JPH0992617A - Method for integrating secondary thin film of nano scale microparticle - Google Patents

Method for integrating secondary thin film of nano scale microparticle

Info

Publication number
JPH0992617A
JPH0992617A JP7242237A JP24223795A JPH0992617A JP H0992617 A JPH0992617 A JP H0992617A JP 7242237 A JP7242237 A JP 7242237A JP 24223795 A JP24223795 A JP 24223795A JP H0992617 A JPH0992617 A JP H0992617A
Authority
JP
Japan
Prior art keywords
thin film
film
fine particles
nanoscale
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7242237A
Other languages
Japanese (ja)
Other versions
JP3768568B2 (en
Inventor
Kuniaki Nagayama
国昭 永山
Shigeki Adachi
栄希 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP24223795A priority Critical patent/JP3768568B2/en
Publication of JPH0992617A publication Critical patent/JPH0992617A/en
Application granted granted Critical
Publication of JP3768568B2 publication Critical patent/JP3768568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nano scale two-dimensional crystal of ultrafine particle of protein or the like by confining nano scale microparticles in a secondary thin film in which the potential energy for the charged particles in an electrolyte film is set at secondary minimum through the control of ionic strength. SOLUTION: When a macroscopically stable thick film (h) has a charge (q) in an electrolyte film and a charged particle having radius R is present, the potential energy for the microparticle has secondary minimum when appropriate ionic strength is selected. Since the minimum appears uniformly in the planar direction within the thin film, the thin film formed in the liquid film can be regarded as a secondary thin film. A microparticle is confined within the core thin film to constitute a two-dimensional system. When one kind of the charged particle is present, for example, Alder transition takes place in the secondary thin film thus bringing about hexagonal close-packed filling. Consequently, the microparticles integrated in the secondary thin film can be formed directly on a solid substrate without causing any deterioration due to transfer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体基板上への
微粒子薄膜の直接作成方法に関するものである。さらに
詳しくは、液膜を利用して微粒子を固体基板上へ集積す
るナノスケール微粒子の2次薄膜集積法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for directly producing a fine particle film on a solid substrate. More specifically, the present invention relates to a secondary thin film integration method for nanoscale particles in which fine particles are integrated on a solid substrate using a liquid film.

【0002】[0002]

【従来の技術とその課題】従来より、エレクトロニク
ス、バイオマテリアル等の諸分野においては、新しい高
度機能を実現するための手段として微粒子や薄膜が注目
されており、微粒子そのものによって薄膜を形成するこ
とについても新しい機能性の発現の観点よりその技術的
発展が期待されている。
2. Description of the Related Art Conventionally, in fields such as electronics and biomaterials, attention has been paid to fine particles and thin films as means for realizing new advanced functions. The technological development is also expected from the viewpoint of expressing new functionality.

【0003】このような状況において、この発明の発明
者らによって、微粒子による薄膜形成、さらには、この
微粒子薄膜の三次元立体構造の形成方法が精力的に検討
されてきている。そして実際にも、すでにこれまでに微
粒子薄膜の形成方法についての様々な工夫が提案され、
微粒子を二次元的に凝集させることで個々の微粒子には
ない新しい物性機能を付与することのできる、単層また
は多層の微粒子の薄膜化技術等が確立されてきている。
Under such circumstances, the inventors of the present invention have energetically investigated a method for forming a thin film of fine particles and a method for forming a three-dimensional three-dimensional structure of the fine particle thin film. And in fact, various ideas have already been proposed about the method of forming a fine particle thin film,
There has been established a technique for thinning single-layer or multi-layer fine particles, which can impart a new physical property function that individual fine particles do not have, by agglomerating the fine particles two-dimensionally.

【0004】たとえば液体表面上での微粒子の凝集とそ
の転写法や、固体基板上への微粒子薄膜の直接作成法と
しての移流集積法等である。これらの方法は、新しい科
学的知見と考察が加えられることによって、微粒子薄膜
による二次元、そして三次元の新しい機能構造の形成を
可能とする革新的な技術手段として期待されるものであ
る。
For example, a method of agglomeration of fine particles on the surface of a liquid and a transfer method thereof, and a method of advection integration as a method of directly producing a thin film of fine particles on a solid substrate. These methods are expected to be innovative technological means that enable the formation of two-dimensional and three-dimensional new functional structures by means of thin film of fine particles by adding new scientific knowledge and consideration.

