JPH0992911A - Slab solid laser - Google Patents

Slab solid laser

Info

Publication number
JPH0992911A
JPH0992911A JP24890195A JP24890195A JPH0992911A JP H0992911 A JPH0992911 A JP H0992911A JP 24890195 A JP24890195 A JP 24890195A JP 24890195 A JP24890195 A JP 24890195A JP H0992911 A JPH0992911 A JP H0992911A
Authority
JP
Japan
Prior art keywords
laser crystal
laser
slab
crystal
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24890195A
Other languages
Japanese (ja)
Inventor
Takeshi Kasai
彪 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24890195A priority Critical patent/JPH0992911A/en
Publication of JPH0992911A publication Critical patent/JPH0992911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce vast time and cost necessary for the high precision polishing of a slab laser crystal, by filling the part between at least one main surface of slab type laser crystal and a transparent plate formed on the main surface, with medium having almost the same refractive index as that of the laser crystal. SOLUTION: A laser crystal 11 is put in a section constituted of a transparent plate 16 and a transparent window 17, and its space is filled with medium 15 having almost the same refractive index as that of the laser crystal 11. The refractive index of the transparent plate 16 is smaller than that of the laser crystal 11. The pumping ligiht sent forth from the pumping lamp 12 is reflected by the peripheral reflecting cylinder 13 and guided to a slab laser 11. As a result, a laser active member in the laser crystal 11 is excited, and laser oscillation is generated. Laser light is totally reflected by the surface of the transparent plate 16, i.e., the surface of the laser crystal 11 side of the transparent 16, propagates zigzag in the laser crystal 11 and the medium 15, and sent forth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Nd:YAGレー
ザ等の高出力スラブ型固体レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high power slab type solid state laser device such as an Nd: YAG laser.

【0002】[0002]

【従来の技術】従来の高出力スラブ型固体レーザ装置の
主要部の断面図を図4に示す。励起用ランプ2から放出
された励起光は、その周囲の反射筒3で反射されて、ス
ラブ型のレーザ結晶1へ導かれる。その結果、レーザ結
晶1内のレーザ活性体が励起され、レーザ発振が生ず
る。このとき、スラブ型のレーザ結晶1内では、図3の
ように、レーザ光線はその光軸8で示したように発生す
る。レーザ光はレーザ結晶1内で図示のように、その内
面で全反射しながらジグザグに伝播している。4は励起
に関与しない紫外線を遮蔽するためのフィルタであり、
レーザ結晶1とフィルタ4との間には冷却媒体9が流さ
れている。
2. Description of the Related Art FIG. 4 shows a sectional view of the main part of a conventional high-power slab type solid-state laser device. Excitation light emitted from the excitation lamp 2 is reflected by the reflecting cylinder 3 around the excitation lamp 2 and guided to the slab type laser crystal 1. As a result, the laser activator in the laser crystal 1 is excited and laser oscillation occurs. At this time, in the slab type laser crystal 1, as shown in FIG. 3, a laser beam is generated as shown by its optical axis 8. As shown in the drawing, the laser light propagates in a zigzag manner while being totally reflected on the inner surface thereof. 4 is a filter for blocking ultraviolet rays not involved in excitation,
A cooling medium 9 is flown between the laser crystal 1 and the filter 4.

【0003】[0003]

【発明が解決しようとする課題】スラブ型のレーザ結晶
1の全反射面の研磨精度には、波長をλとするとき、λ
/10の高精度が要求される。研磨面積は大きなもので
は、およそ25×200mmに達し、しかも例えばN
d:YAGレーザの波長は1.06μmなので、λ/1
0の高精度研磨には、時間がかかるばかりでなく、固体
レーザ装置の高価格を招いている。
The polishing accuracy of the total reflection surface of the slab type laser crystal 1 is λ, where λ is the wavelength.
A high precision of / 10 is required. With a large polishing area, it reaches approximately 25 x 200 mm and, for example, N
Since the wavelength of the d: YAG laser is 1.06 μm, λ / 1
High precision polishing of 0 not only takes time, but also leads to high price of the solid-state laser device.

【0004】通常、スラブ結晶高精度の研磨に要する莫
大な時間と費用は、スラブ型レーザ結晶の価格の約半分
を占めるといわれている。上記の問題に鑑みて本発明の
目的は、スラブ型レーザ結晶の高精度研磨に要する莫大
な時間と費用を軽減し、低価格のスラブ型固体レーザ装
置を提供することにある。
It is generally said that the enormous time and cost required for highly accurate polishing of a slab crystal occupy about half the price of a slab type laser crystal. In view of the above problems, an object of the present invention is to provide a low-cost slab-type solid-state laser device that reduces the enormous time and cost required for highly accurate polishing of a slab-type laser crystal.

【0005】[0005]

【課題を解決するための手段】上記の課題解決のため本
発明のスラブ型固体レーザ装置は、スラブ型のレーザ結
晶の少なくとも一方の主面とその上に設けた透明板との
間にレーザ結晶とほぼ同じ屈折率の媒体を充填するもの
とする。また、スラブ型のレーザ結晶の少なくとも一方
の主面をレーザ結晶とほぼ同じ屈折率の媒体で覆ったも
のでもよい。
In order to solve the above problems, a slab type solid-state laser device of the present invention comprises a laser crystal between at least one main surface of a slab type laser crystal and a transparent plate provided thereon. It is assumed that the medium having the same refractive index as that of is filled. Further, at least one main surface of the slab type laser crystal may be covered with a medium having substantially the same refractive index as the laser crystal.

【0006】そのようにすれば、レーザ光の全反射面を
媒体表面または、透明板の表面に変えることができる。
透明板の屈折率が、レーザ結晶の屈折率より小さいもの
とすれば、レーザ光の全反射は、透明板の表面で起き、
透明板の屈折率が、レーザ結晶の屈折率より大きいもの
とすれば、レーザ光の全反射は、透明板の裏面で起き
る。
By doing so, the total reflection surface of the laser light can be changed to the surface of the medium or the surface of the transparent plate.
If the refractive index of the transparent plate is smaller than that of the laser crystal, total reflection of laser light occurs on the surface of the transparent plate,
If the refractive index of the transparent plate is larger than that of the laser crystal, total reflection of laser light occurs on the back surface of the transparent plate.

【0007】[0007]

【発明の実施の形態】上記の課題解決のため本発明のス
ラブ型固体レーザ装置は、スラブ型のレーザ結晶の少な
くとも一方の主面と透明板との間にレーザ結晶とほぼ同
じ屈折率の媒体を充填し、或いは、スラブ型のレーザ結
晶の少なくとも一方の主面をレーザ結晶とほぼ同じ屈折
率の媒体で覆うことにより、全反射面を、スラブ結晶表
面から、より高精度表面の得やすい他の物質の表面に変
更させるものである。
In order to solve the above problems, a slab-type solid-state laser device of the present invention is a medium having a refractive index substantially the same as that of the laser crystal between at least one main surface of the slab-type laser crystal and the transparent plate. Or by covering at least one main surface of the slab type laser crystal with a medium having almost the same refractive index as that of the laser crystal, the total reflection surface can be more easily obtained from the slab crystal surface. The surface of the substance is changed.

【0008】通常のスラブ結晶は硬度が高い。例えば、
よく使用されるYAG結晶のモース硬度は8を越える
が、ガラスでは5程度である。従ってガラスを研磨すれ
ば研磨時間の節約になる。以下図を参照しながら本発明
の実施例について説明する。 [実施例1]図1に本発明第一の実施例のスラブ型固体
レーザ装置の断面図を示す。
Normal slab crystals have high hardness. For example,
The Mohs hardness of YAG crystals, which is often used, exceeds 8, but that of glass is about 5. Therefore, polishing the glass saves polishing time. Hereinafter, embodiments of the present invention will be described with reference to the drawings. [Embodiment 1] FIG. 1 is a sectional view of a slab type solid-state laser device according to a first embodiment of the present invention.

【0009】励起用ランプ12および集光用反射筒13
がスラブ型レーザ結晶11の上下両面に配置されている
のは、図3の従来例と同じであるが、レーザ結晶11
は、透明板16と透明な窓17によって構成された空間
に置かれ、その空間は、レーザ結晶11とほぼ同じ屈折
率をもつ媒体15によって満たされている。透明板16
の屈折率は、レーザ結晶11のそれより小さいものとす
る。
Excitation lamp 12 and converging reflector 13
Is arranged on both upper and lower surfaces of the slab type laser crystal 11 as in the conventional example of FIG.
Is placed in a space defined by a transparent plate 16 and a transparent window 17, and the space is filled with a medium 15 having substantially the same refractive index as the laser crystal 11. Transparent plate 16
The refractive index of is smaller than that of the laser crystal 11.

【0010】励起用ランプ12から放出された励起光
は、その周囲の反射筒13で反射されるなどして、スラ
ブ型のレーザ結晶11へ導かれる。その結果、レーザ結
晶11内のレーザ活性体が励起され、レーザ発振が生ず
る。このとき、レーザ光はレーザ結晶11および媒体1
5内を透明板16の表面、すなわち、透明板16のレー
ザ結晶11側の面で全反射しながら、その光軸18で示
したようにジグザグに伝播し、出射される。
The excitation light emitted from the excitation lamp 12 is guided to the slab type laser crystal 11 by being reflected by the reflecting cylinder 13 around it. As a result, the laser activator in the laser crystal 11 is excited and laser oscillation occurs. At this time, the laser light is emitted from the laser crystal 11 and the medium 1.
While being totally reflected by the surface of the transparent plate 16, that is, the surface of the transparent plate 16 on the side of the laser crystal 11 inside 5, the light propagates in zigzag as shown by the optical axis 18 and is emitted.

【0011】図1において、例えば、レーザ結晶11と
して屈折率が1.45のNd:YLF(イットリウムリ
チウムフッ化物)を用いる場合には、冷却媒体として、
屈折率が1.46の四塩化炭素と、低屈折率の液体とを
混合することにより、容易にスラブ結晶と冷却媒体との
屈折率を合致させることができる。透明板16として
は、例えば屈折率が1.43のCaF2 を使用すれば、
図1のような透明体表面で全反射する構成とすることが
できる。
In FIG. 1, for example, when Nd: YLF (yttrium lithium fluoride) having a refractive index of 1.45 is used as the laser crystal 11, as a cooling medium,
By mixing carbon tetrachloride having a refractive index of 1.46 and a liquid having a low refractive index, it is possible to easily match the refractive indexes of the slab crystal and the cooling medium. If CaF 2 having a refractive index of 1.43 is used as the transparent plate 16,
A configuration in which total reflection is performed on the surface of the transparent body as shown in FIG.

【0012】このように全反射面を、スラブ結晶から他
の物質に変更すれば、容易に高精度の反射面を構成で
き、スラブ型のレーザ結晶の高精度研磨に要した時間と
費用を節約でき、安価なスラブ結晶を利用することがで
きる。 [実施例2]図2は、本発明第二の実施例のスラブ型固
体レーザ装置の断面図を示す。
Thus, by changing the total reflection surface from a slab crystal to another material, a highly accurate reflection surface can be easily constructed, and the time and cost required for highly accurate polishing of a slab type laser crystal can be saved. It is possible to use an inexpensive slab crystal. [Embodiment 2] FIG. 2 is a sectional view of a slab type solid-state laser device according to a second embodiment of the present invention.

【0013】この例では、透明板26として、スラブ型
のレーザ結晶21、および媒体25よりも高い屈折率の
材質を用いる。その場合のレーザ光は、レーザ結晶21
から媒体25を経て、透明板26に入り、透明板26の
ランプ22側の面で全反射する。図2において、例え
ば、レーザ結晶21として屈折率が1.45のNd:Y
LF(イットリウムリチウムフッ化物)を用いる場合に
は、冷却媒体として、屈折率が1.46の四塩化炭素
と、低屈折率の液体とを混合することにより、容易にス
ラブ結晶と冷却媒体との屈折率を合致させることができ
る。透明板26としては、例えば屈折率が1.5以上の
ガラス、より好ましくは屈折率の大きい鉛ガラスを使用
すれば、図2のような透明板26の裏面で全反射する構
成とすることができる。
In this example, the transparent plate 26 is made of a material having a higher refractive index than the slab type laser crystal 21 and the medium 25. The laser light in that case is the laser crystal 21.
Then, it enters the transparent plate 26 through the medium 25, and is totally reflected by the surface of the transparent plate 26 on the lamp 22 side. In FIG. 2, for example, as the laser crystal 21, Nd: Y having a refractive index of 1.45 is used.
When LF (yttrium lithium fluoride) is used, carbon tetrachloride having a refractive index of 1.46 and a liquid having a low refractive index are mixed as a cooling medium to easily form a slab crystal and a cooling medium. The refractive indices can be matched. As the transparent plate 26, for example, a glass having a refractive index of 1.5 or more, and more preferably lead glass having a large refractive index is used, and it may be configured to totally reflect on the back surface of the transparent plate 26 as shown in FIG. it can.

【0014】上記の図1、図2の実施例では、媒体1
5、25が、レーザ結晶11、21の冷却媒体を兼ねる
構造としたが、困難であれば別に冷却構造を設けてもよ
い。また、上記の他にもスラブ型レーザ結晶、媒体、お
よび透明板の組合せは、種々考えられる。 [実施例3]図3は、本発明第三の実施例のスラブ型固
体レーザ装置の断面図を示す。
In the embodiment shown in FIGS. 1 and 2, the medium 1 is used.
Although 5 and 25 have a structure which also serves as a cooling medium for the laser crystals 11 and 21, if it is difficult, a separate cooling structure may be provided. In addition to the above, various combinations of the slab type laser crystal, the medium and the transparent plate can be considered. [Third Embodiment] FIG. 3 is a sectional view of a slab type solid-state laser device according to a third embodiment of the present invention.

【0015】この例では、レーザ結晶31と同じ屈折率
の固体の媒体35が、レーザ結晶31に接着されてい
る。媒体35の表面は高精度の表面に加工されていて、
全反射面となる。従って、ただし、冷却媒体39で冷却
することが必要であろう。媒体35は、屈折率がレーザ
結晶31と同じだけでなく、耐光性があるもので、熱伝
動度の大きいものが望ましい。この場合は、第一、第二
の実施例における透明板が不要になる。
In this example, a solid medium 35 having the same refractive index as the laser crystal 31 is bonded to the laser crystal 31. The surface of the medium 35 is processed into a highly accurate surface,
It becomes a total reflection surface. Therefore, however, it may be necessary to cool with the cooling medium 39. It is desirable that the medium 35 has not only the same refractive index as that of the laser crystal 31 but also light resistance and high thermal conductivity. In this case, the transparent plate in the first and second embodiments becomes unnecessary.

【0016】[0016]

【発明の効果】以上説明したように本発明のスラブ型固
体レーザ装置は、スラブ型のレーザ結晶の主面と透明板
との間にレーザ結晶とほぼ同じ屈折率の媒体を充填し、
或いは、スラブ型のレーザ結晶の少なくとも一方の主面
をレーザ結晶とほぼ同じ屈折率の媒体で覆うことによ
り、全反射面を、スラブ型レーザ結晶の表面から、より
高精度表面の得やすい他の物質の表面に変更させること
ができる。
As described above, in the slab type solid-state laser device of the present invention, a medium having substantially the same refractive index as that of the laser crystal is filled between the main surface of the slab type laser crystal and the transparent plate,
Alternatively, by covering at least one main surface of the slab type laser crystal with a medium having substantially the same refractive index as the laser crystal, the total reflection surface can be easily obtained from the surface of the slab type laser crystal with a higher precision surface. It can be changed to the surface of the substance.

【0017】例えば加工のし易いガラスを用いることに
より、従来は絶対必要であったスラブ型レーザ結晶の全
反射面の高精度加工が不要になり、コスト軽減を図るこ
とができる。
For example, by using glass that is easy to process, it is not necessary to perform high-precision processing on the total reflection surface of the slab type laser crystal, which has been absolutely necessary in the past, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一の実施例のスラブ型固体レーザ装置
の断面図
FIG. 1 is a sectional view of a slab type solid-state laser device according to a first embodiment of the present invention.

【図2】本発明第二の実施例のスラブ型固体レーザ装置
の断面図
FIG. 2 is a sectional view of a slab type solid state laser device according to a second embodiment of the present invention.

【図3】本発明第三の実施例のスラブ型固体レーザ装置
の断面図
FIG. 3 is a sectional view of a slab type solid state laser device according to a third embodiment of the present invention.

【図4】従来のスラブ型固体レーザ装置の断面図FIG. 4 is a sectional view of a conventional slab type solid-state laser device.

【符号の説明】[Explanation of symbols]

1、11、21、31 レーザ結晶 2、12、22 ランプ 3、13 反射筒 4、 フィルタ 8、18 光軸 9、39 冷却媒体 15、25、35 媒体 16、26 透明板 17 窓 1, 11, 21, 31 Laser crystal 2, 12, 22 Lamp 3, 13 Reflecting tube 4, Filter 8, 18 Optical axis 9, 39 Cooling medium 15, 25, 35 Medium 16, 26 Transparent plate 17 Window

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】スラブ型結晶を用いる固体レーザ装置にお
いて、スラブ型のレーザ結晶の少なくとも一方の主面と
その上に設けた透明板との間に、レーザ結晶とほぼ同じ
屈折率の媒体を充填することを特徴とするスラブ型固体
レーザ装置。
1. In a solid-state laser device using a slab type crystal, a medium having substantially the same refractive index as that of the laser crystal is filled between at least one main surface of the slab type laser crystal and a transparent plate provided thereon. A slab type solid-state laser device characterized in that
【請求項2】スラブ型結晶を用いる固体レーザ装置にお
いて、スラブ型のレーザ結晶の少なくとも一方の主面を
レーザ結晶とほぼ同じ屈折率の媒体で覆うことを特徴と
するスラブ型固体レーザ装置。
2. A solid-state laser device using a slab-type crystal, wherein at least one main surface of the slab-type laser crystal is covered with a medium having substantially the same refractive index as the laser crystal.
【請求項3】透明板の屈折率が、レーザ結晶の屈折率よ
り小さいことを特徴とする請求項1に記載のスラブ型固
体レーザ装置。
3. The slab type solid-state laser device according to claim 1, wherein the transparent plate has a refractive index smaller than that of the laser crystal.
【請求項4】透明板の屈折率が、レーザ結晶の屈折率よ
り大きいことを特徴とする請求項1に記載のスラブ型固
体レーザ装置。
4. The slab type solid state laser device according to claim 1, wherein the transparent plate has a refractive index higher than that of the laser crystal.
JP24890195A 1995-09-27 1995-09-27 Slab solid laser Pending JPH0992911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24890195A JPH0992911A (en) 1995-09-27 1995-09-27 Slab solid laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24890195A JPH0992911A (en) 1995-09-27 1995-09-27 Slab solid laser

Publications (1)

Publication Number Publication Date
JPH0992911A true JPH0992911A (en) 1997-04-04

Family

ID=17185125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24890195A Pending JPH0992911A (en) 1995-09-27 1995-09-27 Slab solid laser

Country Status (1)

Country Link
JP (1) JPH0992911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399651C (en) * 2006-07-26 2008-07-02 中国科学院上海光学精密机械研究所 Lath laser for implementing Z shape light path by reflecting glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399651C (en) * 2006-07-26 2008-07-02 中国科学院上海光学精密机械研究所 Lath laser for implementing Z shape light path by reflecting glass

Similar Documents

Publication Publication Date Title
JPH06104515A (en) Solid state laser
JPS62262480A (en) Laser device
US20060171429A1 (en) Monoblock laser with reflective substrate
US5381427A (en) Single mode laser
JPH10242551A (en) Optical element and laser apparatus
WO2005091447A1 (en) Laser equipment
KR940022118A (en) Semi-monolithic Saturated Optical Device
US6944196B2 (en) Solid state laser amplifier
JPH11500577A (en) Lasers and active switched microlasers
US5617442A (en) Solid-state laser device with diffused-light excitation, and integrating sphere
JPH09214024A (en) Solid-state laser oscillator
JPH08186308A (en) Laser diode-excited solid-state laser and its manufacture
JPH0992911A (en) Slab solid laser
US5692005A (en) Solid-state laser
JPH1187813A (en) Solid laser oscillator
JPH06350171A (en) Solid-state laser device and integral sphere
US5490161A (en) Solid-state laser device with diffused-light excitation, and integrating sphere
JP2001036172A (en) Laser device, optical amplifier and laser beam machine
JP3091764B2 (en) Semiconductor pumped solid-state laser
JP3060493B2 (en) Solid state laser oscillator
JPH098384A (en) Solid state laser and laser light transmission method
JPH033377A (en) Semiconductor laser pumping solid-state laser device
JPH05267750A (en) Semiconductor excitation solid laser
JPH0525261Y2 (en)
JPH08274393A (en) Slab laser and laser processor