JPH0992320A - Redox flow type secondary cell system - Google Patents

Redox flow type secondary cell system

Info

Publication number
JPH0992320A
JPH0992320A JP7239656A JP23965695A JPH0992320A JP H0992320 A JPH0992320 A JP H0992320A JP 7239656 A JP7239656 A JP 7239656A JP 23965695 A JP23965695 A JP 23965695A JP H0992320 A JPH0992320 A JP H0992320A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolyte
battery
cell stacks
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7239656A
Other languages
Japanese (ja)
Other versions
JP3574514B2 (en
Inventor
Takefumi Itou
岳文 伊藤
Toshio Shigematsu
敏夫 重松
Tetsuji Ito
哲二 伊藤
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP23965695A priority Critical patent/JP3574514B2/en
Publication of JPH0992320A publication Critical patent/JPH0992320A/en
Application granted granted Critical
Publication of JP3574514B2 publication Critical patent/JP3574514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To reduce leakage current and increase the voltage or capacity of a cell by providing a plurality of electrolyte circulating systems, and supplying electrolyte commonly only to a cell stack with little electrolyte in one circulating system. SOLUTION: This cell system comprises a plurality of battery cell stacks 1a, 1b, 1c electrically connected to each other. To the first group including the cell stack 1a, positive electrode-side electrolyte is circulated from a tank 2a by a pump 4a through a piping 6a, and negative electrode-side electrolyte by a tank 3a, a pump 5a, and a piping 7a. Since the second group including the cell stack 1b and the third group including the cell stack 1c also constitute respective circulating systems, and the applied voltage to electrolyte is limited, leakage current is reduced, and the energy loss of the cell system is reduced so that the voltage or capacity of the cell can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電力負荷平準化など
を目的として開発されているレドックスフロー型二次電
池システムに関し、特に、高電圧で大容量のレドックス
フロー型二次電池の電流効率の改善に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow type secondary battery system developed for the purpose of power load leveling and the like, and more particularly to improvement of current efficiency of a high voltage and large capacity redox flow type secondary battery. It is about.

【0002】[0002]

【従来の技術】図4は、従来のレドックスフロー型二次
電池システムを概略的に図解するブロック図である。こ
の電池システムは、6つの電池セルスタック1を含んで
いる。それらの電池セルスタック1の各々は1対の入出
力端子を含んでおり、電気的には導線8によって互いに
直列に接続されている。電池セルスタック1の各々はま
た、1対の入出力端子間において直接直列接続された複
数の電池セルを含んでいる。それらの電池セルの各々
は、正極と負極およびそれらの間に設けられたイオン交
換膜を含んでいる。
2. Description of the Related Art FIG. 4 is a block diagram schematically illustrating a conventional redox flow type secondary battery system. This battery system includes six battery cell stacks 1. Each of the battery cell stacks 1 includes a pair of input / output terminals and is electrically connected to each other in series by a conductive wire 8. Each of the battery cell stacks 1 also includes a plurality of battery cells directly connected in series between a pair of input / output terminals. Each of those battery cells includes a positive electrode, a negative electrode, and an ion exchange membrane provided therebetween.

【0003】6つの電池セルスタック1のそれぞれには
1つの正極電解液タンク2から正極電解液用ポンプ4と
正極電解液用配管6を介して正極電解液が並列に送り込
まれ、各セルスタック1から排出された正極電解液は正
極電解液タンク2に戻される。同様に、6つのセルスタ
ック1のそれぞれにはまた、1つの負極電解液タンク3
から負極電解液用ポンプ5と負極電解液用配管7を介し
て負極電解液が並列に送り込まれ、各セルスタック1か
ら排出された負極電解液は負極電解液タンク3に戻され
る。
The positive electrode electrolytic solution is sent in parallel from each positive electrode electrolytic solution tank 2 to each of the six battery cell stacks 1 via the positive electrode electrolytic solution pump 4 and the positive electrode electrolytic solution pipe 6, and each cell stack 1 The positive electrode electrolytic solution discharged from is returned to the positive electrode electrolytic solution tank 2. Similarly, each of the six cell stacks 1 also has one negative electrolyte tank 3
The negative electrode electrolytic solution is fed in parallel from the negative electrode electrolytic solution pump 5 through the negative electrode electrolytic solution pipe 7 and the negative electrode electrolytic solution discharged from each cell stack 1 is returned to the negative electrode electrolytic solution tank 3.

【0004】各電池セルスタック1内の複数のセルにお
いて、それぞれのイオン交換膜の正極側には正極電解液
が並列に供給され、同様にそれぞれのイオン交換膜の負
極側には負極電解液が並列に供給される。そして、イオ
ン交換膜を介した正極電解液と負極電解液との化学反応
によって、二次電池の充放電が生じる。
In a plurality of cells in each battery cell stack 1, the positive electrode electrolyte solution is supplied in parallel to the positive electrode side of each ion exchange membrane, and the negative electrode electrolyte solution is similarly supplied to the negative electrode side of each ion exchange membrane. Supplied in parallel. Then, the secondary battery is charged and discharged due to a chemical reaction between the positive electrode electrolytic solution and the negative electrode electrolytic solution via the ion exchange membrane.

【0005】[0005]

【発明が解決しようとする課題】図4に示されているよ
うな従来のレドックスフロー型二次電池システムにおい
ては、すべての複数の電池セルスタックを流れる電解液
が共通しているので、それらの直列接続されたすべての
複数のセルスタックの電圧がその電解液中に印加され、
電池システムの充放電に寄与しない漏れ電流が配管内の
電解液中を流れる。したがって、高い入出力電圧を得る
ために直列接続する電池セルスタックの数を増大すれ
ば、共通な電解液中を流れる漏れ電流が増大し、電池シ
ステムの電流効率の低下を生じるという問題がある。
In the conventional redox flow type secondary battery system as shown in FIG. 4, since the electrolytes flowing through all the plurality of battery cell stacks are common, those The voltage of all cell stacks connected in series is applied in its electrolyte,
Leakage current that does not contribute to charging / discharging of the battery system flows in the electrolytic solution in the pipe. Therefore, if the number of battery cell stacks connected in series in order to obtain a high input / output voltage is increased, there is a problem that the leakage current flowing through the common electrolytic solution is increased and the current efficiency of the battery system is reduced.

【0006】従来、このような問題を低減するために、
電解液の配管を細くかつ長くすることによって漏れ電流
に対する電解液の電気抵抗を増大させ、これによって電
解液中の漏れ電流を減らすことが試みられている。しか
し、このような従来の試みでは、配管径の減少と配管長
さの増大のために、電解液を送出するポンプ動力の負担
の増大を招き、電池システムの大容量化においてトータ
ルのエネルギ効率が低下するという課題がある。
Conventionally, in order to reduce such a problem,
Attempts have been made to increase the electrical resistance of the electrolyte solution against leakage current by thinning and lengthening the electrolyte piping, thereby reducing the leakage current in the electrolyte solution. However, in such a conventional attempt, the decrease in the pipe diameter and the increase in the pipe length cause an increase in the load of the pump power for delivering the electrolytic solution, and the total energy efficiency in increasing the capacity of the battery system. There is a problem of decrease.

【0007】以上のような先行技術における課題に鑑
み、本発明は、電流効率やエネルギ効率を低下させるこ
となく、高い入出力電圧を有し得る大容量のレドックス
フロー型二次電池システムを提供することを目的として
いる。
In view of the above problems in the prior art, the present invention provides a large-capacity redox flow secondary battery system which can have a high input / output voltage without lowering current efficiency and energy efficiency. Is intended.

【0008】[0008]

【課題を解決するための手段】本発明によるレドックス
フロー型二次電池システムは、電気的に直列に接続され
た複数の電池セルスタックを含み、それらの複数の電池
セルスタックは複数のグループに分けられており、電池
システムは複数の電池セルスタックを通して電解液を循
環させる複数の電解液循環系統をさらに含み、複数の電
解液循環系統は電気的に互いに分離されており、1つの
電解液循環系統は1つのグループ内の複数の電池セルス
タックのみを通して電解液を循環させることを特徴とし
ている。
A redox flow type secondary battery system according to the present invention includes a plurality of battery cell stacks electrically connected in series, and the plurality of battery cell stacks are divided into a plurality of groups. The battery system further includes a plurality of electrolytic solution circulation systems that circulate an electrolytic solution through a plurality of battery cell stacks, and the plurality of electrolytic solution circulation systems are electrically separated from each other. Is characterized in that the electrolytic solution is circulated through only a plurality of battery cell stacks in one group.

