JPH0989919A - Device for measuring wind direction and wind velocity - Google Patents

Device for measuring wind direction and wind velocity

Info

Publication number
JPH0989919A
JPH0989919A JP27066795A JP27066795A JPH0989919A JP H0989919 A JPH0989919 A JP H0989919A JP 27066795 A JP27066795 A JP 27066795A JP 27066795 A JP27066795 A JP 27066795A JP H0989919 A JPH0989919 A JP H0989919A
Authority
JP
Japan
Prior art keywords
wind
wind direction
wind speed
measuring device
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27066795A
Other languages
Japanese (ja)
Inventor
Masahiko Mimura
雅彦 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSK Corp
Original Assignee
CSK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSK Corp filed Critical CSK Corp
Priority to JP27066795A priority Critical patent/JPH0989919A/en
Publication of JPH0989919A publication Critical patent/JPH0989919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized wind direction and velocity measuring device which can measure an arbitrary wind direction and a wind velocity. SOLUTION: A wind direction and velocity measuring device comprises a measuring body 11 having a three-dimensional shape so as to receive at their outer surface a wind from an arbitrary direction and provided with a plurality of pressure sensors 12, a support member 13 made of thin wires and attaching the measuring body 11 to a structure, and a computing part 30 for computing a wind direction and a wind velocity from air pressures detected by the plurality of sensors 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、任意の方向からの
風向及び風速を測定する風向風速測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind direction and wind speed measuring device for measuring a wind direction and a wind speed from an arbitrary direction.

【0002】[0002]

【従来の技術】従来の風向風速測定装置としては、例え
ば、風車型の自記式風向風速計が使用されており、風向
と風速の出力は分離され、風向は垂直軸と連動するポテ
ンシオメータで、風速はプロペラなどの回転軸に連動す
る回転計によって測定されている。これに対して、特開
平5−52864号公報には、感知面をそれぞれ横四方
向に向けて設けられた4個の圧力センサで風圧を検出
し、この検出された風圧に基づいて演算器で風向及び風
速を演算する風向風速計に関する技術が開示されてい
る。
2. Description of the Related Art As a conventional wind direction wind speed measuring device, for example, a wind turbine type self-recording wind direction anemometer is used, in which the wind direction and the output of the wind speed are separated, and the wind direction is a potentiometer which is interlocked with a vertical axis. The wind speed is measured by a tachometer that works with a rotating shaft such as a propeller. On the other hand, in Japanese Unexamined Patent Publication No. 5-52864, wind pressure is detected by four pressure sensors provided with their sensing surfaces oriented in the four lateral directions, and a calculator is used based on the detected wind pressure. A technique relating to a wind direction and anemometer for calculating a wind direction and a wind speed is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
風車型の自記式風向風速計では、強固な構造にしたり氷
結のおそれがあるため、構造が複雑で高価になり、また
4個の圧力センサによる風向風速計では、横四方向に向
けて設けられるため、横方向の風向及び風速を測定する
ことに適しているが、他の任意の方向の風向及び風速を
測定することができない。
However, in the conventional wind turbine type self-recording wind anemometer, the structure is complicated and expensive because of the strong structure and the possibility of freezing, and the four pressure sensors are used. Since the wind direction anemometer is provided in four lateral directions, it is suitable for measuring the lateral wind direction and wind speed, but cannot measure the wind direction and wind speed in any other direction.

【0004】そこで本発明は、任意の方向の風向及び風
速を測定できる風向風速測定装置を提供することを目的
とする。
Therefore, an object of the present invention is to provide a wind direction and wind speed measuring device capable of measuring a wind direction and a wind speed in an arbitrary direction.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の風向風速測定装置は、立体的な形状を有し
その周囲の表面に任意の方向からの風を受ける複数個の
圧力センサを設けた計測本体、及び該計測本体を支持す
る細い線材で構造物に取り付けるための支持部材からな
る計測部と、前記複数個の圧力センサで検出した風圧に
より風向と風速とを算出する演算部とを備えたものであ
る。計測部の複数の圧力センサで風圧を検出し、演算部
で各圧力センサが検出する風圧をベクトル量として算出
することで風向及び風速が測定される。
To achieve the above object, the wind direction measuring device of the present invention comprises a plurality of pressures having a three-dimensional shape and receiving a wind from any direction on its peripheral surface. A measuring unit including a measuring main body provided with a sensor and a supporting member for attaching the measuring main body to a structure with a thin wire rod, and a calculation for calculating the wind direction and the wind speed by the wind pressure detected by the plurality of pressure sensors. And a section. The wind direction and the wind speed are measured by detecting the wind pressure with a plurality of pressure sensors of the measurement unit and calculating the wind pressure detected by each pressure sensor as a vector amount in the calculation unit.

【0006】前記計測本体は、6面体でありその各面に
圧力センサが設けられていることが、任意の方向からの
風を検出することができる点で好ましい。前記計測本体
は、球体でありその表面に圧力センサが設けられている
ことが、風の乱流の影響を小さくすることができる点で
好ましい。前記構造物は、静止体であることが、固定さ
れた場所での任意の方向からの風を検出することができ
る点で好ましい。前記構造物は、移動体であり、該移動
体に搭載された方位計で検出される角度に基づいて前記
演算部が風向及び風速を算出することが、移動体が方向
を変えたときでも風向及び風速を測定できる点で好まし
い。前記構造物は、移動体であり、該移動体に搭載され
た傾斜計で検出され傾斜角度及び方位計で検出される角
度に基づいて前記演算部が風向及び風速を算出すること
が、移動体が傾斜したり方向を変えても風向及び風速を
測定できる点で好ましい。前記演算部は、前記圧力セン
サ間の圧力比率と前記傾斜計で検出される傾斜角度と風
向及び風速との関係を実験的に求めたデータを記憶した
記憶部を有し、該記憶部のデータと実測データとを比較
して風向及び風速を算出することが、正確な風向及び風
速を求めることができる点で好ましい。前記計測本体は
内部に空気が流通する中空体に形成され、その中空体の
内部に温度センサが配置され、前記演算部は前記温度セ
ンサで検出した温度に対応する空気の特性値を用いて、
複数個の圧力センサで検出した風圧により風向と風速と
を算出することが、空気の温度に応じた風向と風速とを
求めることができる点で好ましい。
It is preferable that the measuring main body is a hexahedron and a pressure sensor is provided on each surface of the measuring main body in order to detect a wind from any direction. It is preferable that the measurement main body is a sphere and that a pressure sensor is provided on the surface of the measurement main body because the influence of turbulence of wind can be reduced. It is preferable that the structure is a stationary body because it can detect wind from any direction at a fixed place. The structure is a moving body, and the calculation unit may calculate the wind direction and the wind speed based on the angle detected by the azimuth meter mounted on the moving body, even if the moving body changes direction. And is preferable in that the wind speed can be measured. The structure is a moving body, and the calculating unit calculates the wind direction and the wind speed based on the tilt angle detected by the inclinometer mounted on the moving body and the angle detected by the azimuth meter. Is preferable in that the wind direction and the wind speed can be measured even if it is inclined or the direction is changed. The calculation unit has a storage unit that stores data obtained by experimentally determining the relationship between the pressure ratio between the pressure sensors, the tilt angle detected by the inclinometer, and the wind direction and wind speed, and the data of the storage unit. It is preferable that the wind direction and the wind speed are calculated by comparing with the actual measurement data in order to obtain an accurate wind direction and wind speed. The measurement body is formed in a hollow body through which air flows, a temperature sensor is arranged inside the hollow body, and the calculation unit uses the characteristic value of air corresponding to the temperature detected by the temperature sensor,
It is preferable to calculate the wind direction and the wind speed from the wind pressures detected by the plurality of pressure sensors, because the wind direction and the wind speed corresponding to the temperature of the air can be obtained.

【0007】[0007]

【発明の実施の形態】以下、本発明を図示の一実施形態
により具体的に説明する。図1は本発明実施形態の風向
風速測定装置の構成を示すブロック図、図2は本発明実
施形態の風向風速測定装置の計測部の斜視図、図3は本
発明実施形態の風向風速測定装置の計測部と方位の関係
を説明する図、図4は本発明実施形態の風向風速測定装
置の計測部の横方向傾きを説明する図、図5は本発明実
施形態の風向風速測定装置の計測部の前後方向傾きを説
明する図、図6は本発明実施形態の風向風速測定装置の
計測部の風向との関係を説明する図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. FIG. 1 is a block diagram showing a configuration of a wind direction and wind speed measuring apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view of a measuring unit of the wind direction and wind speed measuring apparatus according to the embodiment of the present invention, and FIG. 3 is a wind direction and wind speed measuring apparatus according to the embodiment of the present invention. For explaining the relationship between the measurement unit and the azimuth, FIG. 4 is a diagram for explaining the lateral inclination of the measurement unit of the wind direction and wind speed measurement apparatus according to the embodiment of the present invention, and FIG. 5 is the measurement for the wind direction and wind speed measurement apparatus according to the embodiment of the present invention. FIG. 6 is a diagram for explaining the inclination in the front-back direction, and FIG. 6 is a diagram for explaining the relationship with the wind direction of the measurement unit of the wind direction wind speed measurement device according to the present embodiment.

【0008】これらの図において、本実施形態の風向風
速測定装置1は、移動体として例えば船体2に設けられ
たものであり、風向及び風速を測定すべき船体2の所定
の場所に取り付けられた計測部10と、船体2の横方向
及び前後方向の傾斜角を検出する傾斜計21と、船体2
の進行方向と方位との間の角度を検出する方位計22
と、計測部10で検出した風から受ける圧力及び傾斜計
21で検出した船体2の傾斜角と方位計22で検出した
角度とから風向及び風速を演算する演算部30とからな
る。
In these drawings, the wind direction and wind speed measuring device 1 of the present embodiment is provided as a moving body on, for example, a hull 2, and is attached to a predetermined position of the hull 2 whose wind direction and wind speed are to be measured. The measuring unit 10, the inclinometer 21 for detecting the lateral and longitudinal inclination angles of the hull 2, and the hull 2
Azimuth meter 22 for detecting the angle between the direction of travel and the azimuth
And a calculation unit 30 that calculates the wind direction and the wind speed from the pressure received from the wind detected by the measurement unit 10, the inclination angle of the hull 2 detected by the inclinometer 21, and the angle detected by the azimuth meter 22.

【0009】計測部10は、例えば、6面体からなる計
測本体11の各面のそれぞれの中央部に圧力センサ12
が設けられ、かつ計測本体11を支持するとともに船体
2に取り付けるための支持部材13が設けられたもので
ある。計測本体11は、圧力センサ12を設けるに適し
た大きさでX,Y,Z軸に直交する6面体からなる比較
的小さな立方体であり、その周囲を通る風に乱流が生じ
ないように角部が球面状に形成されていることが好まし
い。圧力センサ12は、計測本体11の6平面にそれぞ
れ1個づつ設けられ、X軸に直交する面に設けられた圧
力センサ12x,12x’、Y軸に直交する面に設けら
れた圧力センサ12y、12y’、及びZ軸に直交する
面に設けられた圧力センサ12z,12z’の6個のセ
ンサからなる。各圧力センサ12は、例えば、同径で円
板状の歪みゲージなどが使用され、その面が風によって
受ける風圧を抵抗値などの電気的特性の変化として出力
するものである。支持部材13は、細い線材で形成さ
れ、計測本体11の4辺の中央部から放射状に形成され
た4本の針金部13aと、これら4本の針金部13aの
端部側を連結した円環状の針金部13bと、この針金部
13bの下部に連結された構造物である船体2に取り付
けるための針金部13cとからなる。この支持部材13
を構成する針金部13a,13b,13cは、例えば、
剛性のある細いピアノ線などの計測本体11をしっかり
と支持できる線材であり、かつその形状は計測本体11
の周囲を通過する風の流れを乱さないように形成される
ことが好ましい。また、計測本体11の各圧力センサ1
2からは、支持部材13の放射状の針金部13a、円環
状の針金部13b及び取り付け用の針金部13cに沿っ
て、図示しないリード線が導出され、演算部30に電気
信号を伝達するようになっている。このような計測部1
0は、例えば、その計測本体11のX軸が船体2の進行
方向に向かう中心線に平行に、Y軸が船体2の中心線に
直交する水平線に平行に、かつZ軸が船体2の垂直線に
平行になるように取り付けられる。
The measuring unit 10 has, for example, a pressure sensor 12 at the center of each surface of a measuring main body 11 composed of a hexahedron.
And a support member 13 for supporting the measurement main body 11 and for attaching to the hull 2. The measurement main body 11 is a relatively small cube having a size suitable for providing the pressure sensor 12 and formed of a hexahedron orthogonal to the X, Y, and Z axes, and has a square shape so that turbulent flow does not occur in the wind passing therearound. It is preferable that the portion is formed in a spherical shape. One pressure sensor 12 is provided on each of the 6 planes of the measurement main body 11, and pressure sensors 12x and 12x ′ are provided on a surface orthogonal to the X axis, pressure sensors 12y provided on a surface orthogonal to the Y axis, It is composed of six sensors, 12y 'and pressure sensors 12z, 12z' provided on a surface orthogonal to the Z axis. Each pressure sensor 12 uses, for example, a disk-shaped strain gauge having the same diameter, and outputs the wind pressure received by the surface of the pressure sensor 12 as a change in electrical characteristics such as resistance. The support member 13 is formed of a thin wire rod, and has four wire portions 13a formed radially from the center of the four sides of the measurement main body 11 and an annular shape that connects the end portions of these four wire portions 13a. The wire portion 13b and the wire portion 13c for attaching to the hull 2 which is a structure connected to the lower portion of the wire portion 13b. This support member 13
The wire portions 13a, 13b, 13c constituting the
It is a wire rod that can firmly support the measuring main body 11 such as a rigid thin piano wire, and its shape is the measuring main body 11.
It is preferably formed so as not to disturb the flow of wind passing around. In addition, each pressure sensor 1 of the measurement body 11
From 2, a lead wire (not shown) is led out along the radial wire portion 13a, the annular wire portion 13b, and the attachment wire portion 13c of the support member 13, so that an electric signal is transmitted to the calculation unit 30. Has become. Such measuring unit 1
0 is, for example, the X axis of the measurement body 11 is parallel to the center line of the hull 2, the Y axis is parallel to the horizontal line orthogonal to the center line of the hull 2, and the Z axis is vertical to the hull 2. It is attached so that it is parallel to the line.

【0010】傾斜計21は、船体2に搭載されており、
船体2の傾斜により生ずる傾斜角を電気信号として検出
するものである。この傾斜角は、図4に示すように船体
2の進行方向に直交する横方向(Y軸方向)の水平面に
対する傾斜角γ、及び図5に示すように船体2の進行方
向の前後方向(X軸方向)の水平面に対する傾斜角βで
ある。この傾斜計21で検出された傾斜角は、電気信号
として演算部30に伝達される。
The inclinometer 21 is mounted on the hull 2,
The inclination angle generated by the inclination of the hull 2 is detected as an electric signal. This inclination angle is an inclination angle γ with respect to a horizontal plane in the lateral direction (Y-axis direction) orthogonal to the traveling direction of the hull 2 as shown in FIG. 4, and the front-back direction (X direction) of the traveling direction of the hull 2 as shown in FIG. It is the inclination angle β with respect to the horizontal plane (in the axial direction). The tilt angle detected by the inclinometer 21 is transmitted to the calculation unit 30 as an electric signal.

【0011】方位計22は、船体2に搭載されており、
船体2の進行方向と方位との間の角度を電気信号として
検出するものであり、例えば、ジャイロを用いたものな
どが使用される。この角度は、図3に示すように、船体
2の進行方向(X軸方向)と方位との間の角度αであ
る。この方位計22で検出された角度は、電気信号とし
て演算部30に伝達される。
The compass 22 is mounted on the hull 2,
The angle between the traveling direction and the azimuth of the hull 2 is detected as an electric signal, and for example, a gyro is used. This angle is an angle α between the traveling direction (X-axis direction) and the azimuth of the hull 2, as shown in FIG. The angle detected by the azimuth meter 22 is transmitted to the calculation unit 30 as an electric signal.

【0012】演算部30は、計測部10の6個の圧力セ
ンサ12で検出した風圧に応じた電気信号を増幅する増
幅器31と、この増幅器31で増幅した電気信号をアナ
ログ値からデジタル値に変換するA/D変換器32と、
このA/D変換器32で変換されたデジタル値、傾斜計
21で検出された傾斜角及び方位計22で検出された角
度を取り込み所定のプログラムにより風向及び風速を演
算する中央処理装置(CPU)33と、所定のプログラ
ムや演算に必要なデータを記憶する記憶部34と、CP
U33で算出した風向及び風速を目視できるように表示
する表示器35などとからなる。
The arithmetic section 30 converts an analog signal from an analog value into a digital value, and an amplifier 31 for amplifying the electric signal corresponding to the wind pressure detected by the six pressure sensors 12 of the measuring section 10 and the electric signal amplified by the amplifier 31. A / D converter 32 that
A central processing unit (CPU) that takes in the digital value converted by the A / D converter 32, the tilt angle detected by the inclinometer 21 and the angle detected by the azimuth meter 22 and calculates the wind direction and the wind speed by a predetermined program. 33, a storage unit 34 that stores data required for a predetermined program or calculation, and a CP
The display 35 and the like for displaying the wind direction and the wind speed calculated in U33 so that they can be viewed.

【0013】次に、船体2が基準方位に対して角度α
で、例えば、南東方向に進行しているときに、計測部1
0の計測本体11のX軸に対して角度δの方向から風速
Vの風が吹いた場合の風向及び風速の計算例を図6によ
り示す。なお、計算原理の説明を簡単にするため、船体
2は傾斜しておらず、風に対向する2か所の圧力センサ
12x及び12yにのみそれぞれ風圧P1及びP2が生
じているものとする。
Next, the hull 2 forms an angle α with respect to the reference azimuth.
So, for example, when traveling in the southeast direction, the measuring unit 1
FIG. 6 shows an example of calculation of the wind direction and the wind speed when the wind with the wind speed V blows from the direction of the angle δ with respect to the X axis of the measurement main body 11 of 0. In order to simplify the explanation of the calculation principle, it is assumed that the hull 2 is not inclined and that the wind pressures P1 and P2 are generated only at the two pressure sensors 12x and 12y facing the wind.

【0014】一般に空気の密度をρ、風速をV、抵抗係
数をCd、センサの代表面積をSとすると、センサに加
わる圧力P=0.5・(ρ・V2 ・Cd・S)となるこ
とが知られている。したがって、図6に示すように、X
軸に対して角度δの方向から風速Vの風が代表面積Sの
圧力センサ12x,12yに吹いている場合の、それぞ
れの風圧P1及びP2は、表1の計算式(1)及び
(2)になる。したがって、圧力比率R=P1/P2
は、表1の計算式(3)のようになり、風速Vは、表1
の計算式(4)になる。
Generally, assuming that the density of air is ρ, the wind speed is V, the resistance coefficient is Cd, and the representative area of the sensor is S, the pressure applied to the sensor is P = 0.5 · (ρ · V 2 · Cd · S). It is known. Therefore, as shown in FIG.
The wind pressures P1 and P2 when the wind with the wind speed V is blowing on the pressure sensors 12x and 12y having the representative area S from the direction of the angle δ with respect to the axis are the calculation formulas (1) and (2) in Table 1, respectively. become. Therefore, the pressure ratio R = P1 / P2
Becomes like the calculation formula (3) of Table 1, and the wind speed V is shown in Table 1.
The calculation formula (4) becomes

【0015】[0015]

【表1】 [Table 1]

【0016】すなわち、圧力センサ12x,12yでそ
れぞれ風圧P1及びP2に応じた電気信号を増幅器31
で増幅してから、A/D変換器32でデジタル値に変換
してCPU33に取り込み、その圧力比率Rを求めれ
ば、表1の計算式(3)から角度δが求められ、続いて
表1の計算式(4)から風速Vを求めることができる。
このようにして求められた角度δ及び風速Vは、表示器
35に表示される。上記の計算式では、圧力センサ12
x,12yにのみ風圧を受けるX,Y平面の2次元につ
いての例であるが、任意の方向から吹く風の場合には、
風圧を受ける圧力センサについての風速のベクトル成分
を演算で求めることにより、風向と風速を求めることが
できる。なお、上記の計算において、傾斜計21で検出
される傾斜角度β,γ及び方位計22の角度αを考慮し
ない場合の例を説明したが、演算部30による演算に際
して、傾斜計21で検出される傾斜角度β,γによる補
正を行うことにより、船体2が傾斜していない状態での
風向及び風速を計算することができ、またその計算結果
で得られる風向に方位計22で検出される角度αの補正
を加えることにより、方位に対応する絶対的な風向を求
めることができる。
That is, the pressure sensors 12x and 12y amplify the electric signals corresponding to the wind pressures P1 and P2, respectively, by the amplifier 31.
After being amplified by, the analog value is converted into a digital value by the A / D converter 32 and taken into the CPU 33, and the pressure ratio R is obtained, the angle δ is obtained from the calculation formula (3) in Table 1, and then Table 1 The wind speed V can be obtained from the equation (4).
The angle δ and the wind speed V thus obtained are displayed on the display 35. In the above formula, the pressure sensor 12
This is an example of two dimensions of the X and Y planes in which the wind pressure is applied only to x and 12y, but in the case of wind blowing from any direction,
The wind direction and the wind speed can be obtained by calculating the vector component of the wind speed for the pressure sensor that receives the wind pressure. In the above calculation, an example in which the tilt angles β and γ detected by the inclinometer 21 and the angle α of the azimuth meter 22 are not taken into consideration has been described. The wind direction and the wind speed can be calculated when the hull 2 is not tilted by correcting the tilt angles β and γ, and the angle detected by the compass 22 in the wind direction obtained from the calculation result. By adding the correction of α, the absolute wind direction corresponding to the azimuth can be obtained.

【0017】また、上記の各計算式では、気温による空
気の特性値である密度ρや抵抗係数Cdの変化、あるい
は計測本体11の風に対向しない圧力センサ12に負圧
が生じ、これらの影響を受けて理論値と異なった値にな
ることがある。そのため、各圧力センサ間の圧力比率R
と、傾斜角度β,γと風向角度δと風速Vとの関係を実
験的に求め、この値を記憶部34に記憶することによ
り、CPU33による演算に際して、記憶部34の値を
参照して求めることができる。
Further, in each of the above formulas, changes in the density ρ and the resistance coefficient Cd, which are characteristic values of air due to the temperature, or a negative pressure in the pressure sensor 12 that does not face the wind of the measurement main body 11, and these influences Therefore, the value may differ from the theoretical value. Therefore, the pressure ratio R between each pressure sensor
And the relationship between the inclination angles β and γ, the wind direction angle δ, and the wind speed V are experimentally obtained, and these values are stored in the storage unit 34, so that the values are stored in the storage unit 34 at the time of calculation by the CPU 33. be able to.

【0018】上記構成の風向風速測定装置1によれば、
6面体の各表面に圧力センサ12を設けた計測本体11
を、細い線材からなる支持部材13で船体2に対して一
定方向に取り付け、圧力センサ12で検出された風圧に
関する電気信号が演算部30に取り込まれ、同じ船体2
に搭載された傾斜計21で検出される傾斜角度、及び方
位計22で検出される角度に基づいて、任意の方向から
吹く風の風向及び風速を演算により求めることができ
る。圧力センサ12が設けられる計測本体11は、圧力
センサ12を設けるに適した比較的に小さな立方体で、
角部が球面状に形成され、かつその計測本体11を支持
する支持部材13が細長い剛性を有する線材で形成され
ているため、計測本体11の周囲を通過する風の流れを
乱すことがなく、正確な風向及び風速を測定することが
可能になり、かつ小型で任意の場所に取り付けることが
可能になる。また、本実施形態では、移動体である船体
2に搭載された傾斜計21及び方位計22により検出し
た値に基づいて、演算部30で演算することで、船体2
が傾斜したり、方位に対して所定の方向に向いている場
合でも、正しい風向及び風速を求めることができる。さ
らに、風向及び風速と複数の圧力センサ12で検出した
圧力比率と傾斜計21で検出した傾斜角度との関係の実
験データをあらかじめ記憶部34に記憶させておけば、
この記憶値と実測した圧力比率及び傾斜角度を参照して
CPU33により演算することで、理論的な計算のみに
よる場合より正確に風向及び風速を求めることができ
る。本実施形態の風向風速測定装置で求められる風向及
び風速は、船体2から観測される値である。
According to the wind direction and wind speed measuring device 1 having the above structure,
Measurement body 11 having pressure sensors 12 on each surface of a hexahedron
Is attached in a fixed direction to the hull 2 with a support member 13 made of a thin wire rod, and an electric signal relating to the wind pressure detected by the pressure sensor 12 is taken into the arithmetic unit 30 and the same hull 2
Based on the inclination angle detected by the inclinometer 21 mounted on the vehicle and the angle detected by the azimuth meter 22, the wind direction and speed of the wind blown from any direction can be calculated. The measurement body 11 provided with the pressure sensor 12 is a relatively small cube suitable for providing the pressure sensor 12,
Since the corners are formed in a spherical shape and the support member 13 that supports the measurement main body 11 is formed of a wire having long and narrow rigidity, the flow of wind passing around the measurement main body 11 is not disturbed, It becomes possible to measure an accurate wind direction and wind speed, and it is possible to install the device in a small size and at any place. In addition, in the present embodiment, the calculation unit 30 performs calculation based on the values detected by the inclinometer 21 and the compass 22 mounted on the hull 2 that is a moving body, so that the hull 2
The correct wind direction and wind speed can be obtained even when the vehicle tilts or faces a predetermined direction with respect to the azimuth. Further, if experimental data on the relationship between the wind direction and the wind speed, the pressure ratio detected by the plurality of pressure sensors 12 and the tilt angle detected by the inclinometer 21 is stored in the storage unit 34 in advance,
The CPU 33 calculates with reference to the stored value and the actually measured pressure ratio and inclination angle, so that the wind direction and the wind speed can be obtained more accurately than in the case of only theoretical calculation. The wind direction and wind speed obtained by the wind direction and wind speed measuring device of the present embodiment are values observed from the hull 2.

【0019】図7は本発明の他の実施形態の風向風速測
定装置の計測部の斜視図、図8は図7の計測部のXZ平
面に沿った拡大断面図である。なお、前記実施形態に対
応する部分は同一の符号を記す。
FIG. 7 is a perspective view of a measuring section of a wind direction and wind speed measuring apparatus according to another embodiment of the present invention, and FIG. 8 is an enlarged sectional view of the measuring section of FIG. 7 taken along the XZ plane. The parts corresponding to those in the above-described embodiment are denoted by the same reference numerals.

【0020】この実施形態の計測部40は、前記と同様
の6面体からなる計測本体11の各面に6個の圧力セン
サ12x,12x’,12y,12y’,12z,12
z’が設けられ、かつ計測本体11を支持するとともに
船体2に取り付けるための支持部材13が設けられてい
る。また、この計測本体11は、中空の立方体に形成さ
れ、その内部に設けられた取り付け部11aに温度を検
知する温度センサ42が配置され、かつX軸及びY軸に
直交する表面(4か所)には窓部41が形成され、外部
の風が窓部41を通して中空の立方体内に流通するよう
になっている。この窓部41は、計測本体11の面に多
数の横に長い孔41aが形成され、その孔41aの外側
に斜め下向きに突出されたひさし部41bが形成されて
いる。このような窓部41は、例えば、計測本体11の
内部側から孔41aの大きさのひさし部41bを外側に
打ち出すことで形成される。そして、この窓部41が形
成された面では、圧力センサ12がひさし部41bの先
端部に設けられている。すなわち、計測本体11は、窓
部41の孔41aを通して中空体の内部に横方向から自
由に風が流通し、その風の温度が温度センサ42で検知
されるようになっている。そして、圧力センサ12及び
温度センサ42で検出された電気信号は、前記実施形態
と同様に演算部30に伝達される。演算部30では、空
気の特性値である密度ρや抵抗係数Cdをあらかじめ温
度関数として設定された計算式から求めるか、またはあ
らかじめ記憶部34などに記憶されている温度に対する
密度ρや抵抗係数Cdを読み出し、それらの値を用いて
圧力センサ12で検出された風圧から風向及び風速を求
める。なお、計測本体11の窓部41は、少なくとも中
空体の内部に空気が自由に流通するように形成されてい
ればよく任意の形状の孔などにすることもできる。ま
た、演算部30において風向及び風速を算出するとき
に、密度や抵抗係数以外の温度により変化する空気の他
の特性値を考慮する必要があるときには、そのような他
の特性値を利用することもできる。
The measuring unit 40 of this embodiment has six pressure sensors 12x, 12x ', 12y, 12y', 12z, 12 on each surface of the measuring body 11 composed of the same hexahedron as described above.
z ′ is provided, and a support member 13 for supporting the measurement main body 11 and for attaching to the hull 2 is provided. Further, the measurement main body 11 is formed in a hollow cube, a temperature sensor 42 for detecting the temperature is arranged in a mounting portion 11a provided inside the measurement main body 11, and a surface (4 places) orthogonal to the X axis and the Y axis is arranged. ) Is formed with a window 41, and external wind is allowed to flow through the window 41 into the hollow cube. The window portion 41 has a large number of laterally long holes 41a formed on the surface of the measurement main body 11, and an eaves portion 41b protruding obliquely downward is formed outside the holes 41a. Such a window portion 41 is formed, for example, by punching out an eaves portion 41b having the size of the hole 41a from the inner side of the measurement main body 11. The pressure sensor 12 is provided at the tip of the eaves portion 41b on the surface where the window portion 41 is formed. That is, in the measurement main body 11, the wind freely flows from the lateral direction to the inside of the hollow body through the hole 41 a of the window 41, and the temperature of the wind is detected by the temperature sensor 42. Then, the electric signals detected by the pressure sensor 12 and the temperature sensor 42 are transmitted to the arithmetic unit 30 as in the above embodiment. In the calculation unit 30, the density ρ and the resistance coefficient Cd, which are the characteristic values of air, are obtained from a calculation formula set in advance as a temperature function, or the density ρ and the resistance coefficient Cd with respect to the temperature stored in the storage unit 34 in advance are calculated. Is read out and the wind direction and the wind speed are obtained from the wind pressure detected by the pressure sensor 12 using those values. The window 41 of the measurement main body 11 may be a hole having any shape as long as it is formed so that air can freely flow at least inside the hollow body. Further, when it is necessary to consider other characteristic values of air that change with temperature other than the density and the resistance coefficient when calculating the wind direction and the wind speed in the calculation unit 30, use such other characteristic values. You can also

【0021】上記構成の計測部40では、計測本体11
が中空体で内部に温度センサ42が配置され、横方向の
面には窓部41が形成され、外部の風が窓部41を通し
て中空体内に流通し、その風の温度が温度センサ42で
検知される。演算部30では、温度センサ42で検知さ
れた温度に対応する空気の密度ρや抵抗係数Cdなどが
計算式から求められたり、あるいはあらかじめ記憶され
ている記憶部34から読み出され、それらの値を用いて
圧力センサ12で検出された風圧から風向及び風速が求
められる。したがって、温度に応じた正確な風向及び風
速を求めることができる。計測本体11は、その横の面
(4か所)に窓部41の孔41aが形成され、かつ孔4
1aの外側に斜め下向きのひさし部41bが形成されて
いることで、上から降る雨がひさし部41bに遮られて
中空体の内部に侵入することがない。また、温度センサ
42は、計測本体11の中空体内に配置されるため、直
射日光を受けることがなく、正確な風の温度を検出する
ことができる。
In the measuring unit 40 having the above structure, the measuring main body 11
Is a hollow body and has a temperature sensor 42 disposed inside, and a window portion 41 is formed on a lateral surface, and external wind flows through the window portion 41 into the hollow body, and the temperature of the wind is detected by the temperature sensor 42. To be done. In the calculation unit 30, the density ρ of air, the resistance coefficient Cd, and the like corresponding to the temperature detected by the temperature sensor 42 are obtained from a calculation formula, or read from the storage unit 34 that is stored in advance, and their values are obtained. The wind direction and the wind speed are obtained from the wind pressure detected by the pressure sensor 12 using. Therefore, the accurate wind direction and wind speed according to the temperature can be obtained. The measurement main body 11 has holes 41a of the window portion 41 formed on the lateral surfaces (four places), and the holes 4a
The obliquely downward facing eaves portion 41b is formed on the outer side of the la, so that rain falling from above is not blocked by the eaves portion 41b and enters the inside of the hollow body. Further, since the temperature sensor 42 is arranged inside the hollow body of the measurement main body 11, the temperature of the wind can be accurately detected without receiving direct sunlight.

【0022】なお、上記各実施形態において、風向風速
測定装置1を船体2に設けた例を説明したが、他の任意
の陸上を移動する車両などの移動体に設けることもで
き、また移動体自体の傾斜が問題にならないものでは、
方位計22のみ搭載されていればよい。さらに、固定さ
れた場所における風向及び風速を測定する場合には、傾
斜計及び方位計も必要がなくなる。
In each of the above-mentioned embodiments, an example in which the wind direction and wind speed measuring device 1 is provided on the hull 2 has been described. However, it may be provided on another arbitrary moving body such as a vehicle moving on land, or the moving body. If the inclination of itself does not matter,
Only the compass 22 should be installed. Furthermore, when measuring the wind direction and wind speed in a fixed place, an inclinometer and an azimuth meter are unnecessary.

【0023】また、本実施形態の計測本体11は、6面
を有する立方体を例に説明したが、少なくとも任意の方
向からの風を検出することができるように、複数の圧力
センサを取り付けることができる立体物であればよく、
球体なども好ましく、圧力センサの個数も6個に限らず
それ以上設けてもよく、取り付け角度も立体物に応じて
任意にできる。さらに、計測本体11自体の取り付け
は、移動体あるいは固定された場所の構造物に対し、一
定の決められた方向であればよい。
Further, the measuring main body 11 of the present embodiment has been described by taking a cube having six faces as an example, but a plurality of pressure sensors may be attached so that the wind from at least any direction can be detected. Any three-dimensional object can be used,
A sphere or the like is also preferable, the number of pressure sensors is not limited to six, and more may be provided, and the mounting angle can be arbitrarily set according to the three-dimensional object. Further, the measurement main body 11 itself may be attached in a fixed and fixed direction with respect to the moving body or the structure at a fixed place.

【0024】[0024]

【発明の効果】以上説明したように本発明の風向風速測
定装置によれば、任意の方向からの風の風向及び風速を
簡単に測定することができ、かつ計測本体を小さく形成
できるため、どこでも簡単に取り付けることができる。
また、移動体に取り付ければ、傾斜計あるいは方位計に
基づいて風向及び風速を演算すれば、移動体が傾斜した
り、移動方向を変更しても簡易に正確な風向及び風速が
測定できる。さらに、風の温度も検知できるようにすれ
ば、より正確な風向及び風速が測定できる。
As described above, according to the wind direction and wind speed measuring device of the present invention, the wind direction and the wind speed of the wind from any direction can be easily measured, and the measuring main body can be formed in a small size. Easy to install.
If it is attached to a moving body and the wind direction and wind speed are calculated based on an inclinometer or azimuth meter, accurate wind direction and wind speed can be easily measured even if the moving body is tilted or the moving direction is changed. Further, if the temperature of the wind can be detected, more accurate wind direction and wind speed can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施形態の風向風速測定装置の構成を示
すブロック図である。
FIG. 1 is a block diagram showing a configuration of a wind direction and wind speed measuring device according to an embodiment of the present invention.

【図2】本発明実施形態の風向風速測定装置の計測部の
斜視図である。
FIG. 2 is a perspective view of a measuring unit of the wind direction and wind speed measuring device according to the embodiment of the present invention.

【図3】本発明実施形態の風向風速測定装置の計測部と
方位の関係を説明する図である。
FIG. 3 is a diagram illustrating a relationship between a measurement unit and an azimuth of the wind direction and wind speed measuring device according to the embodiment of the present invention.

【図4】本発明実施形態の風向風速測定装置の計測部の
横方向の傾きを説明する図である。
FIG. 4 is a diagram illustrating a lateral inclination of a measuring unit of the wind direction and wind speed measuring device according to the embodiment of the present invention.

【図5】本発明実施形態の風向風速測定装置の計測部の
前後方向の傾きを説明する図である。
FIG. 5 is a diagram for explaining an inclination in the front-rear direction of the measuring unit of the wind direction and wind speed measuring device according to the embodiment of the present invention.

【図6】本発明実施形態の風向風速測定装置の計測部の
風向との関係を説明する図である。
FIG. 6 is a diagram illustrating the relationship between the wind direction and the wind direction of the measuring unit of the wind direction and wind speed measuring device according to the embodiment of the present invention.

【図7】本発明の他の実施形態の風向風速測定装置の計
測部の斜視図である。
FIG. 7 is a perspective view of a measuring unit of a wind direction and wind speed measuring device according to another embodiment of the present invention.

【図8】図7の計測部のXZ平面に沿った拡大断面図で
ある。
8 is an enlarged cross-sectional view of the measuring unit of FIG. 7 taken along the XZ plane.

【符号の説明】[Explanation of symbols]

1 風向風速測定装置 2 船体 10 計測部 11 計測本体 12 圧力センサ 13 支持部材 21 傾斜計 22 方位計 30 演算部 31 増幅器 32 A/D変換器 33 中央処理装置(CPU) 34 記憶部 35 表示器 40 計測部 41 窓部 41a 孔 41b ひさし部 42 温度センサ 1 Wind direction wind velocity measuring device 2 Hull 10 Measuring part 11 Measuring main body 12 Pressure sensor 13 Supporting member 21 Inclinometer 22 Compass meter 30 Computational part 31 Amplifier 32 A / D converter 33 Central processing unit (CPU) 34 Storage part 35 Indicator 40 Measuring part 41 Window part 41a Hole 41b Eaves part 42 Temperature sensor

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 立体的な形状を有しその周囲の表面に任
意の方向からの風を受ける複数個の圧力センサを設けた
計測本体、及び該計測本体を支持する細い線材で構造物
に取り付けるための支持部材からなる計測部と、前記複
数個の圧力センサで検出した風圧により風向と風速とを
算出する演算部とを備えた風向風速測定装置。
1. A measuring main body having a three-dimensional shape and provided with a plurality of pressure sensors on a peripheral surface thereof for receiving a wind from an arbitrary direction, and a measuring wire attached to a structure with a thin wire rod supporting the measuring main body. A wind direction and wind speed measuring device including a measuring unit including a supporting member for calculating a wind direction and a wind speed based on wind pressures detected by the plurality of pressure sensors.
【請求項2】 前記計測本体は、6面体でありその各面
に圧力センサが設けられている請求項1記載の風向風速
測定装置。
2. The wind direction and wind speed measuring device according to claim 1, wherein the measurement main body is a hexahedron, and a pressure sensor is provided on each surface thereof.
【請求項3】 前記計測本体は、球体でありその表面に
圧力センサが設けられている請求項1記載の風向風速測
定装置。
3. The wind direction and wind speed measuring device according to claim 1, wherein the measurement main body is a sphere, and a pressure sensor is provided on the surface thereof.
【請求項4】 前記構造物は、静止体である請求項1記
載の風向風速測定装置。
4. The wind direction and wind speed measuring device according to claim 1, wherein the structure is a stationary body.
【請求項5】 前記構造物は、移動体であり、該移動体
に搭載された方位計で検出される角度に基づいて前記演
算部が風向及び風速を算出する請求項1記載の風向風速
測定装置。
5. The wind direction and wind speed measurement according to claim 1, wherein the structure is a moving body, and the calculation unit calculates the wind direction and the wind speed based on an angle detected by an azimuth meter mounted on the moving body. apparatus.
【請求項6】 前記構造物は、移動体であり、該移動体
に搭載された傾斜計で検出され傾斜角度及び方位計で検
出される角度に基づいて前記演算部が風向及び風速を算
出する請求項1記載の風向風速測定装置。
6. The structure is a moving body, and the computing unit calculates a wind direction and a wind speed based on an angle detected by an inclinometer mounted on the moving body and an angle detected by a tilt angle and an azimuth meter. The wind direction measuring device according to claim 1.
【請求項7】 前記演算部は、前記圧力センサ間の圧力
比率と前記傾斜計で検出される傾斜角度と風向及び風速
との関係を実験的に求めたデータを記憶した記憶部を有
し、該記憶部のデータと実測データとを比較して風向及
び風速を算出する請求項6記載の風向風速測定装置。
7. The storage unit stores a data obtained by experimentally determining a relationship between a pressure ratio between the pressure sensors, a tilt angle detected by the inclinometer, and a wind direction and a wind speed. The wind direction wind speed measuring device according to claim 6, wherein the wind direction and the wind speed are calculated by comparing the data in the storage unit with the measured data.
【請求項8】 前記計測本体は内部に空気が流通する中
空体に形成され、その中空体の内部に温度センサが配置
され、前記演算部は前記温度センサで検出した温度に対
応する空気の特性値を用いて、複数個の圧力センサで検
出した風圧により風向と風速とを算出する請求項1記載
の風向風速測定装置。
8. The measuring main body is formed in a hollow body through which air flows, a temperature sensor is arranged inside the hollow body, and the arithmetic unit is a characteristic of air corresponding to a temperature detected by the temperature sensor. The wind direction and wind speed measuring device according to claim 1, wherein the wind direction and the wind speed are calculated based on the wind pressures detected by the plurality of pressure sensors using the values.
JP27066795A 1995-09-26 1995-09-26 Device for measuring wind direction and wind velocity Pending JPH0989919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27066795A JPH0989919A (en) 1995-09-26 1995-09-26 Device for measuring wind direction and wind velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27066795A JPH0989919A (en) 1995-09-26 1995-09-26 Device for measuring wind direction and wind velocity

Publications (1)

Publication Number Publication Date
JPH0989919A true JPH0989919A (en) 1997-04-04

Family

ID=17489275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27066795A Pending JPH0989919A (en) 1995-09-26 1995-09-26 Device for measuring wind direction and wind velocity

Country Status (1)

Country Link
JP (1) JPH0989919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245795A (en) * 2013-04-06 2013-08-14 国家电网公司 Three-dimensional wind speed and wind direction measuring system and measuring method thereof
JP2016080552A (en) * 2014-10-18 2016-05-16 シスメット株式会社 Weather information notification system
KR102242162B1 (en) * 2020-08-05 2021-04-30 대한민국(기상청 국립기상과학원장) Method for calculating true wind direction and wind speed by adjusting measured values of wind anemometer mounted on vehicle based on differences caused by posture of vehicle and device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245795A (en) * 2013-04-06 2013-08-14 国家电网公司 Three-dimensional wind speed and wind direction measuring system and measuring method thereof
JP2016080552A (en) * 2014-10-18 2016-05-16 シスメット株式会社 Weather information notification system
KR102242162B1 (en) * 2020-08-05 2021-04-30 대한민국(기상청 국립기상과학원장) Method for calculating true wind direction and wind speed by adjusting measured values of wind anemometer mounted on vehicle based on differences caused by posture of vehicle and device using the same
US11243222B1 (en) 2020-08-05 2022-02-08 National Institute of Meteorological Sciences Method for calculating true wind direction and true wind speed by adjusting measured values of anemometer mounted on moving body based on observation errors caused by degree of slant of moving body and device using the same

Similar Documents

Publication Publication Date Title
US5117687A (en) Omnidirectional aerodynamic sensor
CN101389967B (en) Method and apparatus to determine the wind speed and direction experienced by a wind turbine
EP0597899B1 (en) Angle of attack sensor using inverted ratio of pressure differentials
US7730776B2 (en) Vector wind sensor and integrated antenna
US20090319189A1 (en) Low cost, unattended weather sensor
JPS60623B2 (en) Method for measuring changes in angle of attack and prog for the same
WO2015178006A1 (en) Measurement device and measurement system using same
JPH0668498B2 (en) Air flow measuring device
JP2884502B2 (en) Wide-velocity range flight velocity vector measurement system using quadrangular pyramid-shaped 5-hole probe
US7377159B2 (en) Methods and system for determining angles of attack and sideslip using flow sensors
EP0158664A1 (en) Apparatus for correcting barometric pressure for wind velocity and direction.
US10191076B1 (en) Airflow sensing systems and methods
JPH0989919A (en) Device for measuring wind direction and wind velocity
JP2010530527A (en) How to compensate for the temperature measurement error of the sonde
JPH07507144A (en) Aerodynamic pressure sensor system
CN210710213U (en) Device for detecting inclination angle of elevator car based on six-axis acceleration sensor
US4449400A (en) Radionuculide counting technique for measuring wind velocity and direction
US4750574A (en) Accurate weight determination at sea
US2985014A (en) Anemometer
JP3313317B2 (en) Anemometer and wind speed measurement method
JP3666622B2 (en) Load detection device
JP3574814B2 (en) Aircraft ultrasonic airspeed sensor
JPH067053B2 (en) Attitude sensor
JPH0727781A (en) Detector of flow velocity and flow direction of fluid
KR100910391B1 (en) Wind detecting sensor