JPH0995623A - Titanyl phthalocyanine particle and its production and photoreceptor using the same - Google Patents

Titanyl phthalocyanine particle and its production and photoreceptor using the same

Info

Publication number
JPH0995623A
JPH0995623A JP25294795A JP25294795A JPH0995623A JP H0995623 A JPH0995623 A JP H0995623A JP 25294795 A JP25294795 A JP 25294795A JP 25294795 A JP25294795 A JP 25294795A JP H0995623 A JPH0995623 A JP H0995623A
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
water
type
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25294795A
Other languages
Japanese (ja)
Inventor
Kazumasa Watanabe
一雅 渡邉
Fumitaka Mochizuki
文貴 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP25294795A priority Critical patent/JPH0995623A/en
Publication of JPH0995623A publication Critical patent/JPH0995623A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a titanyl phthalocyanine particle, having a specific crystal structure and a specified specific surface area, capable of reducing the temperature dependence of sensitivity with a high sensitivity when used for electrophotography and useful as electrophotographic photoreceptors. SOLUTION: This titanyl phthalocyanine particle has the maximum peak at 27.2 deg. Bragg angle (2θ±0.2 deg.) in X-diffractometry with Cu-Kα radiations and, as necessary, further peaks at 9.6 deg. and 24.1 deg. and the BET specific surface area regulated to <=22m<2> /g. The particle obtained by preparing diiminoindoline from phthalonitrile and ammonia, reacting the resultant diiminoindoline with an alkoxy titanate, etc., at a low temperature, etc., dissolving the prepared crude pigment in sulfuric acid, pouring the solution into water, then carrying out the freezing treatment of the prepared hydrous paste, affording an α type crystalline powder and treating the resultant powder with an organic solvent in the presence of water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青色の顔料として知ら
れるフタロシアニンに関し、特にチタニルフタロシアニ
ン顔料粒子を用いた電子写真感光体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phthalocyanine known as a blue pigment, and more particularly to an electrophotographic photoreceptor using titanyl phthalocyanine pigment particles.

【0002】[0002]

【従来の技術】フタロシアニン顔料は1907年Bra
un等により偶然発見された。その後、構造決定(R.
P.Linstead;J.C.S.,1016,19
34)など幾多の研究を経て1935年にはICIによ
って銅フタロシアニンが市場に出された。以来、耐候性
堅牢な顔料としてインク、ポリマーへの練り込みなどに
用いられている。
2. Description of the Related Art Phthalocyanine pigments were introduced in 1907 by Bra.
It was discovered by un. Then, the structure determination (R.
P. Linstead; J. C. S. , 1016, 19
After a number of studies such as 34), copper phthalocyanine was put on the market by ICI in 1935. Since then, it has been used as a pigment having weather resistance and robustness for kneading into inks and polymers.

【0003】一方、電子写真はその原理が1938年カ
ールソンによって発明され、1950年にセレン感光体
を用いた複写機が発表され、現在ではオフィスの必需品
となっている。
On the other hand, the principle of electrophotography was invented by Carlson in 1938, and a copying machine using a selenium photoconductor was announced in 1950, and is now an essential item for offices.

【0004】以後、電子写真複写機にはセレンなど無機
系の材料が感光体として広く使用されていた。しかし近
年、電子技術の発達に伴い、電子写真はレーザープリン
ターの画像形成部として用いられることも多くなった。
Since then, inorganic materials such as selenium have been widely used as photoconductors in electrophotographic copying machines. However, in recent years, with the development of electronic technology, electrophotography has often been used as an image forming unit of a laser printer.

【0005】レーザープリンター用の感光体素材として
は、光源である半導体レーザーの発振波長である近赤外
領域に感光性のある材料が求められている。そこで青色
の感光性顔料が求められ、スクエアリウム顔料、トリス
アゾ顔料とともにフタロシアニン類が注目されている。
As a photosensitive material for a laser printer, a material sensitive to the near infrared region, which is the oscillation wavelength of a semiconductor laser as a light source, is required. Therefore, blue photosensitive pigments have been demanded, and phthalocyanines have been attracting attention as well as squarylium pigments and trisazo pigments.

【0006】フタロシアニン類は以前より光電流特性が
注目されていた関係で(Eley,D.D.,Natu
re,162,819 1948)、電子写真との出会
いは古く、すでに1964年には現在主流となっている
分散された顔料の状態で、電子写真用感光体として優れ
た性質を示すことが発表されている(USP 3816
118号)。
Phthalocyanines have been attracting attention for their photocurrent characteristics (Eley, DD, Natu).
Re, 162, 819 1948), the encounter with electrophotography is old, and it was announced in 1964 that it exhibits excellent properties as a photoreceptor for electrophotography in the state of dispersed pigments, which is now the mainstream. It is (USP 3816
No. 118).

【0007】フタロシアニン類の中ではX型(特公昭4
9−4338号)およびτ型無金属フタロシアニン、ε
型銅フタロシアニンなどが知られているが、近年はチタ
ニルフタロシアニンが高感度ゆえに注目を集め、中でも
Y型結晶は優れた性質を示している(木下、Japan
Hard Copy 89’予稿集103 198
7)。
Among the phthalocyanines, the X type (Japanese Patent Publication No.
9-4338) and τ type metal-free phthalocyanine, ε
Type copper phthalocyanine and the like are known, but in recent years, titanyl phthalocyanine has attracted attention because of its high sensitivity, and among them, Y type crystals show excellent properties (Kinoshita, Japan.
Hard Copy 89 'Proceedings 103 198
7).

【0008】Y型結晶はCu−KαのX線回折における
ブラッグ2θが±0.2゜の範囲で27.2゜に最大ピ
ークを有し、9.6°,24.1°にも強いピークを有
しているのが特徴であり、かつ結晶内部に可逆的に水を
含んでいる。この結晶は山陽色素(特開昭63−203
65号)によってその存在が明らかにされ、コニカ(特
開昭64−17066号)によって電子写真への応用が
発表された。特に高純度化された塩素フリーY型チタニ
ルフタロシアニンは光量子効率が0.94と驚異的な値
に達している。この高感度の原因について、その後幾つ
かの研究がなされ、Jタイプの凝集構造と結晶内部の水
が光電荷の解離を幇助するためと報告されている(藤
巻、IS&T’s 7th Internationa
l Congress 予稿集269, 1991)。
Y型結晶はアシッドペースト処理をして得たα型結晶
(別名、低結晶性α型、またはアモルファス)を水の存
在下に有機溶媒で処理する事によって得られる。水さえ
共存すれば有機溶媒は広い範囲の選択が可能で芳香族
(特開昭63−20365号)、テトラヒドロフラン
(特開平2−28265号)、ハロゲン化炭化水素(特
開平3−35064号)、ケトン又はエステル(特開平
4−224872号)と多種に及ぶ。この事はY型結晶
形成における水の存在の重要さを示している。
The Y-type crystal has a maximum peak at 27.2 ° in a Bragg 2θ range of ± 0.2 ° in Cu-Kα X-ray diffraction and a strong peak at 9.6 ° and 24.1 °. And has water reversibly inside the crystal. This crystal is a Sanyo dye (JP-A-63-203).
65) and its existence was clarified, and its application to electrophotography was announced by Konica (Japanese Patent Laid-Open No. 64-17066). In particular, highly purified chlorine-free Y-type titanyl phthalocyanine has a photon efficiency of 0.94, which is an astonishing value. Several studies have been conducted on the cause of this high sensitivity, and it is reported that the J-type aggregate structure and water inside the crystal help dissociate the photocharge (Fujimaki, IS &T's 7th Internationala.
L Congress Proceedings 269, 1991).
The Y-type crystal can be obtained by treating an α-type crystal (also known as low-crystalline α-type or amorphous) obtained by acid paste treatment with an organic solvent in the presence of water. A wide range of organic solvents can be selected as long as water coexists, and aromatic compounds (JP-A-63-20365), tetrahydrofuran (JP-A-2-28265), halogenated hydrocarbons (JP-A-3-35064), A wide variety of ketones and esters (JP-A-4-224872). This indicates the importance of the presence of water in Y-type crystal formation.

【0009】しかしながら、高感度の原因の一つとなっ
ている水の存在は逆に光感度の湿度依存性が高いことに
繋がる。低湿度下での感度低下はY型結晶の大きな問題
であった。保湿剤としてアルキレンジオール類を感光体
中に含ませること(特開平5−313389号)でかな
り改善はされるが十分とは言えない。
However, the presence of water, which is one of the causes of high sensitivity, leads to the fact that the photosensitivity is highly dependent on humidity. The decrease in sensitivity under low humidity was a major problem with Y-type crystals. Inclusion of alkylene diols in the photoconductor as a moisturizer (Japanese Patent Laid-Open No. 5-313389) makes a considerable improvement, but is not sufficient.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、電子
写真に使用して高感度で、かつ感度の湿度依存性の少な
いY型チタニルフタロシアニン(以後TiOPcと略す
ことがある)結晶を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Y-type titanyl phthalocyanine (hereinafter sometimes abbreviated as TiOPc) crystal which has high sensitivity for use in electrophotography and has little humidity dependency of sensitivity. Especially.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、下記構
成のいずれかを採ることにより達成される。
The object of the present invention is attained by adopting one of the following constitutions.

【0012】〔1〕 Cu−KαのX線回折におけるブ
ラッグ角2θ±0.2°が27.2゜に最大ピークを有
し、かつBET比表面積が22m2/g以下のチタニル
フタロシアニン粒子。
[1] Titanyl phthalocyanine particles having a maximum peak at a Bragg angle 2θ ± 0.2 ° of 27.2 ° in Cu-Kα X-ray diffraction and a BET specific surface area of 22 m 2 / g or less.

【0013】〔2〕 Cu−KαのX線回折におけるブ
ラッグ角2θ±0.2°が27.2゜に最大ピークを有
し、さらに9.6°,24.1°にもピークを有し、か
つBET比表面積が22m2/g以下のチタニルフタロ
シアニン粒子。
[2] The Bragg angle 2θ ± 0.2 ° in X-ray diffraction of Cu-Kα has a maximum peak at 27.2 °, and also has peaks at 9.6 ° and 24.1 °. And titanyl phthalocyanine particles having a BET specific surface area of 22 m 2 / g or less.

【0014】〔3〕 顔料を硫酸に溶かして水に注ぎ、
ついでこの含水ペーストの凍結処理を経て得たα型結晶
粉末を水の存在下、有機溶媒で処理することを特徴とす
る請求項1記載のチタニルフタロシアニン粒子の製造方
法。
[3] The pigment is dissolved in sulfuric acid and poured into water,
Next, the method for producing titanyl phthalocyanine particles according to claim 1, wherein the α-type crystal powder obtained by freezing the water-containing paste is treated with an organic solvent in the presence of water.

【0015】〔4〕 請求項1、2又は3に記載のチタ
ニルフタロシアニン粒子を含有することを特徴とする電
子写真感光体。
[4] An electrophotographic photoreceptor containing the titanyl phthalocyanine particles according to claim 1, 2 or 3.

【0016】BET法による測定は、固体の表面に物理
吸着するガス(窒素)の量から表面積を求めるもので、
一次粒子の大きさを一次粒子の段階まで分散させずに求
める事ができる。具体的には、例えば流動式比表面積自
動測定装置(マイクロメリトリックス・フローソープ
型 島津製作所)でBET比表面積を測定することが出
来る。
The measurement by the BET method determines the surface area from the amount of gas (nitrogen) physically adsorbed on the surface of a solid.
It is possible to obtain the size of the primary particles without dispersing them to the stage of the primary particles. Specifically, for example, a flow type automatic specific surface area measuring device (Micromeritics Flow Soap)
BET specific surface area can be measured by Shimadzu Corporation.

【0017】本発明者らは検討の結果、BET法による
比表面積が22m2/g以下であるY型チタニルフタロ
シアニンがその目的を達成しえることを見出だし本発明
にいたった。
As a result of investigations, the present inventors have found that a Y-type titanyl phthalocyanine having a specific surface area of 22 m 2 / g or less by the BET method can achieve the object, and arrived at the present invention.

【0018】即ち、Y型結晶としては従来は35m2
g以上のものが知られ(特開平4−198367号)、
分散性が良いとされていた。本発明はそれと大きく異な
り、22m2/g以下のものが光感度の湿度依存性が少
ない事を見出だしたのである。
That is, as a Y-type crystal, 35 m 2 /
g or more is known (Japanese Patent Laid-Open No. 4-198367),
It was said to have good dispersibility. The present invention is very different from the above and found that those having a viscosity of 22 m 2 / g or less have little humidity dependency of photosensitivity.

【0019】この性質をもったY型チタニルフタロシア
ニン粒子が従来のものに比して湿度依存性が改良されて
いる原因については良く分からないが、筆者は粒径が大
きく(表面積が小さい)、それだけ結晶内部の水分子が
有効に保たれることと関係があると考えている。しか
し、あまりに大きな粒径は解像力をそこね、画像欠陥も
出やすい等の問題をもつため、BET比表面積が2m2
/g以上であることが好ましい。
It is not clear why the Y-type titanyl phthalocyanine particles having this property have improved humidity dependency as compared with conventional particles, but the author has a large particle size (small surface area) and It is considered to be related to the fact that water molecules inside the crystal are effectively kept. However, too large a particle size has a problem that the resolution is deteriorated and image defects are likely to occur, so that the BET specific surface area is 2 m 2
/ G or more.

【0020】発明者等はY型結晶の前段にあたるアシッ
ドペーストしたα型(含水ペースト)を従来処方のよう
にペーストのまま有機溶媒と処理するのではなく、一
旦、凍結処理を経ることで目的とするBET比表面積2
2m2/g以下の粒子を得ることを見出だした。凍結処
理をしたことで成長する氷の結晶による圧力でチタニル
フタロシアニン粒子が凝集し、その結果、この工程を経
たY型粒子の粒径が大きくなったものと思われる。従来
の技術常識からすれば、粒径が大きいと分散不良が生じ
て電子写真感光体にしたとき画像欠陥となると懸念され
る。
The inventors of the present invention have aimed to obtain an α-form (hydrated paste), which is an acid paste before the Y-form crystal, by subjecting it to a freezing treatment, rather than treating it with an organic solvent as a paste as in the conventional formulation. BET specific surface area 2
It has been found to obtain particles of 2 m 2 / g or less. It is considered that the titanyl phthalocyanine particles were aggregated by the pressure of the ice crystals that grew by the freezing treatment, and as a result, the particle size of the Y-shaped particles that had undergone this step was increased. From the conventional common general knowledge, it is feared that if the particle size is large, poor dispersion may occur, resulting in an image defect when the electrophotographic photoreceptor is formed.

【0021】しかしながら、少なくとも本発明の範囲で
は粒径は大きくなっても堅くはならず、容易に分散され
電子写真感光体にしたときも画像欠陥として現れること
は無かった。本発明の凍結処理された低結晶性α型粒子
は水に再分散して後に有機溶剤と処理されても良く、ま
た乾燥粉にして、直接水と有機溶媒の混合液に添加して
も良い。どちらもY型結晶を与える。
However, at least in the range of the present invention, the particle size does not become hard even if the particle size becomes large, and even when it is easily dispersed into an electrophotographic photosensitive member, it does not appear as an image defect. The frozen low-crystallinity α-type particles of the present invention may be redispersed in water and subsequently treated with an organic solvent, or may be added as a dry powder directly to a mixed liquid of water and an organic solvent. . Both give Y-type crystals.

【0022】本発明のY型チタニルフタロシアニンの製
造方法を詳細に述べる。
The method for producing the Y-type titanyl phthalocyanine of the present invention will be described in detail.

【0023】本発明のY型チタニルフタロシアニンは前
述したように粗品合成、アシッドペースト工程、そして
結晶変換工程の3工程からなる。
As described above, the Y-type titanyl phthalocyanine of the present invention comprises three steps of the crude product synthesis, the acid paste step, and the crystal conversion step.

【0024】粗品合成 本発明に使用される粗品のチタニルフタロシアニンは通
常に行われるようにフタロニトリルとチタンハロゲン化
物を加熱して得ることができる。またフタロニトリルと
アンモニアからジイミノイソインドリンを作り、これと
アルコキシチタネートなど他のチタン化合物と低温で反
応させて得ることもできる。前者の方法はコストが安い
が高温(180〜250℃)と酸性ガスに耐する設備を
必要とする。また一部にハロゲン化された不純物を塩素
含有量として0.5%ほど含んでしまう。これに対して
後者は一工程増えるため原料コストは高くなるが反応温
度は前者に比して低温(120〜200℃)で可能であ
り、酸性ガスは発生せず特別な装置を必要としない。ま
た何よりもハロゲン化不純物が副成せず、これを原料に
用いY型チタニルフタロシアニンからなる電子写真感光
体は極めて高感度を示す。
Crude Synthesis The crude titanyl phthalocyanine used in the present invention can be obtained by heating phthalonitrile and titanium halide as is usually done. It can also be obtained by producing diiminoisoindoline from phthalonitrile and ammonia and reacting it with another titanium compound such as alkoxy titanate at a low temperature. The former method is inexpensive but requires equipment to withstand high temperatures (180-250 ° C.) and acid gases. In addition, some halogenated impurities are contained in a chlorine content of about 0.5%. On the other hand, the latter increases the number of processes by one step, so that the raw material cost increases, but the reaction temperature can be lower than that of the former (120 to 200 ° C.), no acid gas is generated, and no special device is required. Above all, halogenated impurities do not form as by-products, and the electrophotographic photosensitive member made of Y-type titanyl phthalocyanine using this as a raw material exhibits extremely high sensitivity.

【0025】アシッドペースト工程 これは得られた粗品を硫酸に溶かし、水に注いでアモル
ファス化する工程である。アモルファスと言っても正確
には低結晶性のα型と称すべきもので、水温の低い程ア
モルファス性が増し、水温が高く、水洗までの停滞時間
が掛かるほどα型が発達する。Y型を作るには多少α型
性があるほうがよく、通常水温は15〜35℃で行われ
る。また硫酸/水の比率は体積比率で 1/10〜1/
30程度が普通である。水洗、濾過を繰り返しチタニル
フタロシアニンのウェットペーストを得る。従来のY型
チタニルフタロシアニン製造ではこの得られたウエット
ペーストを直接、あるいは加熱乾燥して得た粉末を次工
程の結晶変換に供し、本発明はこのペーストを凍結処理
して使うものである。凍結処理は専用の凍結乾燥装置を
使ってもよく、また簡易的に通常の冷凍庫を使用して凍
結させたのち解凍して濾過し、ついで乾燥して粉末を得
てもよい。アシッドペースト処理直後のペーストは自重
の7〜10倍の水を含んでいるが凍結後は自重の3〜4
倍の水しか含まず、解凍すると水が分離してくる。
Acid Paste Step This is a step of dissolving the obtained crude product in sulfuric acid and pouring it into water to make it amorphous. To be precise, even if it is called amorphous, it should be called a low crystalline α type, and the lower the water temperature, the more the amorphous property increases, the higher the water temperature, and the more the stagnation time before washing, the more the α type develops. It is better to have an α-type property to make a Y-type, and the water temperature is usually 15 to 35 ° C. The volume ratio of sulfuric acid / water is 1/10 to 1 /
About 30 is normal. Washing and filtration are repeated to obtain a wet paste of titanyl phthalocyanine. In the conventional production of Y-type titanyl phthalocyanine, the obtained wet paste is directly or heat-dried, and the resulting powder is subjected to the next step of crystal transformation. In the present invention, the paste is used after freezing. For the freezing treatment, a dedicated freeze-drying device may be used. Alternatively, the powder may be simply frozen using a normal freezer, thawed, filtered, and then dried to obtain a powder. The paste immediately after the acid paste treatment contains 7 to 10 times its own weight of water, but after freezing it has a weight of 3 to 4 times its own weight.
It contains only twice the amount of water, and when thawed, the water separates.

【0026】結晶変換工程 最後の結晶変換工程は、従来知られていたY型合成方法
を使うことができる。即ち、アシッドペースト処理、凍
結乾燥工程を経て得たα型結晶(低結晶性α型)を水の
存在下に有機溶媒で処理する。有機溶媒は広い範囲の選
択が可能で芳香族(特開昭63−20365号)、テト
ラヒドロフラン(特開平2−28265号)、ハロゲン
化炭化水素(特開平3−35064号)、ケトン又はエ
ステル(特開平4−224872号)などを挙げること
ができる。
Crystal Conversion Step For the final crystal conversion step, a conventionally known Y-type synthesis method can be used. That is, the α-type crystal (low-crystalline α-type) obtained through the acid paste treatment and the freeze-drying step is treated with an organic solvent in the presence of water. The organic solvent can be selected from a wide range, and is aromatic (JP-A-63-20365), tetrahydrofuran (JP-A-2-28265), halogenated hydrocarbon (JP-A-3-35064), ketone or ester (particularly). No. Hei 4-224872).

【0027】処理の機械的条件は通常の穏やかな攪拌か
らサンドグラインダーなどで機械的シェアを加える方法
まで任意の方法を取ることができる。また温度は水が液
体である温度であればよく、0〜100℃まで選ぶこと
ができる。
The mechanical conditions of the treatment can be any method from ordinary gentle stirring to a method of adding mechanical shear with a sand grinder or the like. The temperature may be any temperature at which water is a liquid, and can be selected from 0 to 100 ° C.

【0028】電子写真感光体として本発明のY型チタニ
ルフタロシアニンを使用する場合、従来知られていた全
ての技術に使用することが出来る。即ち、アルミドラ
ム、またはプラスチックシートに金属を蒸着させて得た
導電性基体上に本発明のY型チタニルフタロシアニンを
含む乾燥後に厚さ10〜40μmになる感光層を設置す
る。感光層は単層でもキャリア発生層(CGL)とキャ
リア輸送層(CTL)に機能分離された積層感光体でも
良い。本発明のY型チタニルフタロシアニンはキャリア
発生層に単独またはバインダーと共に添加される。膜厚
は通常0.2〜2.0μm、バインダー/顔料の重量比
率は0〜3である。
When the Y-type titanyl phthalocyanine of the present invention is used as an electrophotographic photosensitive member, it can be used in all the conventionally known techniques. That is, a photosensitive layer containing the Y-type titanyl phthalocyanine of the present invention and having a thickness of 10 to 40 μm after drying is provided on a conductive substrate obtained by vapor-depositing a metal on an aluminum drum or a plastic sheet. The photosensitive layer may be a single layer or a laminated photoreceptor in which the carrier generation layer (CGL) and the carrier transport layer (CTL) are functionally separated. The Y-type titanyl phthalocyanine of the present invention is added to the carrier generation layer alone or together with a binder. The film thickness is usually 0.2 to 2.0 μm, and the binder / pigment weight ratio is 0 to 3.

【0029】通常の負帯電感光体にはキャリア輸送層と
してホール輸送能のあるアミン化合物、例えばヒドラゾ
ン、ピラゾリン、ベンジジン、スチリル化合物などをキ
ャリア輸送物質として使うことができる。このうち特に
優れているのはトリフェニルアミン構造を分子内に有す
る物である。本発明のY型チタニルフタロシアニンはキ
ャリア発生物質(CGM)として用いられるが、他の公
知のCGM例えば無金属フタロシアニン顔料、アゾ顔
料、縮合多環顔料などを併用しても良い。
In a usual negatively charged photoreceptor, an amine compound having a hole-transporting ability, such as hydrazone, pyrazoline, benzidine, and styryl compound, can be used as a carrier-transporting material in the carrier-transporting layer. Of these, particularly excellent are those having a triphenylamine structure in the molecule. The Y-type titanyl phthalocyanine of the present invention is used as a carrier-generating substance (CGM), but other known CGMs such as a metal-free phthalocyanine pigment, an azo pigment, and a condensed polycyclic pigment may be used in combination.

【0030】またこの電子写真感光体には繰り返し特性
を改良する目的で一般に酸化防止剤として知られるヒン
ダードアミン化合物、ヒンダードフェノール化合物など
を添加しても良い。
Further, a hindered amine compound, a hindered phenol compound or the like generally known as an antioxidant may be added to the electrophotographic photosensitive member for the purpose of improving the repeating characteristics.

【0031】また接着性の改良、画像欠陥の防止の目的
で導電性基体とキャリア発生層のあいだに中間層を設け
る事ができる。中間層素材はポリアミド、ポリブチラー
ルなどの樹脂の他、ジルコニウムアルコキシド、あるい
は金属カップリング剤として知られる金属アルコキシ
ド、例えばアルコキシチタネートなど加水分解して重合
物を与えるものを使用することができる。
An intermediate layer may be provided between the conductive substrate and the carrier generation layer for the purpose of improving the adhesiveness and preventing image defects. As the material for the intermediate layer, a resin such as polyamide or polybutyral, as well as a zirconium alkoxide, or a metal alkoxide known as a metal coupling agent, such as alkoxy titanate, which gives a polymer by hydrolysis can be used.

【0032】[0032]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、本発明の態様はこれに限定されない。
The present invention will be described in detail below with reference to examples, but the embodiments of the present invention are not limited thereto.

【0033】実施例1 1,3−ジイミノイソインドリン:29.3gをオルト
ジクロルベンゼン:200mlに分散し、チタニウムテ
トラブトキシド:20.4gを加えて窒素雰囲気下に1
45〜155℃で5時間加熱した。放冷後、析出した結
晶を濾過し、クロロホルムで洗浄、2%塩酸水溶液で洗
浄、水洗、メタノール洗浄して乾燥の後26.2gの粗
チタニルフタロシアニンを得た。この物の結晶型を図1
に示す。これはA型(特開昭62−67094号)結晶
である。
Example 1 1,3-Diiminoisoindoline (29.3 g) was dispersed in ortho-dichlorobenzene (200 ml), titanium tetrabutoxide (20.4 g) was added, and the mixture was mixed in a nitrogen atmosphere at 1 g.
Heated at 45-155 ° C for 5 hours. After cooling, the precipitated crystals were filtered, washed with chloroform, washed with 2% aqueous hydrochloric acid solution, washed with water, washed with methanol and dried to obtain 26.2 g of crude titanyl phthalocyanine. Figure 1 shows the crystal form of this product.
Shown in This is an A-type (JP-A-62-67094) crystal.

【0034】ついでこの粗チタニルフタロシアニン2
0.5gを5℃以下で濃硫酸200ml中で1時間攪拌
して溶かし、これを20℃の水4lに注ぎ込む(アシッ
ドペースト処理)。析出した結晶を濾過し、水で十分に
洗ってウエットペースト180gを得た。このペースト
を−15℃の冷凍庫に入れ、凍結させた。ついでこれを
室温に戻して解凍すると水が少し分離する。これを濾過
し、固形分を加熱乾燥して本発明の凍結乾燥処理した低
結晶性TiOPc粉末を得た。この物の結晶型を図2に
示す。我々は便宜上これをアモルファスとも呼ぶが結晶
価度は低いもののα型結晶である(特開昭61−239
248号の技術)。
Then, this crude titanyl phthalocyanine 2
0.5 g is dissolved by stirring in 200 ml of concentrated sulfuric acid at 5 ° C. or lower for 1 hour, and this is poured into 4 l of water at 20 ° C. (acid paste treatment). The precipitated crystals were filtered and thoroughly washed with water to obtain 180 g of wet paste. This paste was put in a freezer at -15 ° C to be frozen. Then, after returning this to room temperature and thawing, a little water is separated. This was filtered and the solid content was dried by heating to obtain the freeze-dried low crystalline TiOPc powder of the present invention. The crystal form of this product is shown in FIG. We call this amorphous for convenience, but it is an α-type crystal although its crystallinity is low (JP-A-61-239).
248 technology).

【0035】フラスコにオルトジクロルベンゼン250
mlと水250mlを混合し、これに攪拌下、上記の凍
結乾燥α型TiOPc粉末18.0gをさらさらと加え
た。投入後、室温でさらに30分攪拌し、ついで60℃ま
で加熱し6時間攪拌した。放冷後、多量のメタノールに
注いで析出した結晶を濾過、メタノールで洗浄してY型
チタニルフタロシアニンを得た。この物の結晶型を図3
に示す。流動式比表面積自動測定装置(マイクロメリト
リックス・フローソープ 型 島津製作所)でBET比
表面積を測定したところ、16.5m2/gであった。
Ortho-dichlorobenzene 250 in a flask
ml and water 250 ml were mixed, and 18.0 g of the above freeze-dried α-type TiOPc powder was added to the mixture under stirring. After the addition, the mixture was further stirred at room temperature for 30 minutes, then heated to 60 ° C. and stirred for 6 hours. After allowing to cool, it was poured into a large amount of methanol and the precipitated crystals were filtered and washed with methanol to obtain Y-type titanyl phthalocyanine. Figure 3 shows the crystal form of this product.
Shown in When the BET specific surface area was measured by a flow type automatic specific surface area measuring device (Micromeritics Flow Soap Model Shimadzu Corporation), it was 16.5 m 2 / g.

【0036】実施例2 実施例1と同様の操作でアシッドペースト処理を行い、
凍結処理したウェットペーストを180g得た(固形分
20gで残りは水)。これを解凍し、乾燥すること無
く、水 90mlで薄め、水性懸濁液を得た。これに攪
拌下、オルトジクロルベンゼン250mlを加えた。室
温でさらに30分攪拌し、ついで60℃まで加熱し6時
間攪拌した。放冷後、多量のメタノールに注いで析出し
た結晶を濾過、メタノールで洗浄してY型チタニルフタ
ロシアニンを得た。この物の結晶型を図4に示す。BE
T比表面積17.1m2/gであった。
Example 2 Acid paste treatment was carried out in the same manner as in Example 1,
180 g of the freeze-treated wet paste was obtained (solid content: 20 g, balance: water). This was thawed and diluted with 90 ml of water without drying to obtain an aqueous suspension. 250 ml of orthodichlorobenzene was added to this with stirring. The mixture was further stirred at room temperature for 30 minutes, then heated to 60 ° C. and stirred for 6 hours. After allowing to cool, it was poured into a large amount of methanol and the precipitated crystals were filtered and washed with methanol to obtain Y-type titanyl phthalocyanine. The crystal form of this product is shown in FIG. BE
The T specific surface area was 17.1 m 2 / g.

【0037】比較例1 上記実施例のウェットペースト180g(固形分20
g、水160g)を凍結処理をせず、直接オルトジクロ
ルベンゼン250mlと水90mlの混合液に添加し
た。投入後、室温でさらに30分攪拌し、ついで60℃
まで加熱し6時間攪拌した。放冷後、多量のメタノール
に注いで析出した結晶を濾過、メタノールで洗浄して従
来処方のY型チタニルフタロシアニンを得た。この物の
結晶型を図4に示す(スペクトル的には、実施例2の結
晶と差違が認められない。)BET比表面積を測定し
た。24.6m2/gであった。
Comparative Example 1 180 g (solid content 20) of the wet paste of the above example
g, 160 g of water) were directly added to a mixed solution of 250 ml of orthodichlorobenzene and 90 ml of water without freezing. After charging, stir at room temperature for another 30 minutes, then at 60 ° C
And stirred for 6 hours. After allowing to cool, the mixture was poured into a large amount of methanol, and the precipitated crystals were filtered and washed with methanol to obtain a conventional Y-type titanyl phthalocyanine. The crystal form of this product is shown in FIG. 4 (spectral difference with the crystal of Example 2 is not observed). The BET specific surface area was measured. It was 24.6 m 2 / g.

【0038】本発明の中間体凍結処理を経たY型TiO
Pcの産業上の有効性を示すため、電子写真用感光体に
使用した用途例を示す。
Y-type TiO that has undergone the intermediate freezing process of the present invention
In order to show the industrial effectiveness of Pc, an application example used for an electrophotographic photoreceptor is shown.

【0039】用途例1 実施例1で得た中間体凍結処理のY型TiOPc1部に
メトキシメチルペンタノン10重量部、酢酸t−ブチル
80重量部、シリコーン樹脂(『KR5240』信越化
学社製)0.7重量部、1.4−ブタンジオール0.5
重量部を加えサンドミルを用いて分散した。一方、アル
ミニウムを蒸着したポリエステルベースにポリアミド樹
脂『CM8000』(東レ社製)をワイヤーバー塗布に
て厚さ0.3μmの下引き層を設けた後、得られた分散
液をワイヤーバー塗布して厚さ0.2μmのキャリア発
生層とした。ついで、その上にキャリア輸送物質(A-
1)1部とポリカーボネート樹脂『ユーピロンZ20
0』(三菱瓦斯化学)1.5重量部および微量のシリコ
ーンオイル『KF54』(信越化学)を1.2−ジクロ
ルエタン10重量部に溶解した液をブレード塗布して厚
さ20μmのキャリア輸送層とし感光体シートを作っ
た。
Application Example 1 1 part of Y-type TiOPc obtained by freezing the intermediate obtained in Example 1, 10 parts by weight of methoxymethylpentanone, 80 parts by weight of t-butyl acetate, silicone resin (“KR5240” manufactured by Shin-Etsu Chemical Co., Ltd.) 0 0.7 parts by weight, 1.4-butanediol 0.5
Parts by weight were added and dispersed using a sand mill. On the other hand, a polyamide base “CM8000” (manufactured by Toray Industries, Inc.) was applied to a polyester base on which aluminum was vapor-deposited by applying a wire bar to form an undercoat layer having a thickness of 0.3 μm, and then the obtained dispersion was applied to the wire bar. The carrier generation layer was 0.2 μm thick. Then, the carrier transport material (A-
1) 1 part and polycarbonate resin "Iupilon Z20"
0 "(Mitsubishi Gas Chemical Co., Ltd.) and a trace amount of silicone oil" KF54 "(Shin-Etsu Chemical Co., Ltd.) dissolved in 10 parts by weight of 1.2-dichloroethane are blade-coated to form a carrier transport layer having a thickness of 20 μm. I made a photoconductor sheet.

【0040】[0040]

【化1】 Embedded image

【0041】用途例2 上記の用途例1において中間体凍結乾燥処理のY型Ti
OPcの代わりに実施例2で作製した中間体凍結処理の
Y型TiOPcに代えた以外は、用途例1と同様にして
感光体シートを作製した。
Application Example 2 Y-type Ti obtained by freeze-drying the intermediate in Application Example 1 above
A photoconductor sheet was prepared in the same manner as in Application Example 1 except that Y-type TiOPc, which was the intermediate frozen product prepared in Example 2, was replaced with OPc.

【0042】比較用途例2 上記の用途例において中間体凍結処理のY型TiOPc
の代わりに比較例で得た従来処方のY型TiOPcに替
え、他は用途例1と同様にして感光体シートを作製し
た。
COMPARATIVE APPLICATION EXAMPLE 2 In the above-mentioned application example, the intermediate type frozen Y-type TiOPc
Instead of the conventional formulation of Y-type TiOPc obtained in Comparative Example, a photoconductor sheet was prepared in the same manner as in Application Example 1.

【0043】評価 得られた感光体をアルミドラムに装着したのち、20
℃、50%RHの環境下にて『Konica9028』
(コニカ社製・発光波長780nmの半導体レーザー光
源使用)改造機に装着し、グリッド電圧Vcを−600
Vに調整し、未露光電位Vhおよび 0.7mWの光照
射時の露光部の電位Vlを測定した。また10℃、20
%RHの環境下に移し十分環境に順応させた後(24時
間放置)、前述の条件でVh,Vlを測定した。
Evaluation After mounting the obtained photoreceptor on an aluminum drum, 20
"Konica 9028" under the environment of 50 ℃ and 50% RH
(Using a semiconductor laser light source with a light emission wavelength of 780 nm manufactured by Konica Corporation) Installed in a modified machine, the grid voltage Vc is -600
After adjusting to V, the unexposed potential Vh and the potential Vl of the exposed portion at the time of light irradiation of 0.7 mW were measured. Also 10 ℃, 20
After being transferred to an environment of% RH and sufficiently adapted to the environment (left standing for 24 hours), Vh and Vl were measured under the above-mentioned conditions.

【0044】 20℃、50%RH 10℃、20%RH Vh Vl Vh Vl 用途例1 −598V −40V −601V −49V 用途例2 −598V −40V −601V −48V 比較用途例1 −596V −41V −602V −57V 本発明の中間体凍結処理をしたY型TiOPcを使用し
た用途例1,2の感光体は感度もよく、また低温低湿度
下での感度低下も従来品(比較用途例1)の半分と実用
上問題ないレベルである。用途例1と2がBET比表面
積値、電子写真性能ともに誤差範囲で一致していること
からTiOPcの性質を決定するのが凍結処理であり、
乾燥でないことは明らかである。
20 ° C., 50% RH 10 ° C., 20% RH Vh Vl Vh Vl Application Example 1 -598V -40V -601V -49V Application Example 2 -598V -40V -601V -48V Comparative Application Example 1 -596V -41V- 602V-57V The photoconductors of Application Examples 1 and 2 using the Y-type TiOPc that has been subjected to the intermediate freezing treatment of the present invention have good sensitivity, and the sensitivity decrease under low temperature and low humidity is lower than that of the conventional product (Comparative Application Example 1). It is at half the level that is practically no problem. Since the application examples 1 and 2 have the same BET specific surface area value and electrophotographic performance within the error range, the property of TiOPc is determined by the freezing treatment.
Obviously it is not dry.

【0045】[0045]

【発明の効果】本発明により、電子写真に使用すると高
感度で、かつ感度の湿度依存性の少ないY型チタニルフ
タロシアニン結晶を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a Y-type titanyl phthalocyanine crystal having high sensitivity when used in electrophotography and having little humidity dependency of sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】チタニルフタロシアニン(A型)のX線回折ス
ペクトル図。
FIG. 1 is an X-ray diffraction spectrum diagram of titanyl phthalocyanine (A type).

【図2】チタニルフタロシアニン(α型)のX線回折ス
ペクトル図。
FIG. 2 is an X-ray diffraction spectrum diagram of titanyl phthalocyanine (α type).

【図3】チタニルフタロシアニン(Y型)のX線回折ス
ペクトル図。
FIG. 3 is an X-ray diffraction spectrum diagram of titanyl phthalocyanine (Y type).

【図4】チタニルフタロシアニン(Y型)のX線回折ス
ペクトル図。
FIG. 4 is an X-ray diffraction spectrum diagram of titanyl phthalocyanine (Y type).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cu−KαのX線回折におけるブラッグ
角2θ±0.2°が27.2゜に最大ピークを有し、か
つBET比表面積が22m2/g以下のチタニルフタロ
シアニン粒子。
1. Titanyl phthalocyanine particles having a maximum peak at a Bragg angle 2θ ± 0.2 ° of 27.2 ° in Cu-Kα X-ray diffraction and a BET specific surface area of 22 m 2 / g or less.
【請求項2】 Cu−KαのX線回折におけるブラッグ
角2θ±0.2°が27.2゜に最大ピークを有し、さ
らに9.6°,24.1°にもピークを有し、かつBE
T比表面積が22m2/g以下のチタニルフタロシアニ
ン粒子。
2. A Bragg angle 2θ ± 0.2 ° in X-ray diffraction of Cu-Kα has a maximum peak at 27.2 °, and also has peaks at 9.6 ° and 24.1 °. And BE
Titanyl phthalocyanine particles having a T specific surface area of 22 m 2 / g or less.
【請求項3】 顔料を硫酸に溶かして水に注ぎ、ついで
この含水ペーストの凍結処理を経て得たα型結晶粉末を
水の存在下、有機溶媒で処理することを特徴とする請求
項1記載のチタニルフタロシアニン粒子の製造方法。
3. The method according to claim 1, wherein the pigment is dissolved in sulfuric acid and poured into water, and the α-type crystal powder obtained by freezing the hydrous paste is treated with an organic solvent in the presence of water. For producing titanyl phthalocyanine particles.
【請求項4】 請求項1、2又は3に記載のチタニルフ
タロシアニン粒子を含有することを特徴とする電子写真
感光体。
4. An electrophotographic photosensitive member comprising the titanyl phthalocyanine particles according to claim 1, 2 or 3.
JP25294795A 1995-09-29 1995-09-29 Titanyl phthalocyanine particle and its production and photoreceptor using the same Pending JPH0995623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25294795A JPH0995623A (en) 1995-09-29 1995-09-29 Titanyl phthalocyanine particle and its production and photoreceptor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25294795A JPH0995623A (en) 1995-09-29 1995-09-29 Titanyl phthalocyanine particle and its production and photoreceptor using the same

Publications (1)

Publication Number Publication Date
JPH0995623A true JPH0995623A (en) 1997-04-08

Family

ID=17244379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25294795A Pending JPH0995623A (en) 1995-09-29 1995-09-29 Titanyl phthalocyanine particle and its production and photoreceptor using the same

Country Status (1)

Country Link
JP (1) JPH0995623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174677A (en) * 2007-01-22 2008-07-31 Permachem Asia Ltd Process for producing y-type titanyl phthalocyanine crystal
US20100232830A1 (en) * 2006-03-20 2010-09-16 Mitsubishi Chemical Corporation Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232830A1 (en) * 2006-03-20 2010-09-16 Mitsubishi Chemical Corporation Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
JP2013033264A (en) * 2006-03-20 2013-02-14 Mitsubishi Chemicals Corp Phthalocyanine crystal, electrophotographic photoreceptor, and electrophotographic photoreceptor cartridge and image forming apparatus using the same
JP2013209672A (en) * 2006-03-20 2013-10-10 Mitsubishi Chemicals Corp Phthalocyanine crystal, electrophotographic photoreceptor, and electrophotographic photoreceptor cartridge and image forming apparatus using the same
US8846282B2 (en) 2006-03-20 2014-09-30 Mitsubishi Chemical Corporation Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
JP2014197237A (en) * 2006-03-20 2014-10-16 三菱化学株式会社 Phthalocyanine crystal, electrophotographic photoreceptor, and electrophotographic photoreceptor cartridge and image forming apparatus utilizing the same
US9296899B2 (en) 2006-03-20 2016-03-29 Mitsubishi Chemical Corporation Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
US9835961B2 (en) 2006-03-20 2017-12-05 Mitsubishi Chemical Corporation Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
US10095135B2 (en) 2006-03-20 2018-10-09 Mitsubishi Chemical Corporation Phthalocyanine crystal, and electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image-forming device using the same
JP2008174677A (en) * 2007-01-22 2008-07-31 Permachem Asia Ltd Process for producing y-type titanyl phthalocyanine crystal

Similar Documents

Publication Publication Date Title
JP2657836B2 (en) Electrophotographic photoreceptor
US5338636A (en) Dichlorotin phthalocyanine crystal electrophotographic photoreceptor using the same, and coating composition for electrophotographic photoreceptor
WO2005085365A1 (en) Phthalocyanine composition, and photoconductive material, electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
JPH061386B2 (en) Optical semiconductor material and electrophotographic photoreceptor using the same
US5556967A (en) Process for producing hydroxygallium phthalocyanine
JPS63116158A (en) Photosemiconductor material and electrophotographic sensitive body prepared by using it
US5334478A (en) Oxytitanium phthalocyanine imaging members and processes thereof
JPH06122833A (en) Pigmentation of metal phthalocyanine hydroxide pigment
US5292604A (en) Phthalocyanine crystal of mixed pigments and electrophotographic photoreceptor using the same
JP2005015682A (en) Method for producing b titanyl phthalocyanine crystal, photosensitive pigment, and electrophotographic photoreceptor
JPH0995623A (en) Titanyl phthalocyanine particle and its production and photoreceptor using the same
JP2000098640A (en) Electrophotographic photoreceptor
JP2813813B2 (en) Electrophotographic photoreceptor
JPH1135842A (en) Chlorogalliumphthalocyanine crystal, treatment thereof, and electrophotographic photoreceptor using the same
JP2981994B2 (en) Image forming method
JPH02256059A (en) Electrophotographic sensitive body
JP2000338695A (en) Metal phthalocyanine crystal grain, its production and electrophotographic photoreceptor and electrophotographic process using the same
JPH11349845A (en) New method for preparing phthalocyanine mixed crystal and electrophotographic photoreceptor using the same
JPH0572776A (en) Electrophotographic sensitive material and production of coppor phthalocynine
JP2542716B2 (en) Epsilon-type nickel phthalocyanine compound and electrophotographic photoreceptor using the same
JP2704373B2 (en) Reversal development method
JPH0823705B2 (en) Photoconductor
JPH0299969A (en) Electrophotographic sensitive body
JP2563810B2 (en) Photoconductor
JPH0477906B2 (en)