下部から抽出して、これを熱分解により低分子化
する熱分解槽13と、該熱分解槽13に加熱した熱分解
油を循環供給する加熱炉14と、前記熱分解槽13から
生成する熱分解油ベーパー中の塩化水素分を除去する2
基の並列に配置された脱塩化水素槽18と、前記脱塩化
水素槽18で処理され熱分解油ベーパーをゼオライト系
触媒に接触させて、さらに低分子量の廃プラスチック油
化生成物に改質する接触分解槽15と、原料混合槽12
の上部及び押出機11より発生する塩化水素分をNaO
H供給ライン19から供給される水酸化ナトリウム溶液
等で中和する洗浄塔17と、接触分解槽15で生成する
熱分解油ベーパーを冷却することにより、液化する炭化
水素油(廃プラスチック油化生成物)と分解ガスとに分
離する熱分解油ベーパー用クーラー16とを有してい
る。
Further, the waste plastic oil treatment equipment 10
As shown in FIG. 2, the extruder 11 that kneads and melts the shredded or crushed waste plastic material while heating it, and the waste plastic material that is discharged from the extruder 11 and is in a substantially molten state is decomposed from the pyrolysis tank 13. A raw material mixing tank 12 that mixes with the refluxed high-temperature pyrolyzed oil and is further melted, and a melt of the waste plastic material melted in the raw material mixing tank 12 is extracted from the lower part of the raw material mixing tank 12 to heat it. Pyrolysis tank 13 that lowers the molecular weight by decomposition, heating furnace 14 that circulates the pyrolysis oil heated to pyrolysis tank 13, and hydrogen chloride content in the pyrolysis oil vapor produced from pyrolysis tank 13 Remove 2
Dehydrochlorination tanks 18 arranged in parallel with each other, and a pyrolysis oil vapor treated in the dehydrochlorination tank 18 are brought into contact with a zeolite-based catalyst to further reform into a waste plastic oil product having a low molecular weight. Catalytic decomposition tank 15 and raw material mixing tank 12
Of hydrogen chloride generated from the upper part of the extruder and the extruder 11
By cooling the washing tower 17 neutralized with a sodium hydroxide solution or the like supplied from the H supply line 19 and the pyrolysis oil vapor produced in the catalytic cracking tank 15, liquefied hydrocarbon oil (waste plastic oil production) And a pyrolyzed oil vapor cooler 16 for separating the cracked gas and the cracked gas.

【0016】前記熱分解槽13には、原料混合槽12か
ら供給される溶融した廃プラスチック材が温度400℃
に保持されて、熱分解により低分子化して低沸点成分が
増加するようになっている。前記脱塩化水素槽18は略
円筒状の鋼鉄製容器であり、その内部には平均粒子径が
2mm、細孔容量が約0.5mリットル/g、アルミナ
純度99wt%であるアルミナ粒子が厚み80mmの層
を単位として積層配置されている。そして、脱塩化水素
槽18内の温度が250〜350℃、圧力が大気圧より
少し高くなる微圧の条件で前記熱分解槽13から供給さ
れる熱分解油ベーパーとアルミナ粒子とが接触するよう
に設定されている。これにより、廃プラスチック材の熱
分解生成物中の塩化水素がアルミナ粒子と反応して、塩
化アルミニウムに転換される。前記接触分解槽15に
は、ゼオライト系触媒が層状に配置されており、約40
0℃の温度、常圧の下で熱分解油ベーパーの接触分解反
応が起こるように設定されている。なお、ゼオライトと
は、イオン交換性の大きい陽イオンを含み、弱く保持さ
れた水と結合した3次元網目状構造を持つテクトアルミ
ノ珪酸塩からなる鉱物である。この化学組成の一般式は
m n 2 n ・sH2 O(但し、WはNa、Ca、
K、Ba、Sr元素のいずれかの元素又はその組み合わ
せを表し、またZはSi/Al比が1以上となるSi及
びAl元素であり、m、n、sはそれぞれ不定数であ
る)で示される。
In the thermal decomposition tank 13, the molten waste plastic material supplied from the raw material mixing tank 12 has a temperature of 400 ° C.
Are retained in the solution, and the low-boiling components are increased by lowering the molecular weight by thermal decomposition. The dehydrochlorination tank 18 is a substantially cylindrical steel container, inside of which alumina particles having an average particle diameter of 2 mm, a pore volume of about 0.5 ml / g, and an alumina purity of 99 wt% are 80 mm thick. The layers are arranged in layers. Then, the pyrolysis oil vapor supplied from the pyrolysis tank 13 and the alumina particles are brought into contact with each other under the condition that the temperature in the dehydrochlorination tank 18 is 250 to 350 ° C. and the pressure is slightly higher than the atmospheric pressure. Is set to. As a result, hydrogen chloride in the thermal decomposition product of the waste plastic material reacts with the alumina particles and is converted into aluminum chloride. Zeolite-based catalysts are arranged in layers in the catalytic cracking tank 15.
It is set so that the catalytic cracking reaction of the thermally cracked oil vapor occurs at a temperature of 0 ° C. and normal pressure. Zeolite is a mineral composed of tectoaluminosilicate that contains a cation having a high ion exchange property and has a three-dimensional network structure that is bonded to weakly retained water. General formula of the chemical composition W m Z n O 2 n · sH 2 O ( where, W is Na, Ca,
Represents any element of K, Ba and Sr elements or a combination thereof, Z is an element of Si and Al having a Si / Al ratio of 1 or more, and m, n and s are each an invariant) Be done.

【0017】続いて、前記説明した廃プラスチック材油
化設備10を用いて廃プラスチック油化生成物を製造す
る方法について詳細に説明する。先ず、一般家庭より排
出された一般廃棄物系プラスチックを図示しない切断機
又は破砕機等により5〜20mm程度に細粒化する。次
に、破砕したプラスチックを押出機11に30kg/h
の供給速度で装入し、押出機11の出口温度が250〜
300℃となるように加熱しながら、混練溶融した。そ
して、押出機11にて溶融されたプラスチックを押出機
11の出口側に接続した原料混合槽12に供給し、原料
混合槽12の中で後段の熱分解槽13より還流する熱分
解油を用いて280〜320℃に加熱した。これらの溶
融過程において、既にプラスチック中に含まれる塩素化
合物の約90wt%がプラスチック中より脱離し、塩化
水素ガスが発生するので、これらの塩化水素ガスを押出
機11、原料混合槽12から洗浄塔17に導き、NaO
H供給ライン19から供給されるNaOH水溶液により
洗浄中和した。
Next, a method for producing a waste plastic oil product using the waste plastic material oiling facility 10 described above will be described in detail. First, the general waste plastic discharged from a general household is pulverized into particles of about 5 to 20 mm by a cutter, a crusher, or the like not shown. Next, the crushed plastic is put into the extruder 11 at 30 kg / h.
And the outlet temperature of the extruder 11 is 250-
The mixture was kneaded and melted while being heated to 300 ° C. Then, the plastic melted by the extruder 11 is supplied to the raw material mixing tank 12 connected to the outlet side of the extruder 11, and the pyrolysis oil refluxed from the latter thermal decomposition tank 13 in the raw material mixing tank 12 is used. And heated to 280-320 ° C. In the melting process, about 90 wt% of chlorine compounds already contained in the plastic is desorbed from the plastic, and hydrogen chloride gas is generated. Lead to 17, NaO
It was washed and neutralized with an aqueous NaOH solution supplied from the H supply line 19.

【0018】次いで、この溶融プラスチックと熱分解油
の混合物を熱分解槽13に供給して、加熱炉14との間
を循環させることにより380〜420℃に昇温した。
ここまでの操作によって熱分解槽13から約26kg/
hの熱分解油ベーパーが発生した。この熱分解油ベーパ
ーをアルミナ粒子を充填した温度が300℃である脱塩
化水素槽18に導入して、熱分解油ベーパー中の塩化水
素を塩化アルミニウムに転換した。このとき、転換され
る塩化アルミニウムは気体状態で生成するため、アルミ
ナ粒子間の空隙を反応生成物によって塞ぐことがなく、
逆に粒子表面のアルミナを消費、減耗させて粒子間の空
隙が増加する方向に反応が進行し、アルミナ粒子充填層
の圧力損失を増大させることがない。さらに、アルミナ
粒子表面に付着する熱分解油ベーパー中の固形分等が少
ないので、操業状態を安定的に維持することができる。
Then, the mixture of the molten plastic and pyrolysis oil was supplied to the pyrolysis tank 13 and circulated between the heating furnace 14 and the temperature to 380 to 420 ° C.
By the operation up to this point, about 26 kg /
The pyrolysis oil vapor of h was generated. This pyrolyzed oil vapor was introduced into the dehydrochlorination tank 18 at a temperature of 300 ° C. filled with alumina particles to convert the hydrogen chloride in the pyrolyzed oil vapor into aluminum chloride. At this time, since aluminum chloride to be converted is generated in a gas state, the voids between the alumina particles are not blocked by the reaction product,
On the contrary, the reaction proceeds in the direction in which the alumina on the particle surface is consumed and consumed to increase the voids between the particles, and the pressure loss of the alumina particle packed bed is not increased. Furthermore, since the solid content in the pyrolyzed oil vapor adhering to the surface of the alumina particles is small, the operating state can be stably maintained.

【0019】そして、このように処理された熱分解油ベ
ーパーを接触分解槽15に導入した。接触分解槽15で
はゼオライト系触媒と熱分解油ベーパーとを所定の条件
で接触させて、ゼオライト系触媒を用いて接触分解によ
り灯油、ガソリン、軽油等の廃プラスチック油化生成物
を生成した。このとき、熱分解油ベーパー中の塩化アル
ミニウムは塩化水素に較べて、ゼオライト系触媒に対す
る活性阻害作用が少ないので、接触分解の効率を低下さ
せることなく、廃プラスチック材の油化処理を行うこと
ができる。次に、廃プラスチック油化生成物のベーパー
を熱分解油ベーパー用クーラー16により凝縮、冷却す
ることにより、所望の液化した廃プラスチック油化生成
物と分解ガスとに分離した。
Then, the thermal cracked oil vapor thus treated was introduced into the catalytic cracking tank 15. In the catalytic cracking tank 15, a zeolite-based catalyst and a pyrolysis oil vapor were brought into contact with each other under predetermined conditions, and a waste plastic oil product such as kerosene, gasoline, light oil was produced by catalytic cracking using the zeolite-based catalyst. At this time, aluminum chloride in the pyrolyzed oil vapor has less activity-inhibiting effect on the zeolite-based catalyst than hydrogen chloride, so that it is possible to oilize the waste plastic material without lowering the efficiency of catalytic cracking. it can. Next, the vapor of the waste plastic oil product was condensed and cooled by the cooler 16 for the pyrolysis oil vapor to separate it into the desired liquefied waste plastic oil product and decomposed gas.

【0020】次いで、前記のように廃プラスチック油化
処理設備10で処理された塩化アルミニウムを含む廃プ
ラスチック油化生成物を生成油貯槽22に貯蔵する。次
いで、前記廃プラスチック油化生成物の所定量(約18
kg)を、油化生成物の保持部分が直径0.4m、深さ
0.4mである洗浄槽25に供給する。この時、洗浄槽
25で処理する前における廃プラスチック油化生成物中
の塩化アルミニウム、塩化水素の濃度はそれぞれ数十p
pmから数千ppm、数十ppmから数百ppmであっ
た。次に、前記洗浄槽25に水を約18kgを投入し
て、洗浄槽25内の室温の下で、モーター23により撹
拌羽根24を所定の回転速度で回転させながら約30分
間保持して、前記廃プラスチック油化生成物の洗浄を行
った。この洗浄処理においては、水と廃プラスチック油
化生成物との重量比を0.5〜1.5に保持して、これ
を室温下の条件で混合することが洗浄効率を維持する上
で好ましい。そして、前記洗浄後の混合処理物を油水分
離槽26に導き、約20分間静置して水と油の比重差に
より上下に分離した後、上層部を生成油(廃プラスチッ
ク油化生成物)として取り出し、下層部を洗浄液として
抽出した。このとき、上層部から取り出される生成油中
の塩化アルミニウム、及び塩化水素の濃度はいずれも規
定量以下であった。なお、前記油水分離槽26から抽出
される洗浄液の一部を洗浄液貯槽27に回収貯蔵して、
次回の洗浄処理に際しては、この貯蔵されている洗浄液
を用いることができる。ここで、洗浄液中の塩化アルミ
ニウムの濃度が数千ppmを越える程度に濃縮されるま
では、この洗浄液を繰り返して用いることができる。
Next, the waste plastic oilification product containing aluminum chloride treated in the waste plastic oilification treatment facility 10 as described above is stored in the produced oil storage tank 22. Then, a predetermined amount of the waste plastic oil product (about 18
(kg) is supplied to a washing tank 25 having a diameter of 0.4 m and a depth of 0.4 m for the oily product holding portion. At this time, the concentrations of aluminum chloride and hydrogen chloride in the waste plastic oil product before treatment in the cleaning tank 25 are several tens p respectively.
It was several thousand ppm from pm and several tens to several hundreds ppm. Next, about 18 kg of water is charged into the cleaning tank 25, and the stirring blade 24 is rotated at a predetermined rotation speed by the motor 23 at room temperature in the cleaning tank 25 and is held for about 30 minutes. The waste plastic oil product was washed. In this washing treatment, it is preferable to maintain the weight ratio of water and waste plastic oil product at 0.5 to 1.5 and mix them under room temperature conditions in order to maintain the washing efficiency. . Then, the mixed treatment product after the washing is introduced into the oil-water separation tank 26, and left standing for about 20 minutes to separate it into upper and lower parts due to the difference in specific gravity between water and oil, and then the upper layer is produced oil (waste plastic oil product). And the lower layer was extracted as a washing liquid. At this time, the concentrations of aluminum chloride and hydrogen chloride in the produced oil taken out from the upper layer were both below the specified amounts. A part of the cleaning liquid extracted from the oil / water separation tank 26 is collected and stored in the cleaning liquid storage tank 27,
In the next cleaning process, the stored cleaning liquid can be used. Here, the cleaning liquid can be repeatedly used until the concentration of aluminum chloride in the cleaning liquid is concentrated to the extent of exceeding several thousands ppm.

【0021】前記のようにして得られる廃プラスチック
油化生成物は、塩化アルミニウム、及び塩化水素等の含
有率が低く抑えられるので、ガソリン、灯油、軽油等と
して用いた場合に品質上の問題を生じることがない。ま
た、塩化水素を塩化アルミニウムへ転換した後、ゼオラ
イト系触媒を用いて接触分解するので、ゼオライト系触
媒の活性が阻害されることなく生産効率を維持すること
ができる。さらに、洗浄槽25、及び油水分離槽26の
構造が比較的簡単であり、高価な薬品類を使用しないの
で、設備にかかる費用、ランニングコスト、及びメンテ
ナンスコストを低くできる。
Since the waste plastic oil product obtained as described above has a low content of aluminum chloride, hydrogen chloride and the like, it causes quality problems when used as gasoline, kerosene, gas oil and the like. It never happens. Further, since the hydrogen chloride is converted to aluminum chloride and catalytically decomposed by using the zeolite-based catalyst, the production efficiency can be maintained without inhibiting the activity of the zeolite-based catalyst. Furthermore, since the structures of the cleaning tank 25 and the oil / water separation tank 26 are relatively simple and expensive chemicals are not used, the facility cost, running cost, and maintenance cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る廃プラスチック油
化生成物からの塩化アルミニウム除去方法に適用する塩
化アルミニウム除去装置の構成図である。
FIG. 1 is a configuration diagram of an aluminum chloride removing apparatus applied to a method for removing aluminum chloride from a waste plastic oil product according to an embodiment of the present invention.

【図2】同廃プラスチック油化処理設備の構成図であ
る。
FIG. 2 is a configuration diagram of the waste plastic oil treatment facility.

【図3】従来例に係る廃プラスチック油化処理設備の構
成図である。
FIG. 3 is a configuration diagram of a waste plastic oil conversion treatment facility according to a conventional example.

【符号の説明】[Explanation of symbols]

10 廃プラスチック油化処理設備 11 押出機 12 原料混合槽 13 熱分解槽 14 加熱炉 15 接触分解
槽 16 熱分解油ベーパー用クーラー 17 洗浄塔 18 脱塩化水素槽 19 NaOH
供給ライン 21 塩化アルミニウム除去装置 22 生成油貯
槽 23 モーター 24 撹拌羽根 25 洗浄槽 26 油水分離
槽 27 洗浄液貯槽
10 Waste Plastic Oil Treatment Equipment 11 Extruder 12 Raw Material Mixing Tank 13 Pyrolysis Tank 14 Heating Furnace 15 Contact Cracking Tank 16 Pyrolysis Oil Vapor Cooler 17 Washing Tower 18 Dehydrochlorination Tank 19 NaOH
Supply line 21 Aluminum chloride removing device 22 Oil storage tank 23 Motor 24 Stirring blade 25 Washing tank 26 Oil-water separation tank 27 Washing liquid storage tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 廃プラスチック材の熱分解生成物をアル
ミナ粒子が配置された脱塩化水素槽に通過させて脱塩化
水素処理をした後、これをゼオライト系触媒により接触
分解して得られる廃プラスチック油化生成物からの塩化
アルミニウム除去方法であって、 前記廃プラスチック油化生成物を、水又は水酸化カルシ
ウム等のアルカリ性溶液と混合撹拌した後、次工程で廃
プラスチック油化生成物と塩化アルミニウム水溶液、あ
るいは廃プラスチック油化生成物と塩化物、アルミニウ
ム化合物を含む溶液とに分離することを特徴とする廃プ
ラスチック油化生成物からの塩化アルミニウム除去方
法。
1. A waste plastic obtained by passing a thermal decomposition product of a waste plastic material through a dehydrochlorination tank in which alumina particles are placed to perform dehydrochlorination treatment, and then catalytically decomposing this by a zeolite-based catalyst. A method for removing aluminum chloride from an oiled product, wherein the waste plastic oiled product is mixed with water or an alkaline solution such as calcium hydroxide and stirred, and then the waste plastic oiled product and aluminum chloride are mixed in the next step. A method for removing aluminum chloride from a waste plastic oil product, which comprises separating an aqueous solution or a waste plastic oil product and a solution containing a chloride and an aluminum compound.
JP27710895A 1995-09-28 1995-09-28 Removal of aluminum chloride from oil product of waste plastic Withdrawn JPH0995678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27710895A JPH0995678A (en) 1995-09-28 1995-09-28 Removal of aluminum chloride from oil product of waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27710895A JPH0995678A (en) 1995-09-28 1995-09-28 Removal of aluminum chloride from oil product of waste plastic

Publications (1)

Publication Number Publication Date
JPH0995678A true JPH0995678A (en) 1997-04-08

Family

ID=17578900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27710895A Withdrawn JPH0995678A (en) 1995-09-28 1995-09-28 Removal of aluminum chloride from oil product of waste plastic

Country Status (1)

Country Link
JP (1) JPH0995678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272529A (en) * 2004-03-23 2005-10-06 Miike Iron Works Co Ltd Liquefaction equipment of waste plastics
WO2023013163A1 (en) * 2021-08-05 2023-02-09 荏原環境プラント株式会社 Processing apparatus and processing method for recovering decomposition oil from pyrolysis gas
WO2023095035A1 (en) * 2021-11-23 2023-06-01 Sabic Global Technologies B.V. Systems and methods for removal of halogenated contaminants from pyrolysis oil by inert gas purging
KR102583281B1 (en) * 2023-03-02 2023-09-26 에이치디현대오일뱅크 주식회사 Method for purifying unpurified pyrolysis oil and purified pyrolysis oil produced thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272529A (en) * 2004-03-23 2005-10-06 Miike Iron Works Co Ltd Liquefaction equipment of waste plastics
WO2023013163A1 (en) * 2021-08-05 2023-02-09 荏原環境プラント株式会社 Processing apparatus and processing method for recovering decomposition oil from pyrolysis gas
WO2023095035A1 (en) * 2021-11-23 2023-06-01 Sabic Global Technologies B.V. Systems and methods for removal of halogenated contaminants from pyrolysis oil by inert gas purging
KR102583281B1 (en) * 2023-03-02 2023-09-26 에이치디현대오일뱅크 주식회사 Method for purifying unpurified pyrolysis oil and purified pyrolysis oil produced thereby

Similar Documents

Publication Publication Date Title
US20190256781A1 (en) Process and plant for conversion of waste material to liquid fuel
US6172275B1 (en) Method and apparatus for pyrolytically decomposing waste plastic
JP5305400B2 (en) Waste plastic catalytic cracking method and waste plastic catalytic cracking apparatus
AU684590B2 (en) Method of organic homologation employing organic-containing feeds
US5608136A (en) Method and apparatus for pyrolytically decomposing waste plastic
EP0675189A1 (en) Method and apparatus for thermal cracking of waste plastics
EP0555833A1 (en) Method of an apparatus for producing low boiling point hydrocarbon oil from waste plastics or waste rubber
WO1995017360A1 (en) Method for producing unsaturated organics from organic-containing feeds
RU2556934C2 (en) Method for thermal decomposition of polyvinylchloride waste
KR102158694B1 (en) Dechlorination apparatus and method for converting low grade fuel oil into low chlorine clean light fuel oil
CN1012374B (en) Method for continuous chemical reduction and removal of mineral matter contained in carbon structures
JP4465851B2 (en) Chemical recycling method and apparatus for waste plastic
JPH0995678A (en) Removal of aluminum chloride from oil product of waste plastic
JP3565972B2 (en) Wet oxidation method of waste soda
JP4314546B2 (en) Waste plastic processing method and apparatus
JPH0985046A (en) Removal of hydrogen chloride contained in thermal cracking gas of waste plastic material and oil forming treatment equipment of waste plastic material
JP4337517B2 (en) Method and apparatus for chemical recycling of waste plastic
JP2010265455A (en) Method for producing treated coal and silica from fly ash-including coal
JP2005187794A (en) Method for liquefying waste plastic and inorganic oxide particle for liquefying the waste plastic
CN1265043A (en) Method for eliminating halogenated and non halogenated waste
JP2000140613A (en) Solid-gas reactor
JP2005306974A (en) Apparatus and method for converting plastic into oil
JPH0920892A (en) Oil formation by treating polymer waste product
JPH0776688A (en) Process for converting plastic into oil
CN220564546U (en) Device and system for simultaneously treating waste plastics and waste active adsorption materials

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203