【0009】本発明によるレドックスフロー型二次電池
システムにおいては、複数の電解液循環系統が設けられ
ており、それらの複数の電解液循環系統は電気的に互い
に分離されていて、1つの電解液循環系統が1つのグル
ープ内の電池セルスタックのみを通して電解液を循環さ
せるので、電池システム全体にかかる高い入出力電圧が
1つの電解液循環系統内の電解液に印加されることがな
く、電解液中を流れる漏れ電流が減少され得る。したが
って、電池の電流効率を低下させることなく、高い入出
力電圧を有しかつ大容量のレドックスフロー型二次電池
システムを提供することが可能となる。
In the redox flow type secondary battery system according to the present invention, a plurality of electrolyte solution circulation systems are provided, and the plurality of electrolyte solution circulation systems are electrically separated from each other to form one electrolyte solution. Since the circulation system circulates the electrolytic solution only through the battery cell stack in one group, the high input / output voltage applied to the entire battery system is not applied to the electrolytic solution in one electrolytic circulation system, Leakage current flowing therethrough can be reduced. Therefore, it is possible to provide a redox flow type secondary battery system having a high input / output voltage and a large capacity without lowering the current efficiency of the battery.

【0010】[0010]

【発明の実施の形態】図1は、本発明の1つの実施の形
態によるレドックスフロー型二次電池システムを概略的
に図解するブロック図である。図1の電池システムは、
電気的に直列接続された6個の電池セルスタックを含ん
でいる。2個のセルスタック1aを含む第1のセルスタ
ックグループには、第1の正極側電解液タンク2aから
第1の正極側電解液用ポンプ4aによって第1の正極側
電解液用配管6aを介して第1の正極側電解液が循環さ
せられると同時に、第1の負極側電解液タンク3aから
第1の負極側電解液用ポンプ5aによって第1の負極側
電解液用配管7aを介して第1の負極側電解液が循環さ
せられる。
FIG. 1 is a block diagram schematically illustrating a redox flow type secondary battery system according to one embodiment of the present invention. The battery system of FIG. 1 is
It includes six battery cell stacks that are electrically connected in series. The first cell stack group including the two cell stacks 1a is connected to the first positive electrode side electrolytic solution tank 2a from the first positive electrode side electrolytic solution pump 4a through the first positive electrode side electrolytic solution pipe 6a. At the same time that the first positive electrode side electrolytic solution is circulated, the first negative electrode side electrolytic solution tank 3a is operated by the first negative electrode side electrolytic solution pump 5a via the first negative electrode side electrolytic solution pipe 7a. The negative electrode side electrolytic solution of No. 1 is circulated.

【0011】同様に、2個のセルスタック1bを含む第
2のセルスタックグループのために、第2の正極側電解
液タンク2b,第2の正極側電解液用ポンプ4b,およ
び第2の正極側電解液用配管6bが設けられているとと
もに、第2の負極側電解液タンク3b,第2の負極側電
解液用ポンプ5b,および第2の負極側電解液用配管7
bが設けられている。
Similarly, for the second cell stack group including the two cell stacks 1b, the second positive electrode side electrolyte solution tank 2b, the second positive electrode side electrolyte solution pump 4b, and the second positive electrode side. The side electrolytic solution pipe 6b is provided, and the second negative electrode side electrolytic solution tank 3b, the second negative electrode side electrolytic solution pump 5b, and the second negative electrode side electrolytic solution pipe 7 are provided.
b is provided.

【0012】さらに、2個のセルスタック1cを含む第
3のセルスタックグループのためには、第3の正極側電
解液タンク2c,第3の正極側電解液用ポンプ4c,お
よび第3の正極側電解液用配管6cが設けられていると
ともに、第3の負極側電解液タンク3c,第3の負極側
電解液用ポンプ5c,および第3の負極側電解液用配管
7cが設けられている。
Further, for the third cell stack group including the two cell stacks 1c, the third positive electrode side electrolyte solution tank 2c, the third positive electrode side electrolyte solution pump 4c, and the third positive electrode side. The side electrolytic solution pipe 6c is provided, and the third negative electrode side electrolytic solution tank 3c, the third negative electrode side electrolytic solution pump 5c, and the third negative electrode side electrolytic solution pipe 7c are provided. .

【0013】すなわち、図1の電池システムは6つのセ
ルスタックに対して3つの電解液循環系統を備え、個々
の循環系統内の電解液に印加される電圧がセルスタック
の2つ分の電圧に限られるので、電解液中を流れる漏れ
電流が低減されて、電池システムのエネルギ損失が低減
され得る。
That is, the battery system of FIG. 1 is provided with three electrolytic solution circulation systems for six cell stacks, and the voltage applied to the electrolytic solution in each circulation system is equal to the voltage for two cell stacks. Being limited, the leakage current flowing through the electrolyte can be reduced and the energy loss of the battery system can be reduced.

【0014】図2においては、電気的に直列に接続され
た6つのセルスタックに対してn個の電解液循環系統を
含む電池システムの等価回路図が示されている。すなわ
ち、図2(A),(B),(C)および(D)に示され
た電池システムは、6個のセルスタックに対してそれぞ
れ1つ,2つ,3つおよび6つの電解液循環系統を含ん
でいる。電解液循環系統の各々は互いにに等しい数のセ
ルスタックに接続されており、1つの循環系統は正極側
電解液と負極側電解液との両方の循環系を含んでいる。
FIG. 2 shows an equivalent circuit diagram of a battery system including n electrolyte circulation systems for six cell stacks electrically connected in series. That is, the battery system shown in FIGS. 2 (A), (B), (C) and (D) has one, two, three and six electrolyte solution circulations for six cell stacks, respectively. Includes lineage. Each of the electrolytic solution circulation systems is connected to the same number of cell stacks as one another, and one circulation system includes both the positive electrode side electrolytic solution and the negative electrode side electrolytic solution.

【0015】すなわち、6個のセルスタックに対してた
だ1つの電解液循環系統を含む図2(A)の電池システ
ムは図4に示された従来の電池システムに対応してい
る。他方、6個のセルスタックに対して3つの電解液循
環系統を含む図2(C)の電池システムは、図1の実施
例の電池システムに対応している。
That is, the battery system of FIG. 2 (A) including only one electrolyte circulation system for the six cell stacks corresponds to the conventional battery system shown in FIG. On the other hand, the battery system of FIG. 2C including three electrolyte solution circulation systems for six cell stacks corresponds to the battery system of the embodiment of FIG.

【0016】図3は図2に示された種々の電池システム
を定電流制御で運転した場合の電流効率を示している。
図3のグラフにおいて、横軸は電解液循環系統の数nを
表わし、縦軸は電池システムの電流効率を表わしてい
る。また、図2の電池システムにおけるパラメータとし
ては、充電電流IC =250A,放電電流ID =250
A,セルの内部抵抗RC =0.0495Ω,電解液の入
出力ポート抵抗RS =38.54Ω,配管のマニホール
ド内抵抗RM =1.7Ω,そして電圧E0 =82.98
Vが用いられた。ここで、電流効率=(充電時の反応電
流−充電時の漏れ電流)/(放電時の反応電流+放電時
の漏れ電流)と定義されている。
FIG. 3 shows the current efficiency when the various battery systems shown in FIG. 2 are operated under constant current control.
In the graph of FIG. 3, the horizontal axis represents the number n of electrolytic solution circulation systems, and the vertical axis represents the current efficiency of the battery system. Further, as parameters in the battery system of FIG. 2, the charging current I C = 250 A and the discharging current I D = 250.
A, cell internal resistance R C = 0.0495 Ω, electrolyte input / output port resistance R S = 38.54 Ω, piping manifold resistance R M = 1.7 Ω, and voltage E 0 = 82.98.
V was used. Here, current efficiency = (reaction current during charging−leakage current during charging) / (reaction current during discharging + leakage current during discharging) is defined.

【0017】図3から明らかなように、ただ1つの電解
液循環系統を有する従来の電池システムにおいては、
0.94未満の電流効率を有するにすぎないのに対し
て、2つの電解液循環系統を有する本発明による電池シ
ステムにおいては、0.97を超える電流効率を示して
おり、電解液循環系統数nが増大するに従って電池シス
テムの電流効率が向上することがわかる。
As is apparent from FIG. 3, in the conventional battery system having only one electrolyte circulation system,
The battery system according to the present invention having two electrolytic solution circulation systems has a current efficiency of more than 0.97, while the current efficiency of 0.94 is less than 0.94. It can be seen that the current efficiency of the battery system improves as n increases.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、レドッ
クスフロー型二次電池システムにおいて高電圧を得るた
めに多数の電池セルスタックを電気的に直列接続する場
合に、複数の電解液循環系統を設けて1循環系統中の電
解液が小数のセルスタックにのみ共通に供給されるよう
にすることによって電解液中を流れる漏れ電流を低減す
ることができ、その結果として電流効率を低下させるこ
となく電池の高電圧化または大容量化が可能となる。ま
た、漏れ電流によって生じる副反応熱が低減されるの
で、電解液やセル部材などの電池材料の劣化が低減さ
れ、電池の寿命が伸びることも期待され、電池の信頼性
も向上する。
As described above, according to the present invention, when a plurality of battery cell stacks are electrically connected in series in order to obtain a high voltage in a redox flow type secondary battery system, a plurality of electrolytic solution circulations are performed. By providing a system so that the electrolytic solution in one circulation system is commonly supplied to only a small number of cell stacks, the leakage current flowing in the electrolytic solution can be reduced, and as a result, the current efficiency is reduced. It is possible to increase the voltage or the capacity of the battery without using it. Further, since the side reaction heat generated by the leakage current is reduced, it is expected that the deterioration of the battery material such as the electrolytic solution and the cell member is reduced, the life of the battery is extended, and the reliability of the battery is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1つの実施の形態によるレドックスフ
ロー型電池システムを概略的に示すブロック図である。
FIG. 1 is a block diagram schematically showing a redox flow battery system according to an embodiment of the present invention.

【図2】異なる数の電解液循環系統を有する種々のレド
ックスフロー型電池システムを示す等価回路図である。
FIG. 2 is an equivalent circuit diagram showing various redox flow battery systems having different numbers of electrolyte circulation systems.

【図3】レドックスフロー型電池システムにおける電解
液循環系統の数と電流効率との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the number of electrolyte circulation systems and current efficiency in a redox flow battery system.

【図4】先行技術によるレドックスフロー型電池システ
ムの一例を概略的に示すブロック図である。
FIG. 4 is a block diagram schematically showing an example of a redox flow battery system according to the prior art.

【符号の説明】[Explanation of symbols]

1,1a,1b,1c 電池セルスタック 2,2a,2b,2c 正極側電解液タンク 3,3a,3b,3c 負極側電解液タンク 4,4a,4b,4c 正極側電解液用ポンプ 5,5a,5b,5c 負極側電解液用ポンプ 6,6a,6b,6c 正極側電解液用配管 7,7a,7b,7c 負極側電解液用配管 8 電気配線 1, 1a, 1b, 1c Battery cell stack 2, 2a, 2b, 2c Positive electrode side electrolytic solution tank 3, 3a, 3b, 3c Negative electrode side electrolytic solution tank 4, 4a, 4b, 4c Positive electrode side electrolytic solution pump 5, 5a , 5b, 5c Negative Electrolyte Pump 6,6a, 6b, 6c Positive Electrolyte Piping 7, 7a, 7b, 7c Negative Electrolyte Piping 8 Electrical Wiring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 哲二 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Ito 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Nobuyuki Tokuda 3-chome Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture No. 3-22 Kansai Electric Power Co., Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気的に直列に接続された複数の電池セ
ルスタックを含み、前記複数の電池セルスタックは複数
のグループに分けられており、 前記複数の電池セルスタックを通して電解液を循環させ
る複数の電解液循環系統をさらに含み、前記複数の電解
液循環系統は電気的に互いに分離されており、1つの前
記電解液循環系統は前記グループの1つ内の複数の前記
電池セルスタックのみを通して前記電解液を循環させる
ことを特徴とするレドックスフロー型二次電池システ
ム。
1. A plurality of battery cell stacks electrically connected in series, wherein the plurality of battery cell stacks are divided into a plurality of groups, and a plurality of electrolyte solutions are circulated through the plurality of battery cell stacks. Further electrolyte circulation system, the plurality of electrolyte circulation system is electrically separated from each other, one electrolyte circulation system through only a plurality of the battery cell stack in one of the group A redox flow type secondary battery system characterized by circulating an electrolytic solution.
【請求項2】 前記電池セルスタックの各々は電気的に
直列に接続された複数のセルを含み、前記電解液循環系
統の1つは前記グループの電流効率が0.95以上にな
るような電池セルの数にのみ前記電解液を循環させるこ
とを特徴とする請求項1に記載のレドックスフロー型二
次電池システム。
2. Each of the battery cell stacks includes a plurality of cells electrically connected in series, and one of the electrolytic solution circulation systems is a battery such that the current efficiency of the group is 0.95 or more. The redox flow secondary battery system according to claim 1, wherein the electrolytic solution is circulated only for the number of cells.
JP23965695A 1995-09-19 1995-09-19 Redox flow type secondary battery system Expired - Lifetime JP3574514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23965695A JP3574514B2 (en) 1995-09-19 1995-09-19 Redox flow type secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23965695A JP3574514B2 (en) 1995-09-19 1995-09-19 Redox flow type secondary battery system

Publications (2)

Publication Number Publication Date
JPH0992320A true JPH0992320A (en) 1997-04-04
JP3574514B2 JP3574514B2 (en) 2004-10-06

Family

ID=17047955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23965695A Expired - Lifetime JP3574514B2 (en) 1995-09-19 1995-09-19 Redox flow type secondary battery system

Country Status (1)

Country Link
JP (1) JP3574514B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403519A (en) * 2011-08-19 2012-04-04 中国电力科学研究院 Redox flow cell integrated system
KR20170064048A (en) * 2015-11-30 2017-06-09 현대일렉트릭앤에너지시스템(주) Apparatus for minimizing Leakage Current of Secondary Battery Energy Storage System
EP3522280A4 (en) * 2016-09-30 2020-07-01 Lotte Chemical Corporation Redox flow cell
WO2022259616A1 (en) * 2021-06-07 2022-12-15 三菱重工業株式会社 Redox flow battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102487148B (en) * 2010-12-01 2014-03-05 大连融科储能技术发展有限公司 Large-scale all vanadium flow energy-storage battery system and its control method and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403519A (en) * 2011-08-19 2012-04-04 中国电力科学研究院 Redox flow cell integrated system
KR20170064048A (en) * 2015-11-30 2017-06-09 현대일렉트릭앤에너지시스템(주) Apparatus for minimizing Leakage Current of Secondary Battery Energy Storage System
EP3522280A4 (en) * 2016-09-30 2020-07-01 Lotte Chemical Corporation Redox flow cell
WO2022259616A1 (en) * 2021-06-07 2022-12-15 三菱重工業株式会社 Redox flow battery

Also Published As

Publication number Publication date
JP3574514B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
EP1551074B1 (en) Method for operating redox flow battery and redox flow battery cell stack
US5650239A (en) Method of electrode reconditioning
DE69801341D1 (en) REDOX FLOW BATTERY SYSTEM AND CELL STACK
US10090550B2 (en) Redox flow battery
JPH0215580A (en) Complete discharge method for equalization of metallic/ harogen batteries
JP2002175822A (en) Redox flow battery and its operating method
KR20180023750A (en) Flow frame for redox flow battery
GB2100054A (en) A method of minimizing the effects of parasitic currents in secondary batteries
CN110620250A (en) Flow battery energy storage device and flow battery energy storage system
JPH0992320A (en) Redox flow type secondary cell system
CN110635148A (en) Flow battery
JP3098977B2 (en) Redox flow battery and method of operating the same
JP2019535105A (en) Redox flow battery
JP2000188116A (en) Cell frame, cell stack and battery using them
JP3494689B2 (en) Electrolyte flow battery
JPH0644996A (en) Electrolyte flow type battery apparatus
KR102283441B1 (en) A Battery Cell for Redox flow battery having a mixed serial and parallel structure
JP2018142533A (en) Fuel cell stack for high level hybrid power system
JP2931650B2 (en) Electrolyte circulation type secondary battery
JP2002252020A (en) Redox flow battery
JPH02250269A (en) Electrolyte circulation type secondary battery
KR102213375B1 (en) Electrode-current collector assembly and redox flow battery including the same
JP2001325983A (en) Redox flow cell
JPH01146269A (en) Electrolyte flow type cell
WO2021074567A1 (en) Battery pack and battery module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term