JPH0994639A - Sequentially continuous casting method for different kind of steel from ni base stainless steel - Google Patents

Sequentially continuous casting method for different kind of steel from ni base stainless steel

Info

Publication number
JPH0994639A
JPH0994639A JP25289295A JP25289295A JPH0994639A JP H0994639 A JPH0994639 A JP H0994639A JP 25289295 A JP25289295 A JP 25289295A JP 25289295 A JP25289295 A JP 25289295A JP H0994639 A JPH0994639 A JP H0994639A
Authority
JP
Japan
Prior art keywords
mold
steel
molten steel
shell
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25289295A
Other languages
Japanese (ja)
Inventor
Masaru Washio
勝 鷲尾
Hitoshi Osugi
仁 大杉
Hiroshi Nishikawa
廣 西川
Tadao Ozeki
忠雄 大関
Minoru Adachi
實 足立
Mototatsu Sugisawa
元達 杉沢
Isao Kato
勲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25289295A priority Critical patent/JPH0994639A/en
Publication of JPH0994639A publication Critical patent/JPH0994639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sequentially continuous casting method which can stably execute the sequentially continuous casting for different kinds of steels in a good yield even in the case of casting the molten Ni base stainless steel as the previous casting molten steel. SOLUTION: In the sequentially continuous casting method in the continuous casting of the molten Ni base stainless steel as the previous casting molten steel, the flow rate of cooling water for a mold is lowered to 1000-1200l/min just after the pouring of the previous casting molten steel 1b into the mold 2 completes and a shell fall-down preventing jig 6 is inserted into the mold 2 to prevent the fall-down of the shell. Thereafter, a partition plate 7 parting the previous casting molten steel 1a and the following casting molten steel (b) is arranged into the mold 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Ni系ステンレス
溶鋼を先行溶鋼とする連続鋳造での異鋼種連々法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous method for different steel types in continuous casting using Ni-based stainless molten steel as a prior molten steel.

【0002】[0002]

【従来の技術】連続鋳造での異鋼種連々法としては、特
開昭63−108949号公報、特公平3−05898
号公報及び特公平5−30543号公報に記載のものが
知られている。これらの方法はいずれも異鋼種の溶鋼を
モールド内に連続注入する際に、先行溶鋼と後行溶鋼と
の混合を防止すべく該モールド内に仕切り部材を配置す
るようにしたもので、これにより安定的かつ歩留りのよ
い異鋼種連々鋳を可能にしている。
2. Description of the Related Art As a continuous method of different steel types in continuous casting, Japanese Patent Application Laid-Open No. 63-108949 and Japanese Patent Publication No. 3-05898.
Those described in Japanese Patent Publication No. 5-30543 and Japanese Patent Publication No. 5-30543 are known. In all of these methods, when continuously injecting molten steel of different steel types into the mold, a partition member is arranged in the mold to prevent mixing of the preceding molten steel and the following molten steel. This enables continuous casting of different steel types with stable and high yield.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来の異鋼種連々法においては、一般的な低炭素鋼や普
通鋼では十分に活用できる技術であるが、Ni系ステン
レス溶鋼が先行溶鋼となった場合には次に示す問題があ
る。即ち、Ni系ステンレス溶鋼は通常の綱種と比較し
て凝固収縮が大きくかつ線膨張係数も大きいため、その
凝固及び熱収縮によりモールド内でシェルが内側に大き
く倒れ込んでくる(図8参照)。従って、特開昭63−
108949号公報等のようにモールド内に仕切り板を
挿入するタイプのものでは倒れ込んだシェルが邪魔にな
って仕切り板の挿入が不可能となり、この結果、異鋼種
連々部の溶鋼の分離が不十分となって異鋼種の混合域が
大きくなり、多くのロスを発生させる原因になる。
However, in such a conventional continuous steel method of different steel grades, it is a technique that can be fully utilized in general low carbon steel and ordinary steel, but Ni-based stainless molten steel became the preceding molten steel. In some cases, there are the following problems. That is, since the Ni-based stainless molten steel has a large solidification shrinkage and a large linear expansion coefficient as compared with ordinary steel grades, the shell largely falls inward in the mold due to the solidification and thermal shrinkage (see FIG. 8). Therefore, JP-A-63-
In the case of a type in which a partition plate is inserted into a mold as in Japanese Patent No. 108949 etc., the collapsed shell interferes with the insertion of the partition plate, and as a result, the molten steel is not sufficiently separated in the continuous portion of different steel types. As a result, the mixed area of different steel types becomes large, which causes a lot of loss.

【0004】また、シェルの倒れ込み量が大きくなる
と、モールドの銅板内側からシェル間の隙間が大きくな
って該隙間に溶鋼が流れ込み、湯洩れ等のトラブルを発
生させる可能性がある。本発明はかかる不都合を解消す
るためになされたものであり、Ni系ステンレス溶鋼を
先行溶鋼とする場合においても安定的かつ歩留りのよい
異鋼種連々鋳を行うことができる異鋼種連々法を提供す
ることを目的とする。
Further, when the amount of collapse of the shell becomes large, a gap between the inside of the copper plate of the mold and the shell becomes large, and molten steel may flow into the gap to cause troubles such as molten metal leak. The present invention has been made in order to eliminate such inconvenience, and provides a different steel type continuous method capable of performing stable different steel type continuous casting with a good yield even when Ni-based stainless molten steel is used as the preceding molten steel. The purpose is to

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明に係るNi系ステンレス鋼の異鋼種連々法
は、Ni系ステンレス溶鋼を先行溶鋼とする連続鋳造で
の異鋼種連々法において、先行溶鋼のモールド内への注
入が終了した直後にモールド冷却水流量を1000〜1
200l/minに低下させると共に、モールド内にシ
ェル倒れ込み防止治具を挿入してシェルの倒れ込みを防
止し、その後、先行溶鋼と後行溶鋼とを仕切る仕切り部
材をモールド内に配置するようにしたことを特徴とす
る。
In order to achieve such an object, the method for continuously changing different grades of Ni-based stainless steel according to the present invention is a method for continuously changing different grades of Ni-based stainless steel in continuous casting using molten steel of Ni-based stainless steel as the preceding molten steel. Immediately after the injection of the preceding molten steel into the mold is completed, the mold cooling water flow rate is set to 1000 to 1
While lowering to 200 l / min, a shell fall prevention jig was inserted into the mold to prevent the shell from falling, and then a partition member for partitioning the preceding molten steel and the following molten steel was arranged in the mold. Is characterized by.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1〜図8を参照して説明する。図1〜図4は本発明
の実施の形態の一例であるNi系ステンレス鋼の異鋼種
連々法を説明するための説明的概略図、図5は鋳込停止
時のモールド冷却水流量とモールド抜熱量との関係を示
したグラフ図、図6は鋳込停止時のモールド冷却水流量
とモールド銅板内側の温度との関係を示したグラフ図、
図7はシェル倒れ込み防止治具を使用した場合の長辺シ
ェルの倒れ込み量とモールド冷却水流量との関係と、シ
ェル倒れ込み防止治具を使用しない場合の長辺シェルの
倒れ込み量とモールド冷却水流量との関係との比較を示
したグラフ図、図8はNi系ステンレス溶鋼がモールド
内で停止したときにおこるシェルの倒れ込みを説明する
ための説明図である。
DETAILED DESCRIPTION OF THE INVENTION An example of an embodiment of the present invention will be described below with reference to FIGS. 1 to 4 are schematic explanatory views for explaining a method for continuously joining different steel types of Ni-based stainless steel, which is an example of an embodiment of the present invention, and FIG. 5 is a mold cooling water flow rate and a mold removal at the time of stopping casting. FIG. 6 is a graph showing the relationship with the heat quantity, and FIG. 6 is a graph showing the relationship between the mold cooling water flow rate and the temperature inside the mold copper plate when the casting is stopped.
Fig. 7 shows the relationship between the amount of long-sided shell collapse and the mold cooling water flow rate when the shell collapse prevention jig is used, and the long-sided shell collapse amount and mold cooling water flow rate when the shell collapse prevention jig is not used. FIG. 8 is a graph showing a comparison with the relationship with, and FIG. 8 is an explanatory view for explaining the collapse of the shell that occurs when the Ni-based stainless molten steel stops in the mold.

【0007】まず、Ni系ステンレス鋼の異鋼種連々法
の大略を説明すると、Ni系ステンレス溶鋼(先行溶
鋼)1aのタンディッシュ5内の残鋼量の低下と共に鋳
込速度を低下させる(図1参照)。次いで、タンディッ
シュ5内溶鋼1aのモールド2への注入が終了した後に
鋳込速度を0〜0.05m/minの範囲で低下させ、
それと同時にタンディッシュ5を別の場所に移動して残
鋼を排出する(図2(a)参照)。尚、この時点で後行
溶鋼1bの取鍋4が搬入されてくる。
First, the outline of the different steel type continuous method for Ni-based stainless steel will be described. The casting speed is decreased together with the decrease in the amount of residual steel in the tundish 5 of the Ni-based stainless molten steel (preceding molten steel) 1a (see FIG. 1). reference). Then, after the injection of the molten steel 1a in the tundish 5 into the mold 2 is completed, the casting speed is reduced in the range of 0 to 0.05 m / min,
At the same time, the tundish 5 is moved to another place to discharge the residual steel (see FIG. 2 (a)). At this point, the ladle 4 of the subsequent molten steel 1b is carried in.

【0008】残鋼の排出中に、図2(b)(図2(a)
の矢印A方向から見た図)に示すように、モールド2内
に略円柱状の部材を二本並設して構成された長辺シェル
倒れ込み防止治具6をモールド長辺の略中央位置にその
軸線を鋳片厚み方向に向けて挿入し、引き続き、倒れ込
み防止治具6の両側に先行溶鋼1aと後行溶鋼1bとの
つなぎ部材を兼ねた仕切り板7を挿入してモールド2内
に凝固層8を形成する。尚、図2(b)において符号7
aは、仕切り板7の上下端部及び中央部に形成されたつ
なぎ用のフランジである。
During discharging of the residual steel, as shown in FIG. 2 (b) (FIG. 2 (a)
(As viewed from the direction of arrow A), a long side shell fall-in prevention jig 6 configured by arranging two substantially cylindrical members in parallel in the mold 2 is provided at a substantially central position of the long side of the mold. The axis is inserted in the thickness direction of the slab, and subsequently, the partition plates 7 which also serve as a connecting member between the preceding molten steel 1a and the following molten steel 1b are inserted on both sides of the collapse prevention jig 6 to be solidified in the mold 2. Form layer 8. Incidentally, in FIG.
Reference character a is a connecting flange formed at the upper and lower ends and the center of the partition plate 7.

【0009】次いで、図3及び図4に示すように、タン
ディッシュ5をセットして後行溶鋼1bを取鍋4から該
タンディッシュ5内に注入してモールド2内への鋳込を
再スタートさせる。モールド2内では、水面上の氷の如
く一面に先行溶鋼1aの凝固壁8が形成されているた
め、後行溶鋼1bとの湯まじりが良好に防止される。倒
れ込み防止治具6及び仕切り板7は、共に冷し金の役割
を果たすもので、モールド2内に浸漬されるとまわりの
溶鋼を凝固させる程度の熱容量をもつものでなくてはな
らず、また、モールド2内全面に凝固層8を形成させる
ためには、できるかぎりモールド2の厚みに近い断面形
状が望まれる。尚、先行溶鋼1aの注入終了から仕切り
板7が挿入されるまでの所要時間は3〜5分程度、倒れ
込み防止治具6及び仕切り板7が挿入されてから後行溶
鋼1bの注入スタートまでの所要時間は5〜7分程度で
ある。
Next, as shown in FIG. 3 and FIG. 4, the tundish 5 is set and the trailing molten steel 1b is poured into the tundish 5 from the ladle 4 and the casting into the mold 2 is restarted. Let In the mold 2, the solidified wall 8 of the preceding molten steel 1a is formed on one surface like ice on the water surface, so that the molten metal with the succeeding molten steel 1b is favorably prevented. The fall-down prevention jig 6 and the partition plate 7 both play the role of a chiller and must have a heat capacity enough to solidify the molten steel around them when immersed in the mold 2. In order to form the solidified layer 8 on the entire surface of the mold 2, the cross-sectional shape as close as possible to the thickness of the mold 2 is desired. In addition, the time required from the completion of the injection of the preceding molten steel 1a to the insertion of the partition plate 7 is about 3 to 5 minutes, and from the insertion of the collapse prevention jig 6 and the partition plate 7 to the start of the injection of the subsequent molten steel 1b. The time required is about 5 to 7 minutes.

【0010】ところで、上述したように従来の異鋼種連
々法においては、凝固収縮の大きくかつ線膨張係数の大
きいNi系のステンレス溶鋼を先行溶鋼1aとした場
合、先行溶鋼1aの注入終了から仕切り板7が挿入され
るまでの間に図8に示すようにモールド2内のシェル3
が先行溶鋼1aの凝固及び熱収縮に伴い内側に大きく倒
れ込んでしまう。従って、このままでは仕切り板7が挿
入できなくなると共に、モールド2の銅板内側からシェ
ル3間の隙間に先行溶鋼1aが流れ込んで湯洩れ等を引
き起こす可能性がある。
By the way, as described above, in the conventional different steel type continuous method, when the Ni-based stainless molten steel having a large solidification shrinkage and a large linear expansion coefficient is used as the preceding molten steel 1a, the partition plate is formed after the injection of the preceding molten steel 1a is completed. As shown in FIG. 8, the shell 3 in the mold 2 is inserted until 7 is inserted.
Due to the solidification and heat shrinkage of the preceding molten steel 1a, the steel falls largely inward. Therefore, the partition plate 7 cannot be inserted as it is, and the preceding molten steel 1a may flow into the gap between the shells 3 from the inside of the copper plate of the mold 2 to cause leakage of molten metal.

【0011】そこで、この実施の形態では、先行溶鋼1
aの注入終了から仕切り板7が挿入されるまでの間のモ
ールド2内のシェル3の温度降下を少なくすると共に、
モールド2内に上述した倒れ込み防止治具6を挿入し
て、シェル3の倒れ込みを防止している。詳述すると、
図5は鋳込停止時のモールド冷却水流量とモールド抜熱
量との関係を示すグラフ図、図6は鋳込停止時のモール
ド冷却水流量とモールド銅板内側の温度との関係を示す
グラフ図であり、図5から明らかなようにモールド冷却
水流量が低下するにつれてモールド抜熱量が低下するこ
とがわかる。この場合、モールド抜熱量があまり低下し
すぎると、モールド2の銅板表面温度が上昇してモール
ド冷却水が沸騰してしまうので、モールド冷却水流量の
下限値を設定する必要がある。モールド冷却水圧力から
モールド冷却水の沸騰温度は150〜180°Cである
ので、図6を参照してモールド冷却水流量の下限値は1
000l/minにする。
Therefore, in this embodiment, the preceding molten steel 1
While decreasing the temperature drop of the shell 3 in the mold 2 from the end of the injection of a to the insertion of the partition plate 7,
The collapse prevention jig 6 described above is inserted into the mold 2 to prevent the shell 3 from collapse. To elaborate,
FIG. 5 is a graph showing the relationship between the mold cooling water flow rate when the casting is stopped and the amount of heat removed from the mold, and FIG. 6 is a graph showing the relationship between the mold cooling water flow rate when the casting is stopped and the temperature inside the mold copper plate. As is clear from FIG. 5, the heat removal amount of the mold decreases as the mold cooling water flow rate decreases. In this case, if the amount of heat removed from the mold is too low, the surface temperature of the copper plate of the mold 2 rises and the mold cooling water boils, so it is necessary to set the lower limit of the mold cooling water flow rate. Since the boiling temperature of the mold cooling water is 150 to 180 ° C. from the mold cooling water pressure, the lower limit value of the mold cooling water flow rate is 1 with reference to FIG.
000 l / min.

【0012】また、図7は長辺シェル3の倒れ込み量
(モールド銅板内側〜シェル間の隙間寸法)C(図8参
照)とモールド冷却水流量との関係を示すグラフ図であ
る。図7から明らかなように長辺シェル3の倒れ込み量
Cは、モールド冷却水流量が低下するに従って低下して
おり、モールド冷却水流量が1200l/min以下で
ほぼ9mm以下となる。一般的にモールド2の銅板内側
〜シェル3間の隙間寸法が片側10mm以上になると溶
鋼が洩れることがわかっており、従って、モールド冷却
水流量の上限値を1200l/minとする。このよう
に先行溶鋼1aの注入終了直後にモールド冷却水流量を
1000〜1200l/minの範囲に設定することに
よりモールド2内のシェル3の温度降下を少なくしてシ
ェル3の倒れ込みを防止している。
FIG. 7 is a graph showing the relationship between the amount of tilting of the long side shell 3 (dimension between the inside of the mold copper plate and the shell) C (see FIG. 8) and the mold cooling water flow rate. As is clear from FIG. 7, the collapse amount C of the long-side shell 3 decreases as the mold cooling water flow rate decreases, and is approximately 9 mm or less when the mold cooling water flow rate is 1200 l / min or less. It is generally known that the molten steel leaks when the gap between the inside of the copper plate of the mold 2 and the shell 3 is 10 mm or more on one side, and therefore the upper limit of the mold cooling water flow rate is set to 1200 l / min. In this way, by setting the mold cooling water flow rate within the range of 1000 to 1200 l / min immediately after the injection of the preceding molten steel 1a, the temperature drop of the shell 3 in the mold 2 is reduced and the collapse of the shell 3 is prevented. .

【0013】しかしながら、このようにモールド冷却水
流量を1000〜1200l/minの範囲に設定して
モールド2内のシェル3の温度降下を少なくしても、作
業時間のばらつき等によりモールド内停止時間が延長し
た場合には、モールド冷却水流量が1200l/min
以下となっても長辺シェル3の倒れ込み量が10mm以
上になることが予想される。この場合、モールド冷却水
流量の上限値を1200l/min以下に狭めることが
考えられるが、図5よりモールド冷却水流量の下限値が
1000l/minであることから冷却水の温度及び流
量のばらつきを考慮すると、上限値を1200l/mi
n以下に狭めることは困難である。
However, even if the mold cooling water flow rate is set in the range of 1000 to 1200 l / min to reduce the temperature drop of the shell 3 in the mold 2 as described above, the stop time in the mold may be reduced due to variations in working time. When extended, the mold cooling water flow rate is 1200 l / min
It is expected that the amount of collapse of the long-side shell 3 will be 10 mm or more even if it becomes the following. In this case, the upper limit of the mold cooling water flow rate may be narrowed to 1200 l / min or less, but since the lower limit value of the mold cooling water flow rate is 1000 l / min as shown in FIG. Considering this, the upper limit value is 1200 l / mi
It is difficult to narrow it to n or less.

【0014】そこで、この実施の形態では、先行溶鋼1
aの注入終了直後にモールド冷却水流量を1000〜1
200l/minの範囲にすることに加えて、シェルの
倒れ込み防止治具6をモールド2内に挿入することによ
り、長辺シェル3の倒れ込み量Cを安定的に9mm以下
に確保するようにしている。尚、シェルの倒れ込み防止
治具6のモールド2内への挿入は多少の時間を必要とす
るため、時間が長引くとシェル3の倒れ込みにより挿入
出来なくなる恐れがあるが、挿入されるまでの間は上述
したモールド冷却水流量の調整によってシェル3の倒れ
込みが制限されるため、シェル倒れ込み防止部材6をモ
ールド2内に挿入するに際して、シェル3が邪魔になる
ことはない。
Therefore, in this embodiment, the preceding molten steel 1
Immediately after the completion of the injection of a, the mold cooling water flow rate is set to 1000 to 1
In addition to the range of 200 l / min, the collapse prevention jig 6 of the shell is inserted into the mold 2 so that the collapse amount C of the long side shell 3 is stably secured to 9 mm or less. . Since it takes some time to insert the shell collapse prevention jig 6 into the mold 2, if the time is prolonged, the shell 3 may collapse and the insertion may not be possible. Since the collapse of the shell 3 is restricted by the adjustment of the mold cooling water flow rate, the shell 3 does not become an obstacle when the shell collapse preventing member 6 is inserted into the mold 2.

【0015】図4にシェル3の倒れ込み防止治具6を使
用した場合の結果を使用しない場合の結果と合わせて示
す。この図から明らかなように、モールド冷却水流量を
1000〜1200l/minの範囲にすることに加え
て、シェルの倒れ込み防止治具6をモールド2内に挿入
することにより、安定的にモールド2の銅板内側〜シェ
ル3間の隙間寸法を9mm以下にできることがわかる。
FIG. 4 shows the results when the fall-down prevention jig 6 for the shell 3 is used together with the results when not used. As is clear from this figure, in addition to setting the mold cooling water flow rate within the range of 1000 to 1200 l / min, the shell collapse prevention jig 6 is inserted into the mold 2 to stabilize the mold 2. It can be seen that the gap size between the inside of the copper plate and the shell 3 can be 9 mm or less.

【0016】そして、シェル倒れ込み防止治具6の挿入
後、仕切り板7をモールド2内に挿入することにより、
この実施の形態のようにNi系ステンレス溶鋼を先行溶
鋼とする場合においても安定的かつ歩留りのよい異鋼種
連々鋳を行うことができる。ここで、シェル倒れ込み防
止治具6は、モールド2厚みよりも15mm以上、20
mm未満の範囲で短いものがよい。該防止治具6がモー
ルド厚みより20mm以上の短いものとなると、モール
ド2の銅板内側〜シェル3間の隙間寸法が片側10mm
以上となるためである。
After inserting the shell collapse prevention jig 6, the partition plate 7 is inserted into the mold 2,
Even when the Ni-based stainless molten steel is used as the preceding molten steel as in this embodiment, it is possible to perform continuous casting of different steel types with stable and good yield. Here, the shell collapse prevention jig 6 has a thickness of 15 mm or more than the thickness of the mold 2,
The shorter one is preferable within the range of less than mm. If the prevention jig 6 is shorter than the mold thickness by 20 mm or more, the gap between the inside of the copper plate of the mold 2 and the shell 3 is 10 mm on one side.
This is because of the above.

【0017】[0017]

【実施例】スラブ幅1000〜1200mm、厚み19
0mmの鋳込サイズで異鋼種連々を実施した。前後の鋼
種、モールド冷却水条件、倒れ込み治具の使用の可否、
モールド内停止時間及びその時のモールド銅板内側〜シ
ェル間の隙間寸法(シェル倒れ込み量)を表1に示す。
[Example] Slab width 1000 to 1200 mm, thickness 19
Different steel grades were carried out with a casting size of 0 mm. Front and rear steel type, mold cooling water condition, availability of fallen jig,
Table 1 shows the in-mold stop time and the dimension of the clearance between the inside of the mold copper plate and the shell (shell collapse amount) at that time.

【0018】[0018]

【表1】 [Table 1]

【0019】比較例1は従来から実施している線膨張係
数の小さい鋼種(低炭素鋼)の異鋼種連々であり、比較
例2が本発明を適用しない場合でのSUS304(Ni
系ステンレス鋼)の異鋼種連々である。比較例2ではシ
ェル倒れ込み量が大きくなりすぎて溶鋼洩れを危険があ
ったため異鋼種連々を中断した。比較例3,4ではモー
ルド冷却水流量を1100l/minに低下させた場合
のSUS304の異鋼種連々を示す。比較例3では、モ
ールド内停止時間が4分でありシェル倒れ込み量も少な
く異鋼種連々が可能であったが、比較例4ではモールド
内停止時間が7分と長くなったためにシェル倒れ込み量
が大きくなりすぎて溶鋼洩れの危険があったため異鋼種
連々を中断した。
Comparative Example 1 is a series of different steel types (low carbon steel) having a small linear expansion coefficient that have been conventionally used, and SUS304 (Ni in the case where the present invention is not applied to Comparative Example 2).
Series stainless steel). In Comparative Example 2, since the shell collapse amount became too large and there was a danger of molten steel leakage, different steel types were interrupted. Comparative Examples 3 and 4 show different steel types of SUS304 when the mold cooling water flow rate is reduced to 1100 l / min. In Comparative Example 3, the stop time in the mold was 4 minutes, and the amount of shell collapse was small, so that different steel types could be used consecutively. However, in Comparative Example 4, the stop time in the mold was as long as 7 minutes, so the shell collapse amount was large. Since there was a danger of molten steel leaking due to too much deterioration, the different steel types were interrupted.

【0020】実施例1,2では、モールド冷却水流量を
1100l/minに低下させると共に、シェル倒れ込
み防止治具を用いた場合の結果を示す。実施例1はモー
ルド内停止時間が5分、実施例2はモールド内停止時間
が8分であったが両者とも安定した異鋼種連々が可能で
あった。
Examples 1 and 2 show the results when the mold cooling water flow rate was reduced to 1100 l / min and a shell collapse prevention jig was used. In Example 1, the stop time in the mold was 5 minutes, and in Example 2, the stop time in the mold was 8 minutes, but both of them were capable of stable succession of different steel types.

【0021】[0021]

【発明の効果】上記の説明から明らかなように、本発明
では、先行溶鋼のモールド内への注入が終了した直後に
モールド冷却水流量を1000〜1200l/minに
低下させると共に、モールド内にシェル倒れ込み防止治
具を挿入してシェルの倒れ込みを防止しているので、N
i系ステンレス溶鋼を先行溶鋼とした場合においても安
定的かつ歩留りのよい異鋼種連々鋳を行うことができ、
連鋳作業能率の向上を図ることができるという効果が得
られる。
As is apparent from the above description, in the present invention, the mold cooling water flow rate is reduced to 1000 to 1200 l / min immediately after the injection of the preceding molten steel into the mold is finished, and the shell is placed in the mold. Since a fall prevention tool is inserted to prevent the shell from falling, N
Even when the i-type stainless steel molten steel is used as the preceding molten steel, it is possible to perform continuous casting of different steel types with stable and good yield,
The effect that continuous casting work efficiency can be improved is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例であるNi系ステン
レス鋼の異鋼種連々法を説明するための説明的概略図で
ある。
FIG. 1 is an explanatory schematic diagram for explaining a method of continuously connecting different types of Ni-based stainless steel, which is an example of an embodiment of the present invention.

【図2】(a)は本発明の実施の形態の一例であるNi
系ステンレス鋼の異鋼種連々法を説明するための説明的
概略図、(b)は図2(a)の矢印A方向から見た図で
ある。
FIG. 2 (a) is an example of an embodiment of the present invention Ni
2B is a diagram viewed from the direction of arrow A in FIG. 2A, illustrating an explanatory schematic diagram for explaining a method for continuously joining different types of stainless steels.

【図3】本発明の実施の形態の一例であるNi系ステン
レス鋼の異鋼種連々法を説明するための説明的概略図で
ある。
FIG. 3 is an explanatory schematic diagram for explaining a method for continuously connecting different kinds of Ni-based stainless steels, which is an example of an embodiment of the present invention.

【図4】本発明の実施の形態の一例であるNi系ステン
レス鋼の異鋼種連々法を説明するための説明的概略図で
ある。
FIG. 4 is an explanatory schematic diagram for explaining a method for continuously connecting different kinds of Ni-based stainless steels, which is an example of an embodiment of the present invention.

【図5】鋳込停止時のモールド冷却水流量とモールド抜
熱量との関係を示したグラフ図である。
FIG. 5 is a graph showing the relationship between the mold cooling water flow rate and the mold heat removal amount when casting is stopped.

【図6】鋳込停止時のモールド冷却水流量とモールド銅
板内側の温度との関係を示したグラフ図である。
FIG. 6 is a graph showing the relationship between the mold cooling water flow rate and the temperature inside the mold copper plate when casting is stopped.

【図7】シェル倒れ込み防止治具を使用した場合の長辺
シェルの倒れ込み量とモールド冷却水流量との関係と、
シェル倒れ込み防止治具を使用しない場合の長辺シェル
の倒れ込み量とモールド冷却水流量との関係との比較を
示したグラフ図である。
FIG. 7 shows the relationship between the amount of long-side shell collapse and the mold cooling water flow rate when a shell collapse prevention jig is used.
FIG. 7 is a graph showing a comparison between the amount of long-side shell collapse and the mold cooling water flow rate when the shell collapse prevention jig is not used.

【図8】Ni系ステンレス溶鋼がモールド内で停止した
ときにおこるシェルの倒れ込みを説明するための説明図
である。
FIG. 8 is an explanatory diagram for explaining the collapse of the shell that occurs when the Ni-based stainless molten steel stops in the mold.

【符号の説明】[Explanation of symbols]

1a…Ni系ステンレス溶鋼(先行溶鋼) 1b…後行溶鋼 2…モールド 3…モールド内シェル 4…取鍋 5…タンディッシュ 6…シェル倒れ込み防止治具 7…仕切り板 8…モールド内凝固壁 C…モールド内シェル倒れ込み量 1a ... Ni-based stainless molten steel (previous molten steel) 1b ... Subsequent molten steel 2 ... Mold 3 ... Mold inner shell 4 ... Ladle 5 ... Tundish 6 ... Shell collapse prevention jig 7 ... Partition plate 8 ... Mold solidification wall C ... Amount of shell collapse in mold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 廣 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 大関 忠雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 足立 實 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 杉沢 元達 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 加藤 勲 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Nishikawa, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Tadao Ozeki, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel Works Co., Ltd. Chiba Works (72) Inventor Minoru Adachi 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Works Chiba Works (72) Motoda Sugisawa, 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Isao Kato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni系ステンレス溶鋼を先行溶鋼とする
連続鋳造での異鋼種連々法において、先行溶鋼のモール
ド内への注入が終了した直後にモールド冷却水流量を1
000〜1200l/minに低下させると共に、モー
ルド内にシェル倒れ込み防止治具を挿入してシェルの倒
れ込みを防止し、その後、先行溶鋼と後行溶鋼とを仕切
る仕切り部材をモールド内に配置するようにしたことを
特徴とするNi系ステンレス鋼の異鋼種連々法。
1. In a continuous casting method of different steel types in continuous casting using Ni-based stainless molten steel as the preceding molten steel, the mold cooling water flow rate is set to 1 immediately after the injection of the preceding molten steel into the mold is completed.
000 to 1200 l / min, while preventing the shell from falling by inserting a shell falling prevention jig into the mold, and then arranging a partition member for partitioning the preceding molten steel and the following molten steel into the mold. A method for continuously changing different types of Ni-based stainless steels characterized by the above.
JP25289295A 1995-09-29 1995-09-29 Sequentially continuous casting method for different kind of steel from ni base stainless steel Pending JPH0994639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25289295A JPH0994639A (en) 1995-09-29 1995-09-29 Sequentially continuous casting method for different kind of steel from ni base stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25289295A JPH0994639A (en) 1995-09-29 1995-09-29 Sequentially continuous casting method for different kind of steel from ni base stainless steel

Publications (1)

Publication Number Publication Date
JPH0994639A true JPH0994639A (en) 1997-04-08

Family

ID=17243625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25289295A Pending JPH0994639A (en) 1995-09-29 1995-09-29 Sequentially continuous casting method for different kind of steel from ni base stainless steel

Country Status (1)

Country Link
JP (1) JPH0994639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544430B1 (en) * 2001-04-10 2006-01-24 주식회사 포스코 A method for manufacturing continuous casting slab of high nickel containing alloy
EP1754806A1 (en) * 2005-08-18 2007-02-21 Sumco Solar Corporation Method for casting polycrystalline silicon
JP2008246532A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Joint hardware for continuous casting of different steel kinds, and continuous steel casting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544430B1 (en) * 2001-04-10 2006-01-24 주식회사 포스코 A method for manufacturing continuous casting slab of high nickel containing alloy
EP1754806A1 (en) * 2005-08-18 2007-02-21 Sumco Solar Corporation Method for casting polycrystalline silicon
US7682472B2 (en) 2005-08-18 2010-03-23 Sumco Solar Corporation Method for casting polycrystalline silicon
JP2008246532A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Joint hardware for continuous casting of different steel kinds, and continuous steel casting method

Similar Documents

Publication Publication Date Title
JPH0994639A (en) Sequentially continuous casting method for different kind of steel from ni base stainless steel
JP2001105102A (en) Mold for continuous casting and continuous casting method
US4086951A (en) Apparatus for changing width of a cast piece in a continuous casting operation
JP3262672B2 (en) Starting method in twin roll casting of aluminum alloy
JP2976161B2 (en) Molding method using special core
JP3180233B2 (en) Cast products cast using a special core
US4299266A (en) Method for increasing the width of a cast piece
JPS6228052A (en) Nozzle for introducing molten metal
JP3180234B2 (en) Casting method using special core
JPH11156511A (en) Steel slab continuous casting method
JP2770691B2 (en) Steel continuous casting method
JP3273209B2 (en) Molded product molded using special core
JP3235551B2 (en) Connection jig for continuous casting equipment
JP3344070B2 (en) Aluminum square ingot semi-continuous casting pedestal and method of manufacturing square ingot
JP3180235B2 (en) Special core for casting
JPS6027558Y2 (en) Continuous casting mold
JP3082834B2 (en) Continuous casting method for round slabs
JPS60250864A (en) Top treatment of slab when casting in continuous casting ends
JPH07100601A (en) Method for fit-sealing dummy bar to continuous casting mold and method for starting casting in continuous casting and dummy bar
JPH09271903A (en) Mold for continuously casing steel
JP2903844B2 (en) Method of finishing casting in continuous casting
JPS633730Y2 (en)
US805728A (en) Process of perfecting cast-steel ingots.
JPH0318037Y2 (en)
JPH0332452A (en) Method for continuously casting different steel kinds

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106