【0005】だが、一方で、これまでに確立してきた手
段のうちの、固体基板上への直接的な微粒子薄膜の形成
法については、比較的大きな微粒子(μmスケール)に
関して適用できる技術であるという限界があった。なぜ
なら、これまでの方法では、集積したい微粒子の径と同
程度の膜厚の液膜を利用することが欠かせないが、この
液膜の膜厚は、その膜を作る固体基板の性質によって規
定されるため、一般には安定なナノメートルスケールの
膜を形成することができなかったからである。従って、
ナノスケールの微粒子(たとえばたんぱく質など)を固
体基板上に制御して集積することは不可能であった。
On the other hand, among the means established so far, the method for directly forming a fine particle thin film on a solid substrate is a technique applicable to relatively large fine particles (μm scale). There was a limit. This is because it is essential to use a liquid film with a film thickness similar to the diameter of the particles to be accumulated in the conventional methods, but the film thickness of this liquid film is defined by the properties of the solid substrate on which the film is made. Therefore, in general, a stable nanometer-scale film could not be formed. Therefore,
It has been impossible to controllably integrate nanoscale particles (such as proteins) on a solid substrate.

【0006】たとえば、電解質液膜の膜厚は静力学的な
釣り合い、すなわち、静電反発力とファンデルワールス
引力のバランスによりきまるが、実際は動力学的な釣り
合い条件、つまり、流体力学的な安定条件を満たさなけ
ればならない。一定面積の液膜の場合、膜厚が小さくな
ればなるほどこのことは難しくなる。また、毛管圧によ
り微粒子は固体基板上へ圧着されるから、ナノスケール
の微粒子の場合、横方向に動かなくなり大きな結晶化膜
をつくれなくなる。実際、実験的にも、固体基板上(ガ
ラス、シリコン基板、水銀など)では水の液膜の最小膜
厚は100nm程度であり、これまでの移流集積法で
は、この大きさ以下の微粒子、たとえばたんぱく質程度
の大きさ(〜10nm)の微粒子を集積できないことが
確認されている。
For example, the film thickness of the electrolyte liquid film is determined by a static balance, that is, the balance between electrostatic repulsion force and van der Waals attractive force. The condition must be met. In the case of a liquid film having a constant area, the smaller the film thickness, the more difficult this becomes. Further, since the fine particles are pressed onto the solid substrate by the capillary pressure, in the case of nanoscale fine particles, they do not move laterally and a large crystallized film cannot be formed. Actually, experimentally, the minimum liquid film thickness of water on a solid substrate (glass, silicon substrate, mercury, etc.) is about 100 nm, and in the conventional advection integration method, fine particles of this size or smaller, for example, It has been confirmed that fine particles as small as proteins (~ 10 nm) cannot be accumulated.

【0007】一方、ナノスケール微粒子を集積する方法
としては、LB法も知られている。この方法は、目的の
微粒子を吸着する分子を気液界面に展開し、この分子の
膜に微粒子を吸着させ、吸着された微粒子の集積体を固
体基板に転写することを特徴としている。しかし、この
LB法では、まず展開用の分子が必要であり、さらに、
固体基板上への転写というプロセスが必要となるため、
その操作は複雑で、しかもプロセス過程での集積体の劣
化が避けられないという欠点がある。
On the other hand, the LB method is also known as a method for accumulating nanoscale fine particles. This method is characterized in that a molecule that adsorbs a target fine particle is developed at a gas-liquid interface, the fine particle is adsorbed on a film of this molecule, and an aggregate of the adsorbed fine particles is transferred to a solid substrate. However, this LB method first requires a molecule for expansion, and further,
Since a process of transfer onto a solid substrate is required,
Its operation is complicated and has a drawback that deterioration of the integrated body in the process is inevitable.

【0008】そこで、この発明は、以上の通りの事情に
鑑みてなされたものであり、たんぱく質などのナノスケ
ールの超微粒子の2次元結晶が作成可能で、転写等によ
る劣化も起こらない、新しい薄膜集積法を提供すること
を目的としている。
Therefore, the present invention has been made in view of the above-mentioned circumstances, and a new thin film capable of producing a two-dimensional crystal of nanoscale ultrafine particles such as protein without causing deterioration due to transfer or the like. The purpose is to provide an agglomeration method.

【0009】[0009]

【課題を解決するための手段】この発明は上記の課題を
解決するものとして、イオン強度の制御によって電解質
液膜中の荷電微粒子に対するポテンシャルエネルギーを
2次極小として微粒子のナノスケールの2次薄膜を形成
し、この2次薄膜中にナノスケール微粒子を閉じ込めて
集積することを特徴とする微粒子の2次薄膜集積法を提
供する。
In order to solve the above problems, the present invention provides a nanoscale secondary thin film of fine particles by controlling the ionic strength so that the potential energy for the charged fine particles in the electrolyte liquid film is the secondary minimum. Provided is a method for integrating a secondary thin film of fine particles, which is characterized by forming and confining nanoscale fine particles in the secondary thin film.

【0010】すなわち、この発明では、上記の通り、電
解質液膜中に2次薄膜を形成し、ナノスケール微粒子を
そのなかに閉じ込めて集積させる。このことを、原理的
に説明すると、まず、図1のような巨視的に安定な膜厚
hの電解質液膜を考える。その中に電荷qを持ち、半径
Rの荷電微粒子が存在するとき、この微粒子に対するポ
テンシャルエネルギーは、次式
That is, according to the present invention, as described above, the secondary thin film is formed in the electrolyte liquid film, and the nanoscale fine particles are confined and accumulated therein. This will be explained in principle. First, consider an electrolyte liquid film having a macroscopically stable film thickness h as shown in FIG. When a charged fine particle having a charge q and a radius R is present therein, the potential energy for this fine particle is

【0011】[0011]

【数1】 [Equation 1]

【0012】で表わすことができる。この式において、
右辺第1、2項は静電ポテンシャルを、第3項はファン
デルワールス・ポテンシャルを示し、式中のq,κ,
R,A,hはそれぞれ、微粒子の電荷、デバイパラメー
タ、微粒子半径、Hamaker定数、電解質液膜の膜
厚である(1,2は2つの界面を表わしている)。そし
て、適当なイオン強度を選ぶことにより、このポテンシ
ャルエネルギーは2次極小を持つ。液膜中でこの極小は
一様に面方向にできるから、これはすなわち、液膜中に
できた薄膜としての2次薄膜とみなすことができる。微
粒子はこの入れ子薄膜に閉じ込められ、2次元系を構成
することになる。たとえば、荷電微粒子が一種類である
とすると、その2次薄膜の中ではアルダー転位が起こ
り、六方細密充填する。
Can be expressed as In this formula,
The first and second terms on the right side show the electrostatic potential, and the third term shows the van der Waals potential, where q, κ,
R, A, and h are the charge of the fine particles, the Debye parameter, the radius of the fine particles, the Hamaker constant, and the film thickness of the electrolyte liquid film (1 and 2 represent two interfaces). Then, by selecting an appropriate ionic strength, this potential energy has a secondary minimum. In the liquid film, this local minimum can be uniformly oriented in the surface direction, and thus it can be regarded as a secondary thin film as a thin film formed in the liquid film. The fine particles are confined in this nested thin film to form a two-dimensional system. For example, if there is only one type of charged fine particles, Alder dislocations occur in the secondary thin film, resulting in hexagonal close packing.

【0013】このように、2次薄膜中での微粒子の集積
には、LB法の場合のように余分な分子も必要とせず、
液膜を固体基板上へ直接作成することができ、2次薄膜
中で集積した微粒子集積体は転写等による劣化を伴うこ
ともなく、直接固体基板上に形成することができる。そ
して、電解質液膜の中に2次薄膜をつることで、実際に
ナノスケール薄膜を作成しなくともよい。2次薄膜は電
解質膜中に保持されるので、毛管圧による基板への圧着
もなく横方向に可動なので大きなドメインができる。
As described above, the accumulation of fine particles in the secondary thin film does not require extra molecules as in the case of the LB method,
The liquid film can be directly formed on the solid substrate, and the fine particle aggregate integrated in the secondary thin film can be directly formed on the solid substrate without deterioration due to transfer or the like. Then, it is not necessary to actually form the nanoscale thin film by suspending the secondary thin film in the electrolyte liquid film. Since the secondary thin film is held in the electrolyte membrane, it can be moved in the lateral direction without pressure bonding to the substrate due to capillary pressure, so that a large domain can be formed.

【0014】[0014]

【発明の実施の形態】さらに詳しく説明すると、この発
明の方法では、電解質液膜中の荷電粒子に対するポテン
シャルエネルギーを2次極小としてナノスケールの2次
薄膜を形成するが、このことは、イオン強度、すなわち
電解質濃度の選択によって規定される。
BEST MODE FOR CARRYING OUT THE INVENTION In more detail, according to the method of the present invention, a nanoscale secondary thin film is formed by setting the potential energy for charged particles in an electrolyte liquid film to a secondary minimum. , I.e., defined by the choice of electrolyte concentration.

【0015】たとえばイオン強度が0.01程度の時、
上記の2次極小の大きさは大体10nmから30nmで
あり、この時の2次薄膜の膜厚は10nm〜30nmと
なる。従って、この2次薄膜に閉じ込めることができる
微粒子のサイズはその程度の大きさに制限される。イオ
ン強度を高くすることで、微粒子の電荷が大きいときは
数nm程度の小さな粒子まで入れることができる。一
方、大きな粒子の場合(μmスケールのLATEX粒子
など)には2次極小自体が意味を失う。従って、この方
法はナノスケール微粒子の集積にのみ適用できる。さら
に、イオン強度に粒子の電荷が依存してしまう時は、H
amaker定数などを調整し2次薄膜の膜厚を小さく
すればよい。ただし、この時電解質液膜の巨視的安定性
を同時に満たすようにしなければならない。
For example, when the ionic strength is about 0.01,
The size of the secondary minimum is approximately 10 nm to 30 nm, and the thickness of the secondary thin film at this time is 10 nm to 30 nm. Therefore, the size of the fine particles that can be confined in this secondary thin film is limited to that size. By increasing the ionic strength, small particles of about several nm can be included when the electric charge of the particles is large. On the other hand, in the case of large particles (such as LATEX particles on the μm scale), the secondary minimum itself loses its meaning. Therefore, this method can be applied only to the accumulation of nanoscale particles. Furthermore, when the charge of the particles depends on the ionic strength, H
The film thickness of the secondary thin film may be reduced by adjusting the maker constant or the like. However, at this time, it is necessary to simultaneously satisfy the macroscopic stability of the electrolyte liquid membrane.

【0016】また、2次薄膜の膜厚調整のパラメーター
としては次のものを考慮することができる。 電解質液膜の膜厚・・・電解質濃度、Hamake
r定数、毛管圧の制御 イオン強度・・・電解質濃度の制御 Hamaker定数・・・液膜が接している界面の
物質を変える 実際の微粒子の集積による薄膜形成について説明する
と、この発明の方法では、次の手順、操作に従うことが
できる。
The following can be considered as parameters for adjusting the thickness of the secondary thin film. Thickness of electrolyte liquid film: Electrolyte concentration, Hamake
Control of r constant and capillary pressure Ionic strength ... Control of electrolyte concentration Hamaker constant ... Changing the substance at the interface with which the liquid film is in contact The thin film formation by the actual accumulation of fine particles will be explained. The following procedures and operations can be followed.

【0017】1)荷電性ナノスケール微粒子を分散させ
た電解質溶液の調製 2)この微粒子分散電解質溶液の液膜の掃引法等による
固体基板上への形成(ナノメートルサイズの膜厚の液膜
とする必要はない) 3)固体基板上の液膜の乾燥によるナノスケール微粒子
の集積薄膜の形成 以上の操作において、通常では形成困難なナノスケール
微粒子の集積薄膜が形成されることになる。このこと
は、この発明の微粒子の2次薄膜集積法によって可能と
されたことを意味している。
1) Preparation of an electrolyte solution in which charged nanoscale fine particles are dispersed 2) Formation of a liquid film of this fine particle-dispersed electrolyte solution on a solid substrate by means of a sweep method or the like (with a liquid film having a nanometer-sized film thickness) 3) Formation of an integrated thin film of nanoscale particles by drying a liquid film on a solid substrate In the above operation, an integrated thin film of nanoscale particles, which is usually difficult to form, is formed. This means that it is possible by the secondary thin film integration method of fine particles of the present invention.

【0018】従って、より実際的表現としては、この発
明は、上記の1)2)3)のプロセスからなるナノスケ
ール微粒子の集積薄膜の形成方法を提供するものでもあ
る。もちろん、この場合、イオン強度の制御による前記
のポテンシャルエネルギーの2次極小化による2次薄膜
の形成と、この2次薄膜中への微粒子の閉じ込め集積が
必須となることは言うまでもない。
Therefore, as a more practical expression, the present invention also provides a method for forming an integrated thin film of nanoscale fine particles, which comprises the above processes 1), 2) and 3). Needless to say, in this case, it is indispensable to form the secondary thin film by the secondary minimization of the potential energy by controlling the ion intensity and confine and accumulate the fine particles in the secondary thin film.

【0019】また、この発明では、電解質や、荷電性微
粒子の種類に特に制限はない。無機質または有機電解
質、そしてたんぱく質等の荷電性微粒子の任意のものが
対象となる。以下実施例を示し、さらに詳しくこの発明
の実施の形態について説明する。
Further, in the present invention, there are no particular restrictions on the type of the electrolyte and the charged fine particles. Inorganic or organic electrolytes and any of the charged fine particles such as proteins are of interest. Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail.

【0020】[0020]

【実施例】フェリチン分子(直径13nm)を10mM
NaCl(イオン強度0.01)水溶液に分散させ、
その溶液の液膜を図2に示した通りの掃引法によりシリ
コン基板上へ作った。そして、フェリチン集積膜を乾燥
によって基板上に形成した。この時のフェリチン集積膜
は、溶液のpHが5から9へと高くなるほど良質なもの
となることが確認された(図3)。このことは、計算に
よっても、図4に示したように、フェリチン分子の電荷
(q)が大きいほど(溶液のpHが高いほど)入れ子膜
の寿命が長いことからもわかる。これは、アルダー転位
的な相転移において相関距離が長くなり質が向上したか
らと考えられる。また、図4からは、液膜の膜厚(h)
が厚いほど2次薄膜の寿命が短いので、乾燥によりアレ
イ(集積薄膜)を基板上へ作る場合、より薄い液膜が望
ましい。
[Example] Ferritin molecule (diameter 13 nm) 10 mM
Disperse in NaCl (ionic strength 0.01) aqueous solution,
A liquid film of the solution was formed on the silicon substrate by the sweep method as shown in FIG. Then, the ferritin integrated film was formed on the substrate by drying. It was confirmed that the ferritin integrated film at this time had higher quality as the pH of the solution increased from 5 to 9 (FIG. 3). This can be seen from the calculation as well, as shown in FIG. 4, because the life of the nesting membrane is longer as the charge (q) of the ferritin molecule is larger (the pH of the solution is higher). It is considered that this is because the correlation distance becomes longer and the quality is improved in the Alder dislocation-like phase transition. Further, from FIG. 4, the film thickness (h) of the liquid film
Since the thicker the film, the shorter the life of the secondary thin film, a thinner liquid film is desirable when the array (integrated thin film) is formed on the substrate by drying.

【0021】[0021]

【発明の効果】以上詳しく説明した通り、この発明によ
り、実ナノスケール液膜を作らずに、2次薄膜を電解質
液膜中に保持することができ、毛管圧による基板への圧
着もなく横方向に可動な大きなドメインを形成して良質
な微粒子集積薄膜を作ることができる。これにより、固
体基板上に直接にたんぱく質などのナノスケールの超微
粒子の2次元結晶が作成可能となる。この方法ではLB
法のように展開用の分子の必要もなく、集積体が直接固
体基板上へ作成されるので、転写の必要がなく劣化もし
ない。
As described in detail above, according to the present invention, the secondary thin film can be held in the electrolyte liquid film without forming a real nanoscale liquid film, and the lateral pressure is not applied to the substrate by capillary pressure. A fine particle-integrated thin film can be formed by forming a large domain that is movable in the direction. As a result, it becomes possible to directly form a two-dimensional crystal of nanoscale ultrafine particles such as protein directly on the solid substrate. This way LB
Unlike the method, there is no need for developing molecules, and since the aggregate is directly formed on the solid substrate, there is no need for transfer and no deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の原理を説明するための液膜と微粒子
との関係図である。
FIG. 1 is a relationship diagram between a liquid film and fine particles for explaining the principle of the present invention.

【図2】実施例として、フェリチン分子を含む液膜をシ
リコン基板上で掃引法により作成する場合の概略図であ
る。
FIG. 2 is a schematic view of a case where a liquid film containing a ferritin molecule is formed on a silicon substrate by a sweep method as an example.

【図3】実施例としてのフェリチン集積膜の溶液pHに
よる状態を示した図面に代わる写真である。
FIG. 3 is a photograph replacing a drawing showing a state of a ferritin integrated film as an example according to a solution pH.

【図4】2し薄膜の寿命と、液膜の膜厚および分子の電
荷量の関係を示した相関図である。
FIG. 4 is a correlation diagram showing the relationship between the life of a thin film and the thickness of a liquid film and the amount of charges of molecules.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオン強度の制御によって電解質液膜中
の荷電微粒子に対するポテンシャルエネルギーを2次極
小としてナノスケールの2次薄膜を形成し、この2次薄
膜中にナノスケール微粒子を閉じ込めて集積することを
特徴とするナノスケール微粒子の2次薄膜集積法。
1. A nanoscale secondary thin film is formed by controlling the ionic strength so that the potential energy for charged fine particles in an electrolyte liquid film is a secondary minimum, and the nanoscale fine particles are confined and integrated in the secondary thin film. A secondary thin film integration method of nanoscale fine particles characterized by:
【請求項2】 次のプロセスからなることを特徴とする
ナノスケール微粒子の集積薄膜の形成法。 1)荷電性ナノスケール微粒子を分散させた電解質溶液
の調製 2)前記溶液の液膜中の荷電粒子に対するポテンシャル
エネルギーの2次極小化による液膜の固体基板上への直
接的形成 3)前記液膜の乾燥によるナノスケール微粒子の集積薄
膜の固体基板上への形成
2. A method for forming an integrated thin film of nanoscale particles, which comprises the following process. 1) Preparation of an electrolyte solution in which charged nanoscale fine particles are dispersed 2) Direct formation of a liquid film on a solid substrate by secondary minimization of the potential energy of the solution for the charged particles in the liquid film 3) The liquid Formation of integrated thin film of nanoscale particles on solid substrate by drying film
JP24223795A 1995-09-20 1995-09-20 Secondary thin film integration method of nanoscale fine particles Expired - Fee Related JP3768568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24223795A JP3768568B2 (en) 1995-09-20 1995-09-20 Secondary thin film integration method of nanoscale fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24223795A JP3768568B2 (en) 1995-09-20 1995-09-20 Secondary thin film integration method of nanoscale fine particles

Publications (2)

Publication Number Publication Date
JPH0992617A true JPH0992617A (en) 1997-04-04
JP3768568B2 JP3768568B2 (en) 2006-04-19

Family

ID=17086284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24223795A Expired - Fee Related JP3768568B2 (en) 1995-09-20 1995-09-20 Secondary thin film integration method of nanoscale fine particles

Country Status (1)

Country Link
JP (1) JP3768568B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431244A1 (en) * 2001-11-08 2004-06-23 Matsushita Electric Industrial Co., Ltd. Micrograin film and process for producing the same
JP2005288325A (en) * 2004-03-31 2005-10-20 Gunma Univ Manufacturing method of particulate accumulated structure
JP2012020389A (en) * 2010-07-16 2012-02-02 Oji Paper Co Ltd Method for manufacturing single-particle film-coated roller, method for manufacturing irregularity-forming roller, method for manufacturing irregularity-forming film, and single-particle film-coating device
WO2014175351A1 (en) * 2013-04-25 2014-10-30 国立大学法人大阪大学 Organic semiconductor thin film production method
WO2017134990A1 (en) * 2016-02-03 2017-08-10 富士フイルム株式会社 Method for producing organic semiconductor film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431244A1 (en) * 2001-11-08 2004-06-23 Matsushita Electric Industrial Co., Ltd. Micrograin film and process for producing the same
US7037728B2 (en) 2001-11-08 2006-05-02 Matsushita Electric Industrial Co., Ltd. Fine particle film and producing method of the same
US7399642B2 (en) 2001-11-08 2008-07-15 Matsushita Electric Industrial Co., Ltd. Fine particle film and producing method of the same
JP2005288325A (en) * 2004-03-31 2005-10-20 Gunma Univ Manufacturing method of particulate accumulated structure
JP2012020389A (en) * 2010-07-16 2012-02-02 Oji Paper Co Ltd Method for manufacturing single-particle film-coated roller, method for manufacturing irregularity-forming roller, method for manufacturing irregularity-forming film, and single-particle film-coating device
WO2014175351A1 (en) * 2013-04-25 2014-10-30 国立大学法人大阪大学 Organic semiconductor thin film production method
US10205094B2 (en) 2013-04-25 2019-02-12 Pi-Crystal Inc. Organic semiconductor thin film production method
WO2017134990A1 (en) * 2016-02-03 2017-08-10 富士フイルム株式会社 Method for producing organic semiconductor film
CN108475644A (en) * 2016-02-03 2018-08-31 富士胶片株式会社 The manufacturing method of organic semiconductor film
JPWO2017134990A1 (en) * 2016-02-03 2018-11-08 富士フイルム株式会社 Method for producing organic semiconductor film
US10468597B2 (en) 2016-02-03 2019-11-05 Fujifilm Corporation Method of manufacturing organic semiconductor film

Also Published As

Publication number Publication date
JP3768568B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
Leckband et al. Intermolecular forces in biology
Chaudhary et al. Janus colloidal matchsticks
Velev et al. In situ assembly of colloidal particles into miniaturized biosensors
Djalali et al. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates
Fujimoto et al. Preparation of unsymmetrical microspheres at the interfaces
Dutta et al. Self-organization of colloidal nanoparticles
US6033547A (en) Apparatus for electrohydrodynamically assembling patterned colloidal structures
Hassenkam et al. Fabrication of 2D gold nanowires by self‐assembly of gold nanoparticles on water surfaces in the presence of surfactants
Dogangun et al. Alteration of membrane compositional asymmetry by LiCoO2 nanosheets
Richter et al. Supported lipid membranes
JP2003522621A (en) Fabrication of multilayer coated particles and hollow shells by electrostatic self-assembly of nanocomposite multilayers on degradable colloid prototypes
Goldenberg et al. Simple method for the preparation of colloidal particle monolayers at the water/alkane interface
Denkov et al. Nanoparticle arrays in freely suspended vitrified films
Sun et al. Self-assembly of ultralong aligned dipeptide single crystals
Li et al. Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field
Hagemans et al. Synthesis of cone-shaped colloids from rod-like silica colloids with a gradient in the etching rate
Kang et al. Mapping anisotropic and heterogeneous colloidal interactions via optical laser tweezers
Anjali et al. Shape-induced deformation, capillary bridging, and self-assembly of cuboids at the fluid–fluid interface
JPH0992617A (en) Method for integrating secondary thin film of nano scale microparticle
Bradford et al. Ligand shell composition-dependent effects on the apparent hydrophobicity and film behavior of gold nanoparticles at the air–water interface
Golubina et al. Interfacial Synthesis: Morphology, Structure, and Properties of Interfacial Formations in Liquid–Liquid Systems
Chen et al. Observation of an amorphous calcium carbonate precursor on a stearic acid monolayer formed during the biomimetic mineralization of CaCO3
Paczesny et al. Self-assembly of Gold nanoparticles into 2D arrays induced by bolaamphiphilic ligands
Wang et al. Size-dependent stiffness of nanodroplets: a quantitative analysis of the interaction between an AFM probe and nanodroplets
Alexandrova et al. Confirmation of the heterocoagulation theory of flotation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees