JPH0993968A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH0993968A
JPH0993968A JP26804995A JP26804995A JPH0993968A JP H0993968 A JPH0993968 A JP H0993968A JP 26804995 A JP26804995 A JP 26804995A JP 26804995 A JP26804995 A JP 26804995A JP H0993968 A JPH0993968 A JP H0993968A
Authority
JP
Japan
Prior art keywords
gas
fuel
space
combustion
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26804995A
Other languages
Japanese (ja)
Other versions
JP3614531B2 (en
Inventor
Michiro Kozutsumi
三千郎 小堤
Shinsuke Obara
伸介 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Obara Kinzoku Kogyo KK
Original Assignee
Obara Kinzoku Kogyo KK
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obara Kinzoku Kogyo KK, Nisshin Steel Co Ltd filed Critical Obara Kinzoku Kogyo KK
Priority to JP26804995A priority Critical patent/JP3614531B2/en
Priority to EP96102924A priority patent/EP0731513B1/en
Priority to DE69610516T priority patent/DE69610516T2/en
Priority to US08/612,280 priority patent/US5726380A/en
Priority to CA002171384A priority patent/CA2171384C/en
Publication of JPH0993968A publication Critical patent/JPH0993968A/en
Application granted granted Critical
Publication of JP3614531B2 publication Critical patent/JP3614531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric generator which can take out power with high fuel consumption efficiency by reducing uncombusted gas discharged to the outside. SOLUTION: Porous bodies 11 and 12 consisting of two pieces of thermoelectric heating media are arranged in the flow direction of combustion assisting gas, and space 13 for fuel feed is provided between the porous bodies 11 and 12. For the combustion assisting gas, the direction of flow is switched alternately between (1) and (2). A difference in temperature occurs inside the porous bodies 11 and 12 by the combustion of the fuel fed in the space 13, and the electromotive force caused by this temperature difference is taken out as power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電発電媒体からなる
多孔体を用いたガス燃焼型の熱電発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas combustion type thermoelectric power generator using a porous body made of a thermoelectric power generation medium.

【0002】[0002]

【従来の技術】異種の金属又は半導体の2か所の接点に
温度差を与えると、ゼーベック効果により起電力が発生
する。この起電力を活用して熱を電気エネルギーに変換
する直接変換型発電装置は、装置構造が単純で、低騒
音,小型等の長所を備えていることから、要求特性を満
足する素材の研究開発が盛んに行われている。しかし、
現在のところコストを含めて十分な材料が未だ開発され
ておらず、熱電発電は種々の利点をもっているにも拘ら
ず、特殊な分野で実用化されているだけである。このよ
うな状況の中で、特開平6−302867号公報では、
熱電発電媒体の多孔体内部で予混合された燃料を燃焼さ
せる熱電発電装置が紹介されている。多孔体内部での燃
料によって発生した熱量は、多孔体が持つ超断熱効果に
よって狭い領域に閉じ込められ、多孔体の両端面に配設
した電極によって電気エネルギーとして取り出される。
また、K.NAKAMURA,R.ECHIGO ”I
nst.J.Mass.Transfer”vol.3
6no.13(1993),p3201には、ガスの流
れ方向を一定時間ごとに切り替えるとき、効率よく温度
差が作り出されることも報告されている。
2. Description of the Related Art When a temperature difference is applied to two contact points of different metals or semiconductors, an electromotive force is generated by the Seebeck effect. The direct conversion power generation device that uses this electromotive force to convert heat into electric energy has the advantages of a simple device structure, low noise, and small size. Is being actively conducted. But,
At present, sufficient materials including cost are not yet developed, and thermoelectric power generation has various advantages, but is only put to practical use in a special field. Under such circumstances, in Japanese Patent Laid-Open No. 6-302867,
A thermoelectric generator that burns a premixed fuel inside a porous body of a thermoelectric generator has been introduced. The amount of heat generated by the fuel inside the porous body is confined in a narrow region by the superadiabatic effect of the porous body, and is taken out as electric energy by the electrodes arranged on both end surfaces of the porous body.
In addition, K. NAKAMURA, R.M. ECHIGO "I
nst. J. Mass. Transfer "vol.3
6 no. 13 (1993), p3201, it is also reported that a temperature difference is efficiently created when the gas flow direction is switched at regular intervals.

【0003】[0003]

【発明が解決しようとする課題】しかし、多孔体の一方
の端面から他方の端面に向けて可燃性ガスを導入して多
孔体内部で燃焼させる燃焼反応と、逆方向の燃焼反応と
を交互に繰り返す方式では、ガスの流れ方向切替え時に
排ガス排出口から一定量の未燃焼ガスの排出が原理的に
避けられない。未燃焼ガスの排出は、熱電発電装置が有
効な発電方式として今後開発・発展される過程で、エネ
ルギー変換効率を向上させる上での障害になる。未燃焼
ガスの排出を抑制するため、特開平6−302867号
公報では多孔体の途中に燃料ガスのみを供給する方法を
紹介している。しかし、そのための構造設計,製作や供
給位置等の選定が難しく、またガス供給系に関しても切
替えバルブを含む配管が別途必要になり、システムの複
雑化が避けられない。
However, a combustion reaction in which a combustible gas is introduced from one end surface of the porous body toward the other end surface to burn inside the porous body and a combustion reaction in the opposite direction are alternately performed. In the method of repeating, in principle, it is inevitable to discharge a certain amount of unburned gas from the exhaust gas outlet when switching the gas flow direction. Emission of unburned gas becomes an obstacle to improve energy conversion efficiency in the process of developing and developing a thermoelectric generator as an effective power generation method in the future. In order to suppress the discharge of unburned gas, Japanese Patent Laid-Open No. 6-302867 introduces a method of supplying only fuel gas in the middle of the porous body. However, it is difficult to select the structural design, manufacture, supply position, etc. for that purpose, and the gas supply system also requires additional piping including a switching valve, which inevitably complicates the system.

【0004】しかも、ガスの流れ方向切替え時に逆方向
から送り込まれた燃料ガスが到達するまで、多孔体の中
央部にある燃焼ゾーンは、燃料ガスの供給が中断した状
態にある。この状態から再度燃焼状態に移行するため、
ガスの流速等の条件にもよるが、燃焼ゾーンにおける燃
焼状態が不安定になる。この傾向は、ガスの流れ方向の
切替え頻度が高いほど、また流れを制御するバルブから
多孔体内のガス燃焼領域までの間の体積が大きいほど大
きな影響となって現れる。そのため、効率を重視した時
間間隔を自由に設定できず、切替え頻度に制約が加わ
る。また、燃焼状態の不安定化に伴って、所期の温度勾
配を安定してつけるための制御が困難になる。本発明
は、このような問題を解消すべく案出されたものであ
り、分割した多孔体の中央部に燃料を別途供給すること
により、燃料利用効率が高く、効率よく電力を取り出す
ことができる熱電発電装置を提供することを目的とす
る。
In addition, the supply of the fuel gas is interrupted in the combustion zone at the center of the porous body until the fuel gas sent from the opposite direction reaches when the gas flow direction is switched. Since this state transitions to the combustion state again,
The combustion state in the combustion zone becomes unstable, depending on conditions such as the gas flow velocity. This tendency becomes more significant as the gas flow direction is switched more frequently and the volume between the valve controlling the flow and the gas combustion region in the porous body is larger. Therefore, it is not possible to freely set the time interval that places importance on efficiency, and the switching frequency is restricted. In addition, as the combustion state becomes unstable, it becomes difficult to control the temperature gradient in order to stabilize it. The present invention has been devised to solve such a problem, and by separately supplying the fuel to the central portion of the divided porous body, the fuel utilization efficiency is high and the electric power can be efficiently extracted. An object is to provide a thermoelectric generator.

【0005】[0005]

【課題を解決するための手段】本発明の熱電発電装置
は、その目的を達成するため、助燃ガスの流れ方向に沿
って直列配置された2個の熱電発電媒体と、これら熱電
発電媒体に挟まれた燃料送給用の空間部と、助燃ガスの
流れ方向を一定時間ごとに交互に切り替える手段とを備
え、空間部に送り込まれた燃料の燃焼によって発生した
多孔体内部のガスの流れ方向に沿った温度差から電力を
取り出すことを特徴とする。熱電発電媒体としては、本
発明者等が特願平7−78262号で提案した熱電発電
媒体を使用することができる。この熱電発電媒体は、直
列接続された多数の熱電対が形成されるように熱電対の
関係にある2種の金属板又は金属箔の複数を互い違いに
接続してツヅラ折り状に積層した構造をもつ。助燃ガス
には、空気,酸素,酸素富化空気等が使用される。燃料
としては、炭化水素系のガス燃料を始めとして、種々の
気体燃料や気化又は霧化した液体燃料が使用される。
In order to achieve the object, the thermoelectric power generator of the present invention has two thermoelectric power generation media arranged in series along the flow direction of the auxiliary gas, and sandwiched between these thermoelectric power generation media. And a means for alternately switching the flow direction of the auxiliary combustion gas at regular intervals, in the flow direction of the gas inside the porous body generated by the combustion of the fuel fed into the space part. It is characterized in that electric power is taken out from the temperature difference along the line. As the thermoelectric power generation medium, the thermoelectric power generation medium proposed by the present inventors in Japanese Patent Application No. 7-78262 can be used. This thermoelectric power generation medium has a structure in which a plurality of two types of metal plates or metal foils having a thermocouple relationship are alternately connected to each other so that a large number of thermocouples connected in series are formed and stacked in a zigzag shape. Hold. Air, oxygen, oxygen-enriched air, or the like is used as the supporting gas. As the fuel, various gaseous fuels and vaporized or atomized liquid fuels are used, including hydrocarbon-based gas fuels.

【0006】[0006]

【作用】本発明者等は、多孔体内部で燃料を燃焼させて
電力を取り出す熱電発電装置について種々の観点から調
査・研究した結果、必要とする急峻な温度勾配の発生原
因は、多孔体内で可燃性ガスが燃焼することにあるので
はなく、大量の気体が多孔体内部の低温側から高温側に
向かって熱の授受を行いながら通過することにあるこ
と、また多孔体内部で燃焼させる燃料ガスは空気に対し
て約1%程度の非常に少ない量であること等を知見し
た。そこで、熱電発電媒体からなる多孔体を二つに分割
してガスの流れに沿って直列に配置する構造とし、多孔
体の中間部に燃料を導入する空間を設け、空気等の助燃
ガスのみを多孔体の両側から交互に流す方式を採用し
た。すなわち、図1(a)に示すように、燃焼器筐体1
0の内部に一対の多孔体11,12を収容し、多孔体1
1と12との間に空間部13を設ける。助燃ガスは、給
排管21から多孔体11の内部に、又は他方の給排管2
2から多孔体12の内部に送り込まれる。燃料は、空間
部13に開口した燃料導入管23から多孔体11と12
との間の空間部13に送り込まれ、多孔体11又は12
からの助燃ガスによって燃焼する。燃焼排ガスは、他方
の多孔体12又は11の内部を通過して給排管22又は
21から排出される。
The present inventors have investigated and studied from various viewpoints a thermoelectric power generator that burns fuel inside the porous body to extract electric power. As a result, the cause of the required steep temperature gradient is It is not that the combustible gas burns, but that a large amount of gas passes while transferring heat from the low temperature side to the high temperature side inside the porous body, and the fuel burned inside the porous body It was found that gas is a very small amount of about 1% with respect to air. Therefore, the porous body made of a thermoelectric power generation medium is divided into two and arranged in series along the gas flow, and a space for introducing the fuel is provided in the middle part of the porous body, and only the auxiliary combustion gas such as air is provided. The method of alternately flowing from both sides of the porous body was adopted. That is, as shown in FIG.
A pair of porous bodies 11 and 12 are housed inside
A space 13 is provided between 1 and 12. The auxiliary combustion gas is supplied from the supply / discharge pipe 21 to the inside of the porous body 11 or the other supply / discharge pipe 2
It is sent into the inside of the porous body 12 from 2. The fuel is supplied from the fuel introduction pipe 23 opened in the space 13 to the porous bodies 11 and 12
Sent into the space 13 between the porous body 11 and 12
It is burned by the supporting gas from. The combustion exhaust gas passes through the inside of the other porous body 12 or 11 and is discharged from the supply / discharge pipe 22 or 21.

【0007】このように燃料と助燃ガスとの供給経路を
分離することによって、空間部13及び空間部13近傍
の多孔体11,12の内部の狭い範囲に燃焼ゾーンが限
定される。すなわち、助燃ガスが流れ方向であると
き、多孔体11の内部を通過することによって高温にな
った助燃ガスが空間部13で燃料と接触するため、燃料
は、十分に高い温度及び十分な量の助燃ガスによって瞬
時に燃焼反応する。その結果、図1(b)に示すように
多孔体11,12の内部に急峻な勾配をもった温度分布
が形成される。また、流れ方向に沿った酸素の濃度分布
は、図1(c)に示すように空間部13を境として急激
に減少する。他方、CO,CO2 ,H2 O等の燃焼廃ガ
スは空間部13を境として急激に増加する。すなわち、
送り込まれた燃料は、空間部13でほぼ全量が燃焼し、
空間部13に隣接する多孔体12の内部で残りの未燃焼
部が燃焼する。したがって、送り込まれた燃料が未燃焼
のままで排出されることがない。
By separating the fuel and auxiliary gas supply paths in this manner, the combustion zone is limited to a narrow area inside the space 13 and the porous bodies 11 and 12 near the space 13. That is, when the auxiliary combustion gas is in the flow direction, the auxiliary combustion gas that has become hot due to passing through the inside of the porous body 11 comes into contact with the fuel in the space portion 13, so that the fuel has a sufficiently high temperature and a sufficient amount. Combustion reaction occurs instantly with the supporting gas. As a result, a temperature distribution having a steep gradient is formed inside the porous bodies 11 and 12 as shown in FIG. Further, the oxygen concentration distribution along the flow direction sharply decreases with the space 13 as a boundary, as shown in FIG. On the other hand, combustion waste gas such as CO, CO 2 and H 2 O rapidly increases at the space 13. That is,
Almost all the fuel sent in is burned in the space 13,
The remaining unburned portion burns inside the porous body 12 adjacent to the space portion 13. Therefore, the fed fuel is not discharged without being burnt.

【0008】助燃ガスの流れ方向をからに切り替え
た時点では、燃焼に使用された助燃ガスが多孔体12か
ら多孔体11に戻ってくる。しかし、安定状態では、も
とより助燃ガス過剰の状態にあるので、燃焼に必要十分
な量の酸素量が確保されており、流れ方向の切り替えに
よって燃焼がとぎれることはない。この点、従来の方式
では、図1(d)に示すように他方の多孔体12から燃
焼廃ガスを廃棄させ、新たに給排管22から供給された
燃焼ガスが到達するまでの間、燃料が供給されない期間
がある。これに対し、本発明においては、多孔体12か
ら多孔体11に戻ってきた助燃ガスでも十分な酸素濃度
をもっていることから、空間部13に送り込んだ燃料を
連続して燃焼させることができる。しかも、燃料濃度が
希薄で且つ少量であることから、予熱せずに燃料を空間
部13に供給しても、温度が低下することなく、安定し
た燃焼ゾーンが維持される。
When the flow direction of the auxiliary combustion gas is switched from to, the auxiliary combustion gas used for combustion returns from the porous body 12 to the porous body 11. However, in the stable state, since the auxiliary combustion gas is in excess, the amount of oxygen necessary and sufficient for combustion is secured, and the combustion is not interrupted by switching the flow direction. In this respect, in the conventional method, as shown in FIG. 1D, the combustion waste gas is discarded from the other porous body 12, and the fuel is supplied until the combustion gas newly supplied from the supply / discharge pipe 22 reaches. There is a period when it is not supplied. On the other hand, in the present invention, even the combustion-assisting gas returned from the porous body 12 to the porous body 11 has a sufficient oxygen concentration, so that the fuel fed into the space 13 can be continuously burned. Moreover, since the fuel concentration is lean and small, even if the fuel is supplied to the space portion 13 without preheating, the temperature does not decrease and the stable combustion zone is maintained.

【0009】このように、本発明に従った熱電発電装置
は、従来法のように流れ方向の切替え時に未燃焼排ガス
を系外に排出することがなく、燃料を効率よく燃焼させ
る。また、燃料供給の中断もなく、安定な燃焼状態が維
持されるので、高効率で電気エネルギーを取り出すこと
ができる。また、空間部13に金属メッシュや金属ワイ
ヤの集合体等を配置したとき、燃焼効率が一層向上す
る。このとき使用される金属メッシュや金属ワイヤの集
合体は、空間部13に単体として配置してもよいが、空
間部13に臨む多孔体11又は12に対向配置すること
が好ましい。これによって、燃料導入管23から送り出
された燃料が多孔体11又は12の孔部に入る前に金属
メッシュや金属ワイヤと接触し、燃焼効率の改善が図ら
れる。本発明の熱電発電装置においては、燃焼によって
酸素の少なくなった空気が全て排出される時間tまで流
れ方向切替えの時間間隔を短縮できる。この時間tは、
燃焼器10の体積をV,ガスの流量をFとするとき、t
=V/Fで表される。そのため、最適時間を高い自由度
で設定できる。この点、従来の発電方式では、時間t
(=V/F)まで流れ方向切替えの時間間隔を短くする
と、燃料ガスの利用効率が50%程度までに落ちてしま
う。
As described above, the thermoelectric generator according to the present invention does not discharge the unburned exhaust gas to the outside of the system at the time of switching the flow direction unlike the conventional method, and efficiently burns the fuel. Further, since the stable combustion state is maintained without interruption of fuel supply, electric energy can be extracted with high efficiency. Further, when a metal mesh, an assembly of metal wires, or the like is arranged in the space 13, the combustion efficiency is further improved. The metal mesh or the aggregate of metal wires used at this time may be arranged as a single body in the space 13, but it is preferably arranged opposite to the porous body 11 or 12 facing the space 13. As a result, the fuel sent out from the fuel introduction pipe 23 comes into contact with the metal mesh or the metal wire before entering the hole of the porous body 11 or 12, and the combustion efficiency is improved. In the thermoelectric power generator of the present invention, the time interval of flow direction switching can be shortened to the time t when all the oxygen-depleted air is discharged. This time t is
When the volume of the combustor 10 is V and the gas flow rate is F, t
= V / F Therefore, the optimum time can be set with a high degree of freedom. In this respect, in the conventional power generation system, time t
If the time interval of flow direction switching is shortened to (= V / F), the fuel gas utilization efficiency drops to about 50%.

【0010】[0010]

【実施例】熱電発電媒体としては、本発明者等が特願平
7−78262号で提案したものを使用した。すなわ
ち、板厚50μmのアルメル及びクロメルを35mm×
40mmの短冊状に裁断し、短冊状のアルメル及びクロ
メルをそれぞれ31枚を交互に重ね合わせ、両端を交互
にスポット溶接して、アルメル及びクロメルを交互にツ
ヅラ折り状態に接続し、31対の熱電対が直列に接続さ
れた幅40mm,厚み40mm,長さ35mmのブロッ
クを2個用意した。このブロックを1000℃の大気中
で45分間加熱酸化処理し、アルメル表面にアルミナ,
クロメル表面に酸化クロムの絶縁性皮膜を形成した。2
個の熱電発電媒体を、図2に示すように多孔体11,1
2として燃焼器筐体10に収容し、多孔体11と12と
の間に間隔0.5cmの空間部13を設けた。そして、
燃焼器筐体10の中で、取出し電極31,31・・が低
温側になるようにセットした。
EXAMPLE As the thermoelectric power generation medium, the one proposed by the present inventors in Japanese Patent Application No. 7-78262 was used. That is, 35 mm × alumel and chromel with a plate thickness of 50 μm
Cut into 40 mm strips, 31 strips of alumel and chromel are alternately stacked, and both ends are spot-welded alternately. Two blocks having a width of 40 mm, a thickness of 40 mm, and a length of 35 mm in which pairs were connected in series were prepared. This block was heat-oxidized for 45 minutes in the atmosphere of 1000 ° C.
An insulating film of chromium oxide was formed on the chromel surface. Two
As shown in FIG. 2, one thermoelectric power generation medium is used as the porous body 11,1.
No. 2 was housed in the combustor casing 10, and a space 13 having a space of 0.5 cm was provided between the porous bodies 11 and 12. And
In the combustor casing 10, the extraction electrodes 31, 31, ... Are set so as to be on the low temperature side.

【0011】一方の給排管21から空気を流量10リッ
トル/分で供給し、空気送給量の3%程度の流量で燃料
導入管23から空間部13に燃料ガスを送り込み、点火
した。燃焼によって空間部13近傍の多孔体11,12
が赤熱し、多孔体11,12の温度が十分に高くなった
ところで、燃料ガスの流量を空気送給量の1%程度まで
減少させ、空気の送入方向を切り替えた。その後、5〜
10秒程度の間隔で送入方向を交互に切り替えることに
より、安定燃焼に至った。安定燃焼状態では、温度分布
を示す図3にみられるように約900Kの温度差をつけ
ることができた。その結果、両多孔体11,12の取出
し電極31,31を直列接続した状態で端子開放電圧E
=2V,作動時内部抵抗R=1.6Ωとなり、このとき
の出力電力Pは、P=E2 /4Rから625mWとなっ
た。
Air was supplied from one of the supply / discharge pipes 21 at a flow rate of 10 liters / minute, and fuel gas was sent from the fuel introduction pipe 23 to the space 13 at a flow rate of about 3% of the air supply amount to ignite. Due to combustion, the porous bodies 11 and 12 near the space portion 13
Became red and the temperatures of the porous bodies 11 and 12 became sufficiently high, the flow rate of the fuel gas was reduced to about 1% of the air feed amount, and the air feed direction was switched. Then 5
Stable combustion was achieved by alternately switching the feeding directions at intervals of about 10 seconds. In the stable combustion state, a temperature difference of about 900 K could be obtained as shown in FIG. 3 showing the temperature distribution. As a result, the terminal open circuit voltage E is obtained when the extraction electrodes 31, 31 of both porous bodies 11, 12 are connected in series.
= 2V, internal resistance during operation R = 1.6Ω, and the output power P at this time was 625 mW from P = E 2 / 4R.

【0012】本実施例においては、ガス流れ方向に関し
断面4cm×4cm,長さ3.5cmの多孔体11,1
2を使用している。このように断面積の小さな多孔体1
1,12を使用しているので、燃料導入管23を単に空
間部13に臨ませるだけでよい。しかし、大きな断面を
もつ多孔体を使用して発電能力を向上させる場合、空間
部に均一な濃度分布で燃料を送り込むため、多数のノズ
ル孔が穿設された金属管を空間部13に配置することが
好ましい。また、空間部13に金属メッシュや金属細線
をブロック状にまとめた通気性多孔体を配置するとき、
燃焼反応が均一化され、より安定した燃焼状態が得られ
る。金属メッシュ,金属ワイヤには、種類によっては触
媒作用をもつものもあり、空間部13の全域及び多孔体
11,12の断面全域が燃焼に効率よく使用され、温度
分布が均一化される。
In this embodiment, the porous bodies 11, 1 having a cross section of 4 cm × 4 cm and a length of 3.5 cm in the gas flow direction.
2 is used. A porous body 1 with a small cross-sectional area like this
Since the fuel cells 1 and 12 are used, the fuel introduction pipe 23 may be simply exposed to the space 13. However, when the power generation capacity is improved by using a porous body having a large cross section, the fuel is fed into the space with a uniform concentration distribution, and therefore a metal tube having a large number of nozzle holes is arranged in the space 13. It is preferable. In addition, when arranging the air-permeable porous body in which the metal mesh and the metal thin wires are collected in a block shape in the space 13,
The combustion reaction is made uniform, and a more stable combustion state is obtained. Some metal meshes and metal wires have a catalytic action depending on the type, and the entire region of the space 13 and the entire cross section of the porous bodies 11 and 12 are efficiently used for combustion, and the temperature distribution is made uniform.

【0013】[0013]

【発明の効果】以上に説明したように、本発明の熱電発
電装置においては、燃焼ガスの流れ方向に沿って熱電発
電媒体からなる多孔体を2個直列に配置し、多孔体の間
に燃料供給用の空間部を形成している。そして、助燃ガ
ス及び燃料の供給系統を分離させ、助燃ガスを多孔体の
一端面から他端面又は逆方向に流すと共に、多孔体間の
空間部に送り込まれた燃料を燃焼させている。このよう
に送り込まれた燃料を燃焼するとき、従来の方式に比較
して燃料利用効率が高く、安定した燃焼ゾーンが形成さ
れ、電気エネルギーを高効率で取り出すことが可能にな
る。しかも、燃料ガス供給系が簡単な構造であることか
ら、保守点検も容易になる。
As described above, in the thermoelectric power generator of the present invention, two porous bodies made of a thermoelectric power generation medium are arranged in series along the flow direction of combustion gas, and the fuel is placed between the porous bodies. It forms a space for supply. Then, the supply systems of the auxiliary combustion gas and the fuel are separated, the auxiliary combustion gas is caused to flow from the one end surface of the porous body to the other end surface or in the opposite direction, and the fuel fed into the space between the porous bodies is burned. When the fuel thus fed is burned, the fuel utilization efficiency is higher than in the conventional method, a stable combustion zone is formed, and electric energy can be extracted with high efficiency. Moreover, since the fuel gas supply system has a simple structure, maintenance and inspection is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った熱電発電装置及びその性能を
模式的に示し、熱電発電装置の構造(a),燃料燃焼時
における多孔体内部の温度分布(b),燃焼ガスの流れ
方向に沿った酸素及び燃焼廃ガスの濃度分布(c)及び
燃料ガス分布を従来方式と比較したグラフ(d)
FIG. 1 schematically shows a thermoelectric generator according to the present invention and its performance, showing the structure of the thermoelectric generator (a), the temperature distribution inside the porous body during fuel combustion (b), the flow direction of the combustion gas Concentration distribution of oxygen and combustion waste gas (c) and fuel gas distribution along the graph comparing with the conventional method (d)

【図2】 本発明実施例で使用した熱電発電装置FIG. 2 is a thermoelectric generator used in Examples of the present invention.

【図3】 同装置を使用して得られた温度分布FIG. 3 Temperature distribution obtained using the same device

【符号の説明】[Explanation of symbols]

10:燃焼器筐体 11,12:多孔体(熱電発電媒
体) 13:空間部 21,22:給排管 23:燃料導入管 31:取
出し電極
10: Combustor housing 11, 12: Porous body (thermoelectric power generation medium) 13: Space portion 21, 22: Supply / discharge pipe 23: Fuel introduction pipe 31: Extraction electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 助燃ガスの流れ方向に沿って直列配置さ
れた2個の熱電発電媒体と、これら熱電発電媒体に挟ま
れた燃料送給用の空間部と、助燃ガスの流れ方向を一定
時間ごとに交互に切り替える手段とを備え、空間部に送
り込まれた燃料の燃焼によって発生した多孔体内部のガ
スの流れ方向に沿った温度差から電力を取り出す熱電発
電装置。
1. A thermoelectric power generation medium arranged in series along the flow direction of the auxiliary combustion gas, a space for fuel feeding sandwiched between these thermoelectric power generation media, and a flow direction of the auxiliary combustion gas for a predetermined time. A thermoelectric power generation device that includes means for switching each of them alternately, and extracts electric power from the temperature difference along the flow direction of the gas inside the porous body generated by the combustion of the fuel fed into the space.
【請求項2】 直列接続された多数の熱電対が形成され
るように熱電対の関係にある2種の金属板又は金属箔の
複数を互い違いに接続してツヅラ折り状に積層した熱電
発電媒体を使用する請求項1記載の熱電発電装置。
2. A thermoelectric power generation medium in which a plurality of two kinds of metal plates or metal foils having a thermocouple relationship are alternately connected to each other so as to form a large number of thermocouples connected in series and stacked in a zigzag shape. The thermoelectric generator according to claim 1, wherein the thermoelectric generator is used.
【請求項3】 金属メッシュ,金属ワイヤの集合体等で
できた単数又は複数の通気性多孔体を空間部に設けた請
求項1記載の熱電発電装置。
3. The thermoelectric generator according to claim 1, wherein a single or a plurality of air-permeable porous bodies made of a metal mesh, an assembly of metal wires or the like are provided in the space.
JP26804995A 1995-03-09 1995-09-22 Thermoelectric generator Expired - Fee Related JP3614531B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP26804995A JP3614531B2 (en) 1995-09-22 1995-09-22 Thermoelectric generator
EP96102924A EP0731513B1 (en) 1995-03-09 1996-02-27 Thermo-electric power generation using porous metal blocks having a plurality of thermocouples connected in series
DE69610516T DE69610516T2 (en) 1995-03-09 1996-02-27 Thermoelectric power generator using porous metal blocks with a number of thermocouples connected in series
US08/612,280 US5726380A (en) 1995-03-09 1996-03-07 Thermo-electric power generation using porous metal blocks having a plurality of thermocouples connected in series
CA002171384A CA2171384C (en) 1995-03-09 1996-03-08 Thermo-electric power generation using porous metal blocks having a plurality of thermocouples connected in series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26804995A JP3614531B2 (en) 1995-09-22 1995-09-22 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH0993968A true JPH0993968A (en) 1997-04-04
JP3614531B2 JP3614531B2 (en) 2005-01-26

Family

ID=17453179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26804995A Expired - Fee Related JP3614531B2 (en) 1995-03-09 1995-09-22 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP3614531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011647A (en) * 2007-07-06 2009-01-22 Shinsuke Obara Air sterilization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011647A (en) * 2007-07-06 2009-01-22 Shinsuke Obara Air sterilization apparatus

Also Published As

Publication number Publication date
JP3614531B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US20020028366A1 (en) Fuel cell waste energy recovery combustor
JP2009247206A (en) Improved efficiency thermoelectrics utilizing convective heat flow
JPH0541241A (en) Solid electrolyte type fuel cell
TW201447194A (en) Self-powered boiler using thermoelectric generator
EP0889287B1 (en) Combustion apparatus
JPH0626620A (en) Catalyst combustion unit system
US5726380A (en) Thermo-electric power generation using porous metal blocks having a plurality of thermocouples connected in series
US4391227A (en) Fluid-heating apparatus
JP3446146B2 (en) Thermoelectric generation method and device
JPH0993968A (en) Thermoelectric generator
JP3223330B2 (en) Thermoelectric generation method and device
JPH11159741A (en) Fuel modifying device
JP7408632B2 (en) Exhaust gas energy recovery converter
JP4114287B2 (en) Thermal storage regenerative power generation system
JP2008508849A (en) Thermoelectric micro-generator with flexible fuel selection
JP3585565B2 (en) Thermoelectric element using porous metal
JP2000173640A (en) Thermoelectric conversion method and device thereof
EP0870983A1 (en) Gas flow circulation type tubular heating equipment
CN1414694A (en) Device for directly implementing heat electricity conversion based on fuel combustion
JP3433820B2 (en) Gas combustion device and gas combustion system
JP7263190B2 (en) fuel cell system
JP2000146298A (en) Catalyst combustor
JPH0220890B2 (en)
JP2002252377A (en) Method and device for thermal-electric power generation
JPS6489157A